
Fast Algorithms for Poker Require
Modelling it as a Sequential Bayesian Game

Vojtěch Kovařík1∗ , David Milec1† , Michal Šustr1,2 and Dominik Seitz1 , Viliam Lisý1

1Artificial Intelligence Center, Faculty of Electrical Engineering,
Czech Technical University in Prague

vojta.kovarik@gmail.com, milecdav@fel.cvut.cz, {michal.sustr, dominik.seitz} @aic.fel.cvut.cz}
viliam.lisy@agents.fel.cvut.cz

Abstract
Many recent results in imperfect information
games were only formulated for, or evaluated
on, poker-like games. We argue that sequen-
tial Bayesian games constitute a natural class of
games for generalizing these results. This model
allows for an elegant formulation of the counter-
factual regret minimization algorithm (CFR),
called public-state CFR, which naturally lends
itself to an efficient implementation. Empiri-
cally, solving a poker subgame with 107 states by
public-state CFR takes 3 minutes and 700 MB
while a comparable version of vanilla CFR takes
5.5 hours and 20 GB. Moreover, this formu-
lation allows for exploiting domain-specific as-
sumptions, leading to a quadratic reduction in
asymptotic complexity (and a further empirical
speedup) over vanilla CFR in poker and other
domains. These results suggest the ability to
represent poker as a Bayesian extensive game
played a key role in the success of CFR-based
methods. Finally, we extend public-state CFR
to general extensive-form games, arguing that
this extension enjoys some (but not all) benefits
of the version for sequential Bayesian games.

1 Introduction
Poker has been a challenge for artificial intelligence re-
search since the field’s inception [16]. Recent progress has
led to essentially solving the two-player limit variant with
1014 decision points [23] and outperforming professional
human players not only in the two-player no-limit vari-
ant with 10170 decision-points but also in the analogous
six-player game [4]. Research papers commonly evaluate
novel algorithmic ideas on abstracted poker “river sub-
games” (107 histories), which can be quickly solved even
in complete tabular representations.

Generalising these results to other games, however,
proved difficult. On the conceptual level, the algorithms

∗Contact Author
†The second and third author contributed equally.

have been generalised to the full class of imperfect-
information extensive-form games (EFGs)1 [22, 21]. How-
ever, implementations of these algorithms often did not
show similarly impressive scalability as in poker — algo-
rithms for solving general EFGs are rarely evaluated on
games with more than 107 histories.

We argue that this is due to the particular structure
of poker, which is not shared by most other imperfect-
information games. Indeed, the hidden cards are dealt
to the players at the beginning of the game, and all
subsequent chance events (public cards) and actions (bets)
are publicly observable, which has two implications: First,
the space needed to represent the hidden information
remains constant and relatively small throughout the
game. Second, inferring the opponent’s possible hidden
information is trivial. Furthermore, whether an action
is legal never depends on hidden information. These
simplifications do not hold even in most card games
(where players can only play cards from their hand), not
to mention other games such as imperfect-information
variants of chess or computer games (where many of the
opponent’s actions go unobserved).

Some previous works explicitly discuss and exploit the
properties of poker [9, 14, 10]. Similarly, the recent paper
[20] acknowledges its use of a very specific version of
the counterfactual regret minimization algorithm (CFR),
though it does not go into details regarding the differences
between this version and the vanilla CFR [27]. However,
a vast majority of recent papers present their analysis
for EFGs but only implement (and evaluate) their ideas
on poker or games with near-identical structure (such
as liar’s dice). This is the case for example for [27, 5,
15, 3]. (A few notable exceptions include [7, 18, 12].)
Importantly, these algorithms often employ a range of
non-generalisable domain-specific tricks and speed-ups.
We argue that these implementations are often optimised
for poker to such a degree that they implement a different
algorithm from the one described by the theory.

We aim to bridge this divide between theory and im-
plementation for EFGs. We argue that the poker-specific
ideas become natural and generalisable if we stop mod-
elling it as a general EFG and instead view it as a

1EFG will, by default, refer to an imperfect inform. game.

Bayesian extensive game (BEG) with perfect (but in-
complete) information. BEGs form a subclass of EFGs.
They can be described [17] as extensive-form games in
which (1) the players are each assigned a type. The joint
probability distribution over types is common knowledge,
but each player only knows their own type. (2) The
players play a perfect information extensive-form game.
(3) Rewards in this game depend not only on actions
taken but also on the private types of all players.

We present a variant of counterfactual regret mini-
mization for BEGs and argue that this is the algorithm
typically used in existing poker literature. We show that
running CFR on BEGs can be asymptotically more effi-
cient on particular games with sparse or largely indepen-
dent type distributions, such as poker. Our experiments
show that while an implementation of CFR that runs on
the standard EFG representation takes 5.5 hours to solve
a river sub-game of poker, an implementation that runs
on the BEG representation solves the same game in 1.6
minutes, i.e., approximately 200x faster. In particular,
the results suggest that games that can be represented
as BEGs can be solved by CFR substantially faster than
more generic imperfect-information games that do not al-
low such representation. Consequently, we cannot expect
the tabular game-solving algorithms for generic EFGs
to be evaluated on the games of sizes comparable to the
poker games used in the literature.

The remainder of the paper is structured as follows:
In Section 1.1, we mention the most relevant literature.
In Section 2, we formally describe perfect-information
extensive-form games, Bayesian extensive games, and
counterfactual regret minimization. In Section 3, we
describe the BEG-specific version of CFR and analyze its
complexity. We also hint at how some of the ideas can
be extended to general EFGs; the details are presented
in Appendix A. In Section 4, we illustrate our claims by
presenting an empirical comparison of the general and
BEG-specific versions of CFR on poker. In Section 5, we
discuss the results and their implications.

1.1 Related Work
The topic of this text is tied to the informal concept of in-
complete information. While some authors use this term
interchangeably with imperfect information, some also
make the following distinction: A player is said to have in-
complete information if they are uncertain about the
rules of the game (for example, legal actions, identity of
other players, utility functions). In contrast, they are said
to have imperfect information if they are uncertain about
the current state of the game. In his seminal paper [8],
Harsanyi explains the relationship between the two types
of games and introduces (what is now typically called)
Bayesian games as a formalization of strategic interac-
tion under incomplete information. Sequential variants
of this model are considered, for example, in [17, 6, 1]
(under the names “Bayesian extensive game with observ-
able actions”, “multi-stage games with observed actions
and incomplete information”, and “games of incomplete
information with observable actions” respectively).

2 Background
In this section, we give a formal definition of perfect-
information extensive-form games and Bayesian extensive
games and give several examples of BEGs, including
poker. In Section 2.3, we describe the baseline CFR
algorithm in the context of BEGs. To keep the formulas
simple, we only present the results for two-player games.
However, all of our results also hold for N -player games.2

2.1 Perfect Information EFGs
Perfect-information EFGs formalize the situation where
several players make a sequence of publicly-observable
decisions and possibly encounter a series of chance events,
each of which affects the current state of the world and
available actions. They assume some pre-specified set of
terminal states over which the players have preferences.
Definition 1. A perfect information extensive-
form game is a tuple ⟨N ,A,H, πc, u⟩ where:

• N :={1, 2, c} is the player set including chance c.
• A =

∏
i∈N Ai is non-empty finite set of actions.

• H is a finite tree on A (i.e., a set of finite sequences
with extension relation ⊏ s.t. ∀g, h : h ∈ H & g ⊏
h =⇒ g ∈ H). Its elements are called histories.
Z is the set of all leaves (terminal histories) of H.

• A(h) := {a ∈ A | ha ∈ H} and Ai(h) := {ai | a ∈
A(h)} denotes legal actions (joint and player i’s)
at history h. We assume that A(h) =

∏
i∈N Ai(h).

• A player i is said to be active at h if |Ai(h)| ≥ 2.
We assume that the game has no simultaneous moves,
i.e., that there is most one active player at every h.3

• h ∈ H \Z → πc(h) ∈ ∆Ai(h) is the chance policy.
• u : Z → RN is the utility function.
When indexing, we use the convention that i denotes

one of the non-chance players, j denotes their opponent,
and -i denotes the pair (j, c).

2.2 Bayesian Extensive Games
BEGs can be viewed as an extension of perfect-
information EFGs where the payoffs depend on the joint
player-types which are initially drawn from a distribution
known by all players4:
Definition 2 (Bayesian extensive game). Bayesian
extensive game with publicly observable actions is a
tuple G =

〈
Θ, µ,N ,A,H, (πθ

c)θ∈Θ, (uθ)θ∈Θ
〉
, where:

• Θ = Θ1 ×Θ2 is the space of player types.
• µ ∈ ∆(Θ) is a common-knowledge prior over types.

2Generalizing the results is straightforward — in most
formulas, it suffices to replace j’s reach probability by the
product of reach probabilities of all opponents.

3We assume no simultaneous moves for an easier com-
parison with past work on CFR. This is, however, the only
reason for this assumption — all arguments apply even with
simultaneous moves (without requiring a change of notation).

4The model given by this definition is equivalent to taking
the model from Section 8.2.3 of [6] (with possibly-correlated
types, which the text also considers) and being explicit about
modelling one player as “chance” with fixed strategy.

• For every θ ∈ Θ,
〈
N ,A,H, πθ

c , uθ
〉

is an extensive-
form game with perfect information.

Spub is called the public tree and its elements spub
are called public states (or “public” histories). The set
of its leaves is denoted Zpub. The tree of (“full”) histories
in G is H := Spub ×Θ. Each player in G only sees their
own type θi and the current public state. Consequently,
policies in G are defined as mappings from information
states (infostates) si = (spub, θi) ∈ Spub ×Θi to action
probabilities πi(· |si) ∈ ∆Ai(spub).

We can illustrate BEGs using the example of Texas
hold’em poker. Since the rules of play vary between
different poker variants, we only describe the high-level
commonalities. All poker variants start with each player
drawing private cards (or card) from a deck. In the BEG
terminology, this determines their type. The game pro-
gresses through several rounds of betting (that is, publicly-
observable actions of players) between which the game
reveals public cards (that is, publicly-observable chance
actions). The game ends either when all players but one
fold (give up), in which case all bets go to the remain-
ing player, or in a showdown, where the player with the
strongest combination of private and public cards receives
all bets. (In other words, the utility is a function of the
public state and θ). Note that since all cards are drawn
from the same deck, representing poker as a BEG requires
correlated types and type-dependent chance events.

Another example of a BEG is liar’s dice (and its vari-
ants Bluff, Dudo, and others) [25]. While liar’s dice looks
different from poker at first glance, it is structurally very
similar — it could be informally described as poker played
with dice instead of cards. However, the game is even sim-
pler than poker: Since each dice is rolled independently,
the players’ types are independent, and the chance policy
doesn’t depend on them. Finally, games like stratego
[26] and battleship [24] can also be modelled as BEGs if
we assume each player chooses their initial setup using a
fixed (and known) probability distribution.

2.3 Counterfactual Regret Minimization

Counterfactual regret minimization is a popular self-play
algorithm for imperfect-information games [27]. It ap-
proximates a Nash equilibrium by iteratively traversing
the game tree and minimizing a particular notion of re-
gret, called counterfactual regret, at every action at each
decision point. (Where regret measures how much better
off a player could have been if they changed all their
actions at the given decision point si = (spub, θi) to a
specific one, and everything else remained constant. The
counterfactual part refers to assigning weights to itera-
tions proportional to the probability of encountering si at
the given iteration in the counterfactual scenario where i
always selects actions that lead to spub.)

To describe CFR, we need the notion of a counter-

factual value V π
i,cf(si) of an information state si:

V π
i,cf(si) = V π

i,cf(spub, θi) :=
∑

θj∈Θj

vπ
i,cf(spub, θ)

vπ
i,cf(spub, θ) :=

∑
spub⊏zpub∈Zpub

P πi
i (spub→zpub|θi)P πj

j (zpub|θj)·
· Pc(zpub|θ)ui(zpub|θ),

where the P -symbols denote the probabilities that the
given player takes all actions on the way to (or between)
the given public state. for chance, this includes the
probability of sampling θ:

P
πj

j (zpub|θi) :=
∏{

πj(aj |s′
pub, θj) | s′

puba ⊏ zpub
}

Pc(zpub|θ) := µ(θ)
∏{

π(ac|s′
pub, θ) | s′

puba ⊏ zpub
}

P πi
i (spub→zpub|θi) is defined like P

πj

j (zpub|θi), except it
also requires that s′

pub ⊐ spub. We also define the cor-
responding counterfactual infostate-action values:

Qπ
i,cf(si, ai) := V

π|si 7→ai

i,cf (si), (2.1)
where π|si 7→ai denotes the policy profile that coincides
with π everywhere except for si, where it takes the ac-
tion ai with probability 1. Finally, the counterfactual
regret at infostate si under policy π is

Rπ
i,cf(si, ai) := Qπ

i,cf(si, ai)− V π
i,cf(si).

For a more accessible and intuitive explanation of these
concepts, we refer the reader to [21].

In practice, we compute counterfactual values of all in-
fostates at once, in a single forwards- and backwards-pass
of the game tree. The simplest version of the process,
Hist-CFVupdate, is described in Algorithm 2: During the
forward pass, incrementally compute the reach probabili-
ties P

πj

j (zpub|θj) and Pc(zpub|θ). During the backward-
pass, incrementally compute P πi

i (spub→ zpub|θi), such
that upon reaching a history (spub, θ), we have all terms
needed to calculate vπ

i,cf(spub, θ) and v
π|si 7→ai

i,cf (spub, θ). Fi-
nally, add these terms to Qi

i,cf(si, ai) and V π
i,cf(si).

The last missing ingredient of CFR is translating coun-
terfactual regrets into policy updates. The standard way
of doing this is via the regret matching formula (RM):

πt+1
i (ai|si) := Rt,+

i,cf(si, ai)
/∑

a′
i
∈Ai(spub)

Rt,+
i,cf(si, a′

i)

where Rt,+
i,cf(si, a′

i) := max{0,
∑t

k=1 Rπk

i,cf(si, a′
i)} and

πt+1
i (ai|si) := 1/|Ai(spub)| when the denominator is 0.
With all of these tools, defining CFR is straightfor-

ward (Algorithm 1): We initialize the algorithm with
a uniformly random policy π0. At each iteration, we
calculate the counterfactual regrets of πt for all infostates
via RegretUpdate and use them to update the policy
via regret matching. Finally, we return the average of
the strategies πt. For the purpose of this text, we refer
CFR which uses the history-based implementation of
Hist-RegretUpdate (Algorithm 2) as Vanilla-CFR.

Algorithm 1 CFR using a particular RegretUpdate

1: π0 ← uniform random policy
2: R((spub, θi), ai)← 0 ∀spub, i, θi, ai ∈ Ai(spub)
3: for t = 0, . . . , T − 1 do
4: RegretUpdate(root)
5: for all non-terminal spub, i ̸= c, and θi do
6: πt+1

i (· |spub, θi)← RM(R((spub, θi), ·)
return π̄ = 1

T (π1 + · · ·+ πT)

Since Vanilla-CFR inspects every element of H, its
per-iteration run-time complexity is O(|H|). The memory
complexity is lower-bounded by the number of infostates
(because of the need to story the current policy). It can
be higher if Vanilla-CFR stores the whole H in memory.

3 Public-State CFR
We saw that Vanilla-CFR works by iterating over the
entire history tree of G. This section describes how to
implement CFR by iterating over the public tree of G.
This implementation performs most – or even all, in some
domains – operations on the level of information states
rather than EFG histories, leading to a significant reduc-
tion in time and memory complexity of the algorithm.

The key insight is that once we know the counterfactual
values of leaf-infostates, the calculation for the remaining
infostates gets nearly trivial. This is formally captured
by the following (immediate) corollary of [21, Thm. 2]:
Proposition 3 (Backpropagation of counterfactual val-
ues). Let π be a policy profile and θi ∈ Θi a type. Then
we have the following for all terminal infostates (zpub, θi)
and non-terminal infostates (spub, θi):

V π
i,cf(zpub, θi) =

∑
θj

P
πj

j (zpub|θj)Pc(zpub|θ)ui(zpub|θ)

Qπ
i,cf(spub, θi, ai) =

∑
a-i

V π
i,cf(spub (ai, a-i), θi)

V π
i,cf(spub, θi) =

∑
ai

πi(ai|spub, θi) Qπ
i,cf(spub, θi, ai).

A corollary of Proposition 3 is that to calculate coun-
terfactual value of a terminal infostate (zpub, θi), we only
need to know the chance-weighted utilities CWUi(zpub) =
(Pc(zpub|θ)ui(zpub|θ))θ∈Θ (these are a constant indepen-
dent of the current policy) and the reach probabilities
of those infostates of the opponent that are compatible
with the current public state. This observation allows us
to perform the CFR update by traversing the game tree
on the level of public states, as described in the recursive
procedure PS-RegretUpdate (Algorithm 3). Finally, we
define public-state CFR, PS-CFR, as a variant of CFR
that performs its updates using PS-RegretUpdate.

3.1 Complexity of CFR in BEGs
The main advantage of PS-CFR over Vanilla-CFR is its
potential for increased practical and asymptotic efficiency.

On the practical side, the infostates compatible with
a given public state are always indexed by the same set

Θi and the list of legal is the same for all infostates
compatible with the given public state. The upshot is
that all parts of PS-RegretUpdate can be implemented
as operations on vectors or matrices, making it suitable
for parallelization. For example, the evaluation of a
terminal public state zpub (line 4) can be performed for
all infostates (zpub, θi) at once by multiplying the matrix
CWUi(zpub) with the vector Pj(zpub| ·).

On the asymptotic side, the limiting factor is the need
to store and update the policy (at least for tabular im-
plementations) — this means that the time and space
complexity of one PS-CFR operation cannot be lower than
|I| :=

⋃2
i=1 |Spub×Θi|, the number of information states

in the game. However, this still leaves a lot of space
for improvement since the complexity of Vanilla-CFR
(and a naive implementation of PS-CFR) is O(|H|), which
can be as large as O(|I|2). The primary method for
achieving an asymptotic speedup is by implementing a
domain-specific evaluation of terminal public states [9]
(for the proof, see Appendix B):
Theorem 4 (Complexity of PS-CFR). For a BEG G:

1. The time and space complexity of one iteration of
PS-CFR is O(|H|).

2. There are domains, incl. poker, where the time and
space complexity of one iteration of PS-CFR is O(|I|).

Poker serves as a good illustration of (2): The key
insight is that if we want to know the expected utility in
poker, it is unnecessary to know the probability of each
card combination (hand) that the opponent could have.
Instead, we only need to know the probability that their
hand is weaker than ours. Moreover, if our hand changed
to a stronger one, the probability of the opponent’s hand
being weaker would only change by the probability of
the opponent holding cards weaker than our new hand
but stronger than our original hand. This observation
allows us to re-use most of the computation, bringing the
per-public-state complexity from |Θ1||Θ2| to |Θ1|+ |Θ2|.

3.2 PS-CFR beyond BEGs
We now present the high-level ideas which allow us to
extend PS-CFR to general imperfect-information games
and compare this more general case with the specialized
BEG version. The formal definitions and details of the
algorithm are explained in Appendix A.

We can informally introduce imperfect-information
extensive-form games (EFGs) by contrasting them to
BEGs. While the underlying structure for both models
is a perfect-information game, they differ in the type
of partial observability they introduce: In a BEG, the
players are uncertain about the payoffs at the end of the
game. In contrast, the players in an EFG are instead
uncertain about the game’s current state. EFGs formalize
this idea by partitioning the histories into information
sets (infosets) for each player and requiring that the
player’s policy is a function of the current infoset. It
follows that BEGs can be viewed as a special case of
EFGs — indeed, every BEG can be modelled as an EFG
by starting the game with a chance node that determines

Algorithm 2 Hist-RegretUpdate(h)
1: let s, θ be s.t. h = (s, θ) ▷ Retrieve information in h
2: if h = root then
3: Pi(s, θi)← 1 ∀i, θi

4: if z = h ∈ Z then
5: return (Pj(s|θj)Pc(s|θ)ui(z))i=1,2
6: else
7: vi ← 0 ∀i
8: for every child g = (sa, θ) of h = (s, θ) do
9: Pi(sa, θi)← Pi(s, θi)πi(a|s, θi) ∀i

10: q(a)← Hist-RegretUpdate(g)
11: vi += πi(a|s, θi) q(a)i ∀i
12: R((s, θi), a) += q(a)i − vi ∀i, a ∈ Ai(h)
13: return v

Algorithm 3 PS-RegretUpdate(s)
Require: CWUi(z) for all z and i
1: if s = root then
2: Pi(s, θi)← 1 ∀i, θi

3: if z = s ∈ Zpub then
4: CFV(z, θi)←

∑
θj∈Θj

Pj(z|θj)CWUi(z)(θ) ∀i, θi

5: else
6: for every child sa of s do
7: Pi(sa, θi)← Pi(s, θi)πi(ai|s, θi) ∀i, θi

8: PS-RegretUpdate(s)
9: for ∀i, θi, and ai ∈ Ai(s) do

10: CFQ(s, θi, ai)←
∑

a-i∈A-i(s) CFV(sa, θi)
11: CFV(s, θi)←

∑
Ai(s) πi(ai|s, θi) CFQ(s, θi, ai)

12: R((s, θi), ai)← CFQ(s, θi, ai)− CFV(s, θi)

Figure 1: Implementations of the Vanilla-CFR regret update on the history tree and the PS-CFR regret update on the tree of
public states. For brevity, we drop the “pub” index for public states spub.

each player’s type and grouping together the histories
which only differ in the other players’ type. The EFG
analogue of a public state is a public set [9, 11]; the
collection of all public sets forms an additional partition
that is refined by each player’s information partition,
such that if a history belongs to some public set, this fact
can be considered common knowledge. An infoset I is
compatible with a public set S if I ⊂ S. I is compatible
with an infoset J if I ∩ J ̸= ∅.

This analogy between BEGs and EFGs makes the high-
level description of PS-CFR for EFGs straightforward:
The algorithm is analogous to its BEG-version, except
that where the original version iterates over public states,
resp. types, the EFG-version iterates over public sets,
resp. infosets compatible with the current public set.

However, two subtle-yet-important complications make
the EFG-version of PS-CFR more conceptually difficult
and less amenable to an efficient implementation. First,
running the algorithm requires being able to (a) view the
public partition as a tree (that is, to find parents and
children of public sets) and (b) generate a list of infosets
compatible with each public set. While both operations
can be performed on-demand and efficiently in BEGs, it
is currently unclear how to run them easily in general
EFGs. (While we do not have decisive arguments on this
subject, we expect there will be games – such as blind
chess – where these operations are inherently costly.)
Second, BEGs have a very homogeneous structure, which
allows us to write many parts of the PS-CFR algorithm
as vector or matrix operations. As we will see, this is not
true for general EFGs, which can have a very irregular
structure and variables of disparate dimensions.

To understand the complications in general EFGs, it
is helpful to realize that BEGs are a very special case of
EFGs, enjoying several simplifying properties not shared
by EFGs. First, the structure of information is homo-
geneous across the whole public tree in a BEG — the

public state is always common knowledge, each player’s
type is private, and no information is ever hidden from
everybody. In contrast, in general EFGs, (1) players
may have no information at all, perfect information, or
anything between, (2) their information can be entirely
overlapping, entirely disjoint, or anything between, and
(3) the distribution of information can change drasti-
cally throughout the game. In particular, the number
of infosets compatible with a given public set can vary
significantly between different public sets, and different
infosets of one player might be compatible with different
infosets of another player. Second, actions in a BEG are
always fully observable, which is often not the case in
general EFGs. Finally, even the set of legal actions might
vary depending on the private information in EFGs, while
it only depends on public information in BEGs.

4 Empirical Evaluation
In the previous section, we have shown that in poker,
PS-CFR with a domain-specific evaluation of terminal
states has asymptotically lower run-time and memory
complexity than Vanilla-CFR. We also argued that
PS-CFR is likely to be more efficient than Vanilla-CFR
even without the domain-specific optimizations. We now
compare the performance of these algorithms empirically.

We evaluate the results on a subgame of no-limit Texas
hold’em poker. Specifically, we use the subgame after
the last public card is dealt (that is, a river subgame),
with public cards (9s, 7c, 5s, 4h, 3c), pot size 200, and
uniform distribution over private cards. To make the
computation tractable, we use the (fold, call, pot, all-
in) action-abstraction, which results in a subgame that
has 61,000,831 states (i.e., histories) and 21,620 decision-
points (i.e., active-player infosets).

All algorithms are implemented using the open-source
library OpenSpiel [13] (and we plan to incorporate them
into the master branch). We implemented two versions

Algorithm Setup time 1000 iterations One iteration Memory used
Vanilla-CFR 2.92 min 5.48 h 19.73 s 22 GB

PS-CFR 2.36 s 2.89 min 173.15 ms 736 MB
PS-CFR (domain-sp) 2.82 s 1.42 min 85.05 ms 526 MB

Vanilla-CFR (memory-eff) 1.57 min 25.75 h 92.71 s 292 MB5

Table 1: Comparison of Vanilla-CFR and PS-CFR on a river subgame of no-limit Texas hold’em poker.

of public-state CFR — the baseline version PS-CFR ap-
plicable to any BEG and a poker-specific version PS-CFR
(domain-sp) whose terminal-state evaluation run-time
is linear (rather than quadratic) in the number of infosets
[9]. For vanilla CFR, we used a version already present
in OpenSpiel. We refer to this version as Vanilla-CFR
(memory-eff) since it only maintains a small portion
of the game tree at any given time, resulting in slower
child-retrieval but low memory usage. To make the algo-
rithm more directly comparable to our implementation
of public-state CFR, we also implemented a version that
keeps the structure needed for child-retrieval in memory.
We refer to this version simply as Vanilla-CFR.

We ran 1000 iterations of each algorithm and measured
the resulting memory usage, the time required for initial-
ization, and the subsequent time needed to run the 1000
iterations (Table 1). First, we see that the poker-specific
version of PS-CFR takes slightly longer to initialize, but
afterwards only requires 70% of the memory and runs
twice as fast. Among the two versions of vanilla CFR,
Vanilla-CFR (memory-eff) is roughly five times slower
than Vanilla-CFR but uses ~75x less memory. Most
importantly, we see that both versions of vanilla CFR are
extremely slow compared to PS-CFR: The faster version
requires ~200x more time and ~40x more memory than
PS-CFR (domain-sp), while the slower version requires
~1000x more time and a similar amount of memory.

5 Conclusion
We have recently seen a lot of progress around counter-
factual regret minimization. However, while many works
aim to solve general (two-player zero-sum) imperfect in-
formation games — typically formalized as extensive-form
games — their empirical evaluation tends to only consider
poker, liar’s dice, or other games whose structure is near-
identical to poker. As a result, existing implementations
of most CFR-based algorithms use many optimizations
which rely on non-generalizable poker-specific assump-
tions. These optimizations are often so extensive that
it might be more appropriate to view the implemented
algorithm as distinct from the CFR described in [27].

We would like to bring attention to a different formal-
ization called Bayesian extensive games (BEGs) [17, 6, 1],
which is natural for describing poker and other similar
games. We have shown that many elements of the poker-
specific implementation of CFR generalize to this class of
games. While the classical version of CFR (Vanilla-CFR)
traverses the game tree on the level of histories, the BEG
version traverses it on the level of public states; we thus

called it public-state CFR, or PS-CFR for short.
We see at least three benefits of the public-state for-

mulation of CFR. The first is conceptual: Many recent
extensions of CFR (e.g., [2, 19]) heavily rely on decompo-
sition and public states. Since PS-CFR is also formulated
in terms of public states, PS-CFR serves as a much more
suitable basis for these extensions than Vanilla-CFR.
Second, even though PS-CFR has – in general – the same
asymptotic complexity as Vanilla-CFR, it naturally lends
itself to an efficient implementation using vectors and ma-
trices, which leads to a significant practical speedup over
Vanilla-CFR, especially on GPUs. Indeed, we saw that
PS-CFR only requires around three minutes and 700 MB
to solve a river subgame of no-limit Texas hold ’em poker
while Vanilla-CFR needed around 5.5 hours and 20 GB.
Third, we saw that many domains allow for a more ef-
ficient implementation of PS-CFR (more specifically, of
the evaluation of terminal states), which can lead to an
improvement in CFR’s asymptotic complexity. In the
case of poker, this reduces the complexity of a single it-
eration of CFR from O(|H|) (the number of game-states)
to O(|I|) (the number of decision points).

We have also shown that the ideas behind PS-CFR can
be extended to general EFGs. Like the BEG version
of PS-CFR, the EFG version is still suitable for integra-
tion of decomposition-based methods and amenable to
domain-specific improvements. However, it is conceptu-
ally more complicated, does not, in general, lend itself to
vectorized implementation, and requires a possibly-costly
initialization (to build the public tree and connect it to
the information-state trees). We have implemented both
versions of the algorithm and the necessary initializa-
tion methods, and both will be made available in the
open-source library OpenSpiel [13].

We believe these results have several implications.
First, to the extent that we are interested in sequen-
tial Bayesian games, it would be beneficial to explicitly
adopt the BEG model. This will make the results more
understandable and replicable. Moreover, it might make
developing and implementing new ideas easier. Second, to
advance state of the art in general imperfect-information
games, we should work with more domains than just

5The memory requirements of Vanilla-CFR (memory-eff)
should be compared to an analogous low-memory version
of PS-CFR, which we did not implement. However, the most
memory-expensive part of Vanilla-CFR (memory-eff) is stor-
ing the current strategy. We thus predict that the hypothetical
PS-CFR (memory-eff) would require a near-identical amount
of memory while still being two orders of magnitude faster.

poker and BEGs. We believe clarifying the challenges
present in more general domains and establishing appro-
priate benchmarks to be important next steps in this
direction. Finally, in domains that cannot easily be cast
as BEGs — or with BEGs that are not as amenable
to action-abstraction as poker — we should recalibrate
our expectation on performance and not require new
algorithms to immediately scale to poker-sized domains.

Acknowledgments
This work was supported by Czech science foundation
grant no. 18-27483Y. Computational resources were sup-
plied by the project "e-Infrastruktura CZ" (e-INFRA CZ
LM2018140) supported by the Ministry of Education,
Youth and Sports of the Czech Republic.

References
[1] P. Battigalli and M. Siniscalchi. Rationalization and

incomplete information. Advances in Theoretical
Economics, 3(1), 2003.

[2] N. Brown, A. Bakhtin, A. Lerer, and Q. Gong.
Combining deep reinforcement learning and search
for imperfect-information games. arXiv preprint
arXiv:2007.13544, 2020.

[3] N. Brown, A. Lerer, S. Gross, and T. Sandholm.
Deep counterfactual regret minimization. arXiv
preprint arXiv:1811.00164, 2018.

[4] N. Brown and T. Sandholm. Superhuman ai for
multiplayer poker. Science, 365(6456):885–890, 2019.

[5] N. Burch, M. Johanson, and M. Bowling. Solving
imperfect information games using decomposition.
In AAAI, pages 602–608, 2014.

[6] D. Fudenberg and J. Tirole. Game theory, 1991.
Cambridge, Massachusetts, 393(12):80, 1991.

[7] R. Gibson, M. Lanctot, N. Burch, D. Szafron, and
M. Bowling. Generalized sampling and variance in
counterfactual regret minimization. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 26, 2012.

[8] J. C. Harsanyi. Games with incomplete information
played by “Bayesian” players, I–III, part I. the basic
model. Management science, 14(3):159–182, 1967.

[9] M. Johanson, K. Waugh, M. Bowling, and M. Zinke-
vich. Accelerating best response calculation in large
extensive games. In IJCAI, volume 11, pages 258–
265, 2011.

[10] M. Johanson, M. Zinkevich, and M. Bowling. Com-
puting robust counter-strategies. In Proceedings of
the 20th International Conference on Neural Infor-
mation Processing Systems, pages 721–728, 2007.

[11] V. Kovařík, M. Schmid, N. Burch, M. Bowling, and
V. Lisỳ. Rethinking formal models of partially ob-
servable multiagent decision making. Artificial In-
telligence, page 103645, 2021.

[12] M. Lanctot, R. Gibson, N. Burch, M. Zinkevich,
and M. Bowling. No-regret learning in extensive-
form games with imperfect recall. arXiv preprint
arXiv:1205.0622, 2012.

[13] M. Lanctot, E. Lockhart, J.-B. Lespiau, V. Zambaldi,
S. Upadhyay, J. Pérolat, S. Srinivasan, F. Timbers,
K. Tuyls, S. Omidshafiei, et al. Openspiel: A frame-
work for reinforcement learning in games. arXiv
preprint arXiv:1908.09453, 2019.

[14] M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowl-
ing. Monte Carlo sampling for regret minimization in
extensive games. In Advances in neural information
processing systems, pages 1078–1086, 2009.

[15] M. Moravcik, M. Schmid, N. Burch, V. Lisý, D. Mor-
rill, N. Bard, T. Davis, K. Waugh, M. Johanson,
and M. Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science,
356(6337):508–513, 2017.

[16] O. Morgenstern and J. Von Neumann. Theory of
games and economic behavior. Princeton university
press, 1953.

[17] M. J. Osborne and A. Rubinstein. A course in game
theory. MIT press, 1994.

[18] M. Ponsen, M. Lanctot, and S. De Jong. MCRNR:
Fast computing of restricted Nash responses by
means of sampling. In Workshops at the twenty-
fourth AAAI conference on artificial intelligence,
2010.

[19] M. Schmid, N. Burch, M. Lanctot, M. Moravcik,
R. Kadlec, and M. Bowling. Variance reduction
in Monte Carlo counterfactual regret minimization
(VR-MCCFR) for extensive form games using base-
lines. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 2157–2164,
2019.

[20] M. Schmid, M. Moravcik, N. Burch, R. Kadlec,
J. Davidson, K. Waugh, N. Bard, F. Timbers,
M. Lanctot, Z. Holland, et al. Player of games.
arXiv preprint arXiv:2112.03178, 2021.

[21] D. Seitz, V. Kovařík, V. Lisý, J. Rudolf, S. Sun, and
K. Ha. Value functions for depth-limited solving in
imperfect-information games beyond poker. arXiv
preprint arXiv:1906.06412, 2019.

[22] M. Šustr, V. Kovařík, and V. Lisý. Monte Carlo
continual resolving for online strategy computation
in imperfect information games. In Proceedings of
the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pages 224–232. In-
ternational Foundation for Autonomous Agents and
Multiagent Systems, 2019.

[23] O. Tammelin, N. Burch, M. Johanson, and M. Bowl-
ing. Solving heads-up limit Texas hold’em. In
Twenty-fourth international joint conference on ar-
tificial intelligence, 2015.

[24] Wikipedia. Battleship (game). https://en.wikipedia.
org/wiki/Battleship_(game), 2021. accessed: 2021-
11-11.

[25] Wikipedia. Dudo. https://en.wikipedia.org/wiki/
Dudo, 2021. accessed: 2021-11-11.

[26] Wikipedia. Stratego. https://en.wikipedia.org/wiki/
Stratego, 2021. accessed: 2021-11-11.

[27] M. Zinkevich, M. Johanson, M. Bowling, and C. Pic-
cione. Regret minimization in games with incomplete
information. In Advances in neural information pro-
cessing systems, pages 1729–1736, 2008.

A PS-CFR in General EFGs
In this section, we describe an implementation of the
public-state CFR algorithm for extensive-form games,
i.e., for a class that is much more general than Bayesian
extensive games. On the high level, the algorithm is
very similar to PS-CFR for BEGs. However, we will see
that the low-level details are more complicated and less
amenable to efficient implementation.

To model general imperfect-information games, we en-
dow perfect-information games with an additional struc-
ture – information sets and public sets – which captures
the histories which are indistinguishable from the point
of view of some player, resp. an external observer who
doesn’t have access to any private information. (The role
of the latter is similar to that of public states in BEGs.)
Definition 5. An imperfect-information extensive-
form game (EFG) is a pair ⟨Γ, I⟩, where Γ is an N-
player perfect-information extensive-form game and I =
(I1, . . . , IN , Ipub) is a collection of partitions of H, where
each Ii

• is a refinement6 of Ipub and
• provides enough information to identify i’s legal ac-

tions.7
The elements of Ii and Ipub are called information sets
(infosets) and public sets.

To avoid various pathologies, we additionally require
perfect recall and “no thick infosets or public sets”: An
EFG is with perfect recall if for each g, h ∈ Ii ∈ Ii,
i’s action-infoset histories8 corresponding to g and h
coincide. An EFG is said to not have thick public sets
if no element of Ipub (and hence of Ii) contains both
some h and its strict extension.

The definition of counterfactual values in an EFG is
similar to the BEG definition: A policy πi in an EFG
maps i’s infosets to probability distributions over actions

6Recall that P is a partition of a set X if
⋃

P = X and
(∀P, P ′ ∈ P) : P ̸= P ′ =⇒ P ∩ P ′ = ∅. P is a refinement of
a partition Q if each P ∈ P is a subset of exactly one Q ∈ Q.

7That is, for every Ii ∈ Ii, A(h) is the same for all h ∈ Ii.
8Where i’s action-infoset history corresponding to h is the

sequence of infosets encountered by i and actions taken by i
on the way to h.

legal at that infoset. A counterfactual value of an
infoset Ii ∈ Ii under policy profile π is defined as

V π
i,cf(Ii) :=

∑
h∈Ii

vπ
i,cf(h), where

vπ
i,cf(h) :=

∑
h⊏z∈Z

(P πi
i (h→z))

∏
j ̸=i,c

P
πj

i (z)Pc(z)ui(z)

and where the P -symbols denote the product of action
probabilities πi(a|Ii) (resp. πc(a|h)) for all actions taken
on the way to the given terminal state z (resp. along
the trajectory from h to z). Since i’s only depend
on the infoset to which a history belongs, we denote
P πi

i (Ii) := P πi
i (h) (where h is an arbitrary element of Ii),

and similarly for P πi
i (Ii→Ji). As in BEGs, we define the

counterfactual q-values as Qi
i,cf(Ii, ai) := V

π|Ii 7→ai

i,cf (Ii),
where π|Ii 7→ai

is like π, except i takes ai at Ii.
The computation of counterfactual values in EFGs

is similar to Proposition 3 (and also follows from [21,
Thm. 2]):
Proposition 6 (Backpropagation of counterfactual val-
ues in EFGs). Let π be a policy profile in an EFG. When
Ii is terminal infoset s.t. Ii ⊂ Z ∈ Ipub, we have

V π
i,cf(Ii) =

∑
(Ij)j∈

∏
j ̸=i,c

Ij(Z)

∏
j ̸=i,c

P
πj

j (Ij)
(∑

z∈I1∩···∩IN

Pc(z)ui(z)
)

When Ii is non-terminal and ai ∈ Ai(Ii), we have

Qπ
i,cf(Ii, ai) =

∑{
V π

i,cf(Ji)
∣∣∣ Ji ∈ Ii s.t. (∀h ∈ Ji)

(∃g ∈ Ii)(∃a-i) : h = g(ai, a-i)
}

V π
i,cf(Ii) =

∑
a′

i
∈Ai(Ii)

πi(a′
i|Ii) Qπ

i,cf(Ii, a′
i).

As in the BEG, we use Proposition 6 to define PS-CFR
on EFGs. However, we first need to make sure that the
information partitions and the public partition support
the following operations:

• For each infoset I ∈ Ii, we can get the previous
infoset J encountered by i and the action a′

i taken
by i at J .

• For each public set S, we can get9

– the previous10 public set S′,
– the list of all child public-sets of S,
– the list Ii(S) := {Ii ∈ Ii | Ii ⊂ S} of i’s infosets

compatible with S.
Note that while the public-state operations were mostly
trivial in BEGs, this is no longer true in general EFGs
and we expect that in some domains, fast implementation
of these operations will be impossible.

The PS-CFR algorithm for EFGs is defined as follows:
9The reason for using S instead of P to denote public sets

is to avoid notation clash with reach probabilities.
10That is, the public set S′ for which every h ∈ S is an

immediate successor of some g ∈ S′.

https://en.wikipedia.org/wiki/Battleship_(game)
https://en.wikipedia.org/wiki/Battleship_(game)
https://en.wikipedia.org/wiki/Dudo
https://en.wikipedia.org/wiki/Dudo
https://en.wikipedia.org/wiki/Stratego
https://en.wikipedia.org/wiki/Stratego

1. Initialization:
(a) Build the data structures necessary for the

above operations.
(b) For each terminal Z ∈ Ipub, precompute the

chance-weighted payoff matrix CWUi(Z) =(∑
h∈I1∩···∩IN

Pc(h)ui(h)
)

(I1,...,IN)∈I1(Z)×···×IN (Z)

.

(c) Define π0 as the uniformly-random policy.
2. For each t = 0, . . . , T − 1:

(a) Call EFG-PS-CFVupdate(root) (defined below)
to update cumulative regrets R(·|S, Ii).

(b) Update strategy: For every non-terminal S, i ̸=
c, and Ii ∈ Ii(S), obtain πt+1

i (·|spub, θi) by
using RM on R(·|S, Ii).

3. Return π̄ = 1
T (π1 + · · ·+ πT).

The recursive procedure EFG-PS-CFVupdate takes a
public set S as input, and – denoting π := πt – is defined
as follows:
(1) Calculate reach probabilities:

• If S is the root, set Pi(S, Ii) = 1 for all Ii ∈ Ii(S).
• Otherwise, set11 Pi(S, Ii) = Pi(S′, Ji)πi(a′

i|Ji) for
all Ii ∈ Ii(S) .

(2) Calculate counterfactual values:
• If S = Z is terminal, set the following for every i

and Ii ∈ Ii(S), compute CFV(Z, Ii) =

∑
(Ij)j∈

∏
j ̸=i,c

Ij(Z)

∏
j ̸=i,c

Pj(S, Ij)

 CWUi(Z)(I1, . . . , IN).

• Otherwise, set CFQi(S, Ii, ai) := 0 for all i, Ii ∈
Ii(S), and ai ∈ Ai(Ii), run EFG-PS-CFVupdate(S′)
for every child S′ of S, and set

CFVi(S, Ii) :=
∑

ai∈Ai(Ii)

πi(ai|Ii)CFQi(S, Ii, ai).

(3) Back-propagate counterfactual values:
• Add CFVi(S, Ii) to CFQi(S′, Ji, a′

i) for every i and
Ii ∈ Ii(S).

• Use them to calculate the corresponding regrets.

B Proofs
Theorem 4 (Complexity of PS-CFR). For a BEG G:

1. The time and space complexity of one iteration of
PS-CFR is O(|H|).

2. There are domains, incl. poker, where the time and
space complexity of one iteration of PS-CFR is O(|I|).

Proof. (1) In non-terminal public states, the time and
space complexity of RegretUpdate (without the recur-
sion) is O(|I|). In terminal public states, the algorithm

11Where S′, Ji, and a′
i are the parent of S, parent of Ii,

and the last action taken by i.

needs to – in general – store and inspect all |Θ| ele-
ments of the matrix CWUi(zpub). The general time and
space complexity is thus O(|Spub × I| + |Spub × Θ|) =
O(|Spub ×Θ|) = O(|H|).

(2) If we reduce the complexity of evaluating terminal
public states from |Θ1| |Θ2| to some E ≥

∑2
i=1 |Θi|, we

could bring the overall complexity down to O(|Spub ×
I| + |Spub| · E) = O(|Spub| · E). By [9], such more-
efficient evaluation of terminal public states is possible
in a number of domains, and poker in particular admits
E =

∑2
i=1 |Θi|. In poker, we thus have |Spub| · E =

|Spub| ·
∑2

i=1 |Θi| = |I|, which concludes the proof. (In
poker, this requires a one-time investment to sort the
private cards in each state based on their strength [9].
However, this cost can be amortized across all of the
iterations.)

	Introduction
	Related Work

	Background
	Perfect Information EFGs
	Bayesian Extensive Games
	Counterfactual Regret Minimization

	Public-State CFR
	Complexity of CFR in BEGs
	PS-CFR beyond BEGs

	Empirical Evaluation
	Conclusion
	PS-CFR in General EFGs
	Proofs

