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Abstract

Transformers have proven to be effective in various appli-
cation domains, such as natural language processing and vi-
sion, as result of their ability to perform credit assignment in
long time horizons and their scalability with large amounts of
data. In this paper, we explore the effectiveness of the trans-
former architecture in world model-based deep reinforcement
learning (RL). The performance of a world model-based deep
RL agent depends on the quality of its state transition model
and the imagination horizon, and we believe that transform-
ers may enhance the memory capabilities and predictive per-
formance of such agents. To this end, we extend the world
model-based RL framework Dreamer using transformers in
its dynamics model. Our experimental results on Deepmind
Lab and the data-driven driving simulator VISTA suggest
that Dreaming with Transformers can outperform RNN-based
models, and we discuss the challenges and potential future di-
rections working with this framework.

Introduction
Deep reinforcement learning (RL) tasks cover a wide range
of possible applications with the potential to impact domains
such as robotics, healthcare, smart grids, finance, and au-
tonomous vehicles. A fundamental challenge in these do-
mains is how to learn an optimal policy in high-dimensional
and long time horizon tasks.

World models (Ha and Schmidhuber 2018) explicitly rep-
resent an agent’s knowledge about its environment. Recent
world model-based RL frameworks (Hafner et al. 2020a;
Liu, Gu, and Liu 2020) leverage world models to facilitate
generalization and can predict the outcomes of potential ac-
tions in an imagination space to improve decision making.
One such framework, Dreamer, can achieve state-of-the-
art performance across a series of standard RL benchmarks
(Hafner et al. 2020b). Dreamer presents agents that can learn
long-horizon behavior directly from high-dimensional in-
puts by using latent imagination.

Dreamer agents use an actor-critic algorithm to compute
rewards and use recurrent neural networks (RNNs) to make
predictions within a latent imagination state-space. The use
of RNNs and their gated versions such as the long short-term
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memory (LSTMs) (Hochreiter and Schmidhuber 1997) and
gated recurrent units (GRU) (Cho et al. 2014) is natural due
to the spatiotemporal dependencies in various environments.
However, the memory span of a recurrent network is limited
(Lechner and Hasani 2020), as their information processing
mode is sequential, and mutual information of RNNs de-
cays exponentially in temporal distance of sequence inputs
(Shen 2019). Recently, transformer architectures using the
attention mechanism proved to enable parallel credit assign-
ment in very long sequences, significantly outperforming re-
current models (Vaswani et al. 2017). Transformers are the
primary choice in natural language processing (NLP) tasks
(Devlin et al. 2019), and are becoming the dominant archi-
tecture in vision tasks as well (Dosovitskiy et al. 2020). Re-
cent works provided additional evidence that transformers
can be effective in the context of RL (Parisotto et al. 2019;
Chen et al. 2021; Janner, Li, and Levine 2021). In the present
study, we investigate whether transformers are better candi-
dates for learning world models.

In particular, we improve upon the Dreamer framework
by addressing an agent’s capacity for world representations
and credit assignment in long-horizon tasks. We propose
an architecture that integrates the concept of self-attention
seen in transformers into agents with representation of the
world. Our main contribution lies in the architecture of
the latent dynamics model which particularly allows for
non-markovian transitions of the latent space. This freedom
greatly increases the predictive power of imagined trajecto-
ries, which in turn can yield more optimal actions.

We first provide background on the architecture of world
models as well as the concept of self-attention. Next, we
provide an overview of our proposed architecture. We moti-
vate our choices by providing analysis of the shortcomings
of current models specifically within the context of environ-
ments requiring memory of the past. Then, we describe our
experimental setup and present preliminary results. Finally,
we discuss conclusions and future directions.

Background
Reinforcement Learning
The objective of reinforcement learning is to search for an
optimal policy in a Partially Observable Markov Decision
Process (POMDP) described by the tuple (S,A,P,R,O).



Figure 1: A comparison between transformer-based and GRU-based Dreamer agents. Transformers can directly access encoded
information from previous observations, whereas recurrent networks can only access past information stored in a single hidden
state. Therefore, transformers should perform better on tasks requiring long-term memory. Specifically, on a driving simulator
task where sensors fail and visual input stops, transformers should be able to make use of its most recent view of the road.

Particularly in a partially observable MDP, the agent makes
observations of the environment that may only contain par-
tial information about the underlying state. Formally, we
let ot ∈ O, rt ∈ R, st ∈ S, at ∈ A be the observation,
reward, state, and action at time step t ∈ {1, . . . , T}. At
each time step t, the agent will generate and execute an ac-
tion at ∼ p(at|o≤t, a≤t). The environment will change to a
new state according to some transition probability function
st ∼ P (st|st−1, at), but the agent will only receive observa-
tions and reward ot, rt ∼ p(ot, rt|o≤t, a≤t) from the envi-
ronment. The goal of the agents is to maximize the expected
reward E(

∑T
t=0 rt).

Model-Free vs Model-Based RL
Recent reinforcement learning models (Hafner et al. 2020a;
Liu, Gu, and Liu 2020) have found success by learning
world models that explicitly represent an agent’s knowledge
about its environment. World models stand in contrast to
model-free frameworks which directly learn a correspon-
dence between the state-space and action-space. It is shown
(Haarnoja et al. 2018) that in large unknown environments,
model-free frameworks suffer from low sample efficiency
and high sample complexity, and in some cases are not opti-
mal. World models attempt to address this issue by providing
the means for agents to extrapolate in situations they have
never encountered before. This is accomplished by learn-
ing a representation of the world in a latent space, and then
forming policies on top of this latent space.

Dreaming with Transformers
We consider reinforcement learning tasks with highly com-
plex observation and action spaces such as image inputs and
continuous movement within the environment. Inspired by
recent works in model-based RL and sequence-to-sequence
machine learning models, we propose a deep reinforcement
learning model with two key components: a world represen-

tation and dynamics modeling with transformers. Our main
contribution lies in the integration of transformers into world
models.

World Model

Our world model consists of several high-level components:
(1) an encoder from observations (images) to a latent state
space, (2) a latent dynamics model that imagines trajectories
in the latent space, and (3) an actor-critic model that pre-
dict actions and reward of imagined trajectories. The agent
makes decisions by imagining trajectories in the latent space
of the world model based on past experience, and estimating
trajectory rewards through learned action and value models.
In this work, we focus on the latent dynamics component.
We first define the following:

• ot is the observation at time t

• ôt is the reconstructed observation at time t

• at is the action at time t

• st is a stochastic state at time t that incorporates infor-
mation about ot

• ŝt is a stochastic state at time t that does not incorporate
information about ot

• ht is the deterministic state from which the st and ŝt are
predicted off of

• M is the memory length of the sequential model.

The model can thus be formulated by the following distri-
butions where we use p for distributions that generate sam-
ples in the real environment, q for their approximations that
enable latent imagination and φ to describe their shared pa-



rameters:

Transformer model: ht ∼ fφ(h[t−M,t−1], s[t−M,t−1], at−1)

Representation model: st ∼ pφ(ht, ot)
Transition model: ŝt ∼ qφ(ht)

Image model: ôt ∼ qφ(ht−1, st−1)
Reward model: rt ∼ qφ(ht, st).

The representation model encodes observations and actions
to create continuous states st with non-markovian transi-
tions. The transition model predicts future states in the latent
space without seeing the corresponding observations that
will later cause them. The image model reconstructs obser-
vations from model states. The reward model predicts the re-
wards given the model states. The policy is formed by imag-
ining hypothetical trajectories in the compact latent space of
the world model using the transition model, and choosing
actions that maximize expected value.

We refer the reader to Hafner et al.’s (Hafner et al. 2020b)
work for a more detailed description of the remaining com-
ponents of the architecture which we largely base ours off
of.

Dynamics Modeling with Transformers
Our model imagines trajectories in the latent space via trans-
formers. Transformers (Vaswani et al. 2017) are neural nets
that transform a given sequence of elements, such as the
sequence of words in a sentence, into another sequence.
Similarly to other sequence-to-sequence architectures, they
consist of encoders and decoders to produce an output se-
quence from an input sequence. Recent works have shown
that transformers achieve staggering improvement over pre-
vious sequence-to-sequence models. The attention mecha-
nism can take into account several different inputs at the
same time and decides which ones are important by attribut-
ing higher weights to those inputs.

By analyzing the auto-mutual information (across time
lags) of sequence-to-sequence models, (Shen 2019) shows
that the mutual information decays exponentially in tempo-
ral distance in RNNs, whereas long-range dependence can
be captured efficiently by Transformers. The sequential data
within sophisticated reinforcement learning tasks, such as
self-driving cars, are highly correlated across time. As such,
we expect transformers to have potential to better represent
the latent state space and make predictions of future states.
See Figure 1 for a visualization of transformer memory ca-
pabilities.

The transformer takes the past M deterministic states
h[t−M,t−1], stochastic states s[t−M,t−1], and action at to
predict future states ht. Observations are encoded via an
encoder/decoder model. The transformer imagines future
states h≥t off of past h[t−M,t−1] and s[t−M,t−1], and the
most recent action at−1. The imagined states are used
to imagine the world (states, value, reward) in the future
ŝ≥t, v̂≥t, r̂≥t, and find optimal policies â≥t within the imag-
ined space. The hat operator indicates values that are pre-
dicted without their corresponding observations.

In our framework, we make use of recent literature study-
ing architectural changes that may benefit transformers in

Figure 2: On Deepmind Lab tasks, Dreaming with Trans-
formers achieves comparable or better performance than the
original Dreamer agent.

Figure 3: Outtakes from the VISTA driving simulator. When
roads do not change in curvature (left), agents may succeed
during sensor failures by repeating their last action. When
failures occur at changes in road curvature (right), agents
must predict curvature based on previous views of the road.

reinforcement learning contexts. In particular, we use a 3-
layer Gated Transformer-XL (Parisotto et al. 2019), which
changes the position of the layer normalization and adds a
gating layer.

Preliminary Experiments
We experiment on short-term and long-term memory tasks.
In the figures shown, the parameters used are mostly the
same parameters originally used in Dreamer for Deepmind
Lab, and each experiment was run five times. The agents us-
ing a GRU and using a transformer have exactly the same
parameters, only different dynamics models. See appendix
for experimental details.

Deepmind Lab
We first tested our framework on the Deepmind Lab (Beat-
tie et al. 2016) tasks Collect Good Objects and Watermaze,
as these two environments had been tested in the origi-
nal Dreamer paper (results in appendix). Collect Good Ob-
jects is a short-term memory task that requires the agent
to collect good objects and avoid bad objects, and Rooms



Figure 4: VISTA experiments. On the original VISTA task, the transformer with memory length 40 learns slowly, and the
transformer with memory length 1 slightly outperforms the GRU (center). In the sensor failures task, blackout length increases
steadily in frames as the agent takes more steps in the environment (left). The transformers are loaded with weights from the
length-1 transformer trained on the original VISTA task, and the GRU is loaded with weights from the GRU trained on the
original VISTA task. The agents are subject to the sensor failures task, where we see the length-40 transformer performing the
best before a performance degradation at 3.5 million steps (right).

Watermaze is a slightly longer-term memory task that re-
quires the agent to find a hidden platform and revisit it. For
these experiments, we set the transformer memory length
to 40. As shown in Figure 3, Dreaming with Transformers
achieved very similar performance on Collect Good Objects
as Dreamer and performed better on Watermaze. Note that
the Dreamer results differ from those the ones reported in
(Hafner et al. 2020a) because our framework builds on top
of the changes introduced in DreamerV2, and we compare
against DreamerV2.

VISTA
From the optimistic results in Deepmind Lab, we moved to-
wards testing Dreaming with Transformers on a more real-
world application, autonomous driving. We used the data-
driven simulator VISTA (Amini et al. 2020), where our
agent received visual input and output steering directions.
The agent is rewarded +1 for every frame it successfully
stays on the road. We were particularly interested in test-
ing the potential long-term memory benefits brought by
the transformer, so we looked into a navigation task that
would require long-term memory: driving with sensor fail-
ures. In this task, the visual input periodically blacks out for
a number of frames, and the agent must remember the last
clear frames of the road to turn or drive straight as neces-
sary to stay on the road. This task mimics scenarios where
autonomous vehicles’ sensors temporarily malfunction or
are obstructed by obstacles or weather conditions. Driving
through the beginning of a sensor failure may give a human
more time to react and take control of the vehicle.

In our initial testing, we tried using a transformer with
memory length 40 in our agent (‘Transformer-40’). Figure
4 (center) shows that this agent learns very slowly on the
original VISTA task without sensor failures. However, we
found that an agent using a transformer with memory length
1 (‘Transformer-1’) can quickly learn to navigate well and
slightly outperforms the agent using a GRU (‘GRU’), whose
performance consistently degrades after around 7 million
steps. Though we expect transformers to help with tasks re-

quiring memory, we see that transformer-powered RL agents
can outperform the GRU agents even on the short-term
memory original VISTA task. After this initial result, we
tried loading the weights of the transformer with memory
length 1 into the transformer with memory length 40.

Figure 4 (left) shows the setup of the sensor failure task.
For the first 3 million steps, there are no sensor failures. Af-
terwards, the potential blackout length (in frames) experi-
enced by the agent steadily increases as it takes more steps
in the environment. At around 7 million steps, the agent is
challenged to navigate when the sensor periodically receives
black input for 25 frames. We verified that a human driver
should be able to estimate the steering direction 25 frames in
advance, so the maximum blackout length is not an impossi-
ble task. Note that the agent may not actually experience the
full duration of the blackout if it drives off the road during
the sensor failure.

Figure 4 (right) shows three models on the sensor failures
task: the Transformer-40 agent, the Transformer-1 agent,
and the GRU agent. Each model is loaded with weights from
the best run on the original VISTA task after 10 million
steps. The transformer-based agents are both loaded with
weights from the Transformer-1 agent, and the GRU agent
is loaded with weights from the GRU agent.

We see that after being loaded with the Transformer-1
agent’s weights, the Transformer-40 agent performs better
than the other two models. The Transformer-1 agent contin-
ues to slightly outperform the GRU agent. However, con-
trary to our expectations, all three models show perfor-
mance degradation at around 3.5 million steps, when the
maximum blackout length is only 4 frames. After 3.5 mil-
lion steps, the Transformer-40 agent performs comparably
with the Transformer-1 agent, despite the Transformer-40
agent’s memory capacity theoretically allowing it to remem-
ber frames from the past. The investigation of these results
would be an interesting direction for future work. We theo-
rize one possibility is the blackout inputs interfere with the
transformer’s attention mechanism.



Discussion
In this work, we introduce Dreaming with Transformers,
an extension of Dreamer which leverages the advantages
of transformers in latent imagination-based reinforcement
learning. We showed that Dreaming with Transformers can
perform at least as well as Dreamer on two Deepmind Lab
tasks and the VISTA driving simulator task. In the process,
we showed that it is viable to quickly train a transformer
with shorter memory length as an initialization point for a
transformer with longer memory length in the context of re-
inforcement learning. Future directions include investigating
whether inputs of zero can interfere with transformers’ at-
tention mechanism, studying what representations work well
with transformers in reinforcement learning, and deeper ex-
ploration into the advantages transformers in world models
can offer in long-term memory tasks.

References
Amini, A.; Gilitschenski, I.; Phillips, J.; Moseyko, J.; Baner-
jee, R.; Karaman, S.; and Rus, D. 2020. Learning Robust
Control Policies for End-to-End Autonomous Driving From
Data-Driven Simulation. IEEE, 5: 1143 – 1150.
Beattie, C.; Leibo, J. Z.; Teplyashin, D.; Ward, T.; et al.
2016. DeepMind Lab. arXiv:1612.03801.
Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.;
Laskin, M.; Abbeel, P.; Srinivas, A.; and Mordatch, I.
2021. Decision Transformer: Reinforcement Learning via
Sequence Modeling. arXiv:2106.01345.
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Experimental Details
The experiments run on Deepmind Lab use the same setup
Dreamer originally used for Deepmind Lab (graciously pro-
vided by Danijar Hafner). The action space is discretized
into the following possible actions: move backward, strafe
left, strafe right, look left, look right, look left and forward,
look right and forward, fire. The parameters are set the same
way as they are set for Atari in the open source code1, except
that kl scale is set to 0.3, imag gradient mix is set
to 0.0, actor entropy is set to 1e-4, discount is set
to 0.99, and precision is set to 32. The only deviation
from the original Deepmind Lab setup is that the batch size
is reduced to 10 for memory purposes.

The experiments run on VISTA have the same setup,
with the exceptions that action repeat is set to 2, and
model lr is lowered to 5e-5, and actor lambda n is
set to 1e-3. These small changes seemed to very slightly
help both GRU-based and transformer-based agents on the
VISTA environment. Additionally, since the action space is
continuous, we set actor dist as tanh normal.

In both sets of experiments, the transformer has 3 layers,
4 attention heads of dimension 64, inner dimension of 1024,
and dropout set to 0.1.

1https://github.com/danijar/dreamerv2


