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Abstract

Auctions are modeled as Bayesian games with continuous
type and action spaces. Computing equilibria in auction
games is computationally hard in general and no exact so-
lution theory is known. We introduce algorithms computing
distributional strategies on a discretized version of the game
via convex online optimization. One advantage is that the ex-
pected utility of agents is linear in distributional strategies. It
follows that if our regularized optimization algorithms con-
verge to a pure strategy, then they converge to a ε-equilibrium
of the discretized game. We also show that the ε-equilibrium
of the discretized game approximates an equilibrium in the
continuous game. In a number of experiments, we show that
the method approximates the analytical (pure) Bayes Nash
equilibrium closely in a wide variety of auction games. This
is remarkable, because in many games learning dynamics do
not converge or are even chaotic. When agents have a low
number of strategies or they are symmetric, we find equilib-
ria in seconds. The method allows for interdependent valu-
ations and different types of utility functions and provides a
foundation for broadly applicable equilibrium solvers that can
push the boundaries of equilibrium analysis in auctions and
beyond.

Introduction
Auction games are arguably some of the most impor-
tant applications of game theory and they are modeled as
continuous-type, continuous-action Bayesian games. A bid-
der’s valuation or type in such an auction game is drawn
from some continuous distribution and he can choose from
a continuous range of possible actions (or bids). Early on,
Vickrey (1961) showed how to derive a Bayes-Nash equi-
librium (BNE) strategy in a single-object first-price auction
in the independent-private values (IPV) model with sym-
metric bidders and quasi-linear utility functions. The first-
order conditions together with the assumption of symmetric
bidding behavior lead to an ordinary differential equation,
which has a closed-form solution for the BNE bidding strat-
egy.

It turns out that deviations from this benchmark model
lead to challenges in the equilibrium analysis (McAfee
and McMillan 1987). For example, when the valuations
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of potential bidders are interdependent, then the system of
first-order partial differential equations that characterizes
a BNE often becomes intractable (Campo, Perrigne, and
Vuong 2003). Computing Nash equilibria (NE) in complete-
information finite games is already known to be PPAD-hard.
However, computing exact Bayesian Nash equilibria (BNE)
can even be PP-hard, a complexity class that is clearly in-
tractable Cai and Papadimitriou (2014). Consequently, the
analytical derivation of BNE strategies has been elusive for
all but very simple auction games. For example, no BNE
strategies have been derived for first-price sealed-bid com-
binatorial auctions, even though these auctions are widely
used in procurement or also for spectrum sales. Even ex-
istence of BNE has only been shown for relatively simple
models (Jackson and Swinkels 2005).

Inspite of this, there have been a number of approaches to
develop numerical techniques for specific environments. For
example, Armantier, Florens, and Richard (2008) introduced
a BNE-computation method that is based on expressing the
Bayesian game as the limit of a sequence of complete-
information games. Rabinovich et al. (2013) study best-
response dynamics on mixed strategies in auctions with fi-
nite action spaces, while Bosshard et al. (2020) contribute an
iterated best-response algorithm with an elaborate verifica-
tion method. More recently, Bichler et al. (2021) introduced
a technique to compute approximate Bayes-Nash equilib-
ria (BNE) using neural networks and self-play. Rather than
iterated best-response, the Neural Pseudogradient Ascent
(NPGA) implements simultaneous gradient ascent to learn
pure BNE in auction games. Depending on the prior distribu-
tion, the number of items and bidders and their utility func-
tion, close approximations could be found within a few min-
utes or hours in a wide range of auction games. While NPGA
implements gradient dynamics, the use of neural networks
and evolutionary strategies leads to a relatively complex al-
gorithm. However, the convergence to approximate BNE in
a wide variety of auction environments is remarkable given
a number of recent results on matrix games, where gradient
dynamics either circle, diverge, or are even chaotic (Sanders,
Farmer, and Galla 2018).

We introduce Simultaneous Online Dual Averaging
(SODA), a form of gradient dynamics that learns distribu-
tional strategies (Milgrom and Weber 1985), which are a
form of mixed strategies for Bayesian games. The distri-



butional strategies allow us to derive gradients and imple-
ment gradient dynamics without relying on neural networks
with self-play. SODA is based on a discretization of the
type and action space and allows for interdependent types
and different utility functions (e.g., risk aversion), which
makes it very simple and generic algorithm compared to ex-
isting approaches. Learning distributional strategies rather
than pure strategies has two main advantages: First, distribu-
tional strategies are known to exist in a larger variety of en-
vironments compared to what is known about pure strategy
BNE (Jackson and Swinkels 2005; Athey 2001; Reny 2011).
Second, the expected utility is linear in the distributional
strategies. It can be shown that if regularized convex opti-
mization algorithms converge to a pure strategy, then they
converge to a BNE of the discretized game. Understanding
gradient dynamics in specific types of games turns out to
be very challenging even in simple matrix games. Actually,
it is akin to studying dynamical systems and characterizing
environments where gradient dynamics converge to a Nash
equilibrium (if one exists) can be arbitrarily complex (An-
drade, Frongillo, and Piliouras 2021). However, for standard
auction models we can quickly check if SODA converges
to a pure strategy for a specific game and thus is an equi-
librium. This is an advantage over prior numerical methods,
which rely on estimates of the utility loss only to certify an
approximate equilibrium. Importantly, we also show that the
distributional ε-BNE found in the discretized single-object
auctions approximates a continuous equilibrium, if one ex-
ists.1

Computational complexity is always a concern in equilib-
rium computation, and we know that approximating BNE in
multi-item auctions can be NP-hard (Cai and Papadimitriou
2014). The main drivers of complexity for our algorithm are
the number of bidders, the number of available strategies
(typically driven by the number of items for sale) to each
bidder and the level of discretization of the type and action
space. If the bidder has an exponential set of strategies in
the set of items as it can happen in a combinatorial auction,
also our algorithm cannot be polynomial. Yet, in most auc-
tion models in the literature the number of strategies for each
bidder is fixed and small or the bidders are symmetric, which
allows for an effective computation of ε-BNE with SODA.

We provide extensive experimental results where we ap-
proximate the analytical pure BNE closely in a wide variety
of auction games. We could actually compute close approxi-
mations of the BNE with only a few bidders in seconds even
for complex core-selecting combinatorial auctions. If we re-
strict ourselves to independent private values, we can solve
large instances with dozens of bidders in seconds. This al-
lows for a quick exploration of auction models with different
priors or different utility functions.

Numerical methods have shown to be important for the
engineering sciences and are widely used. In auction theory
and market design, numerical methods have not received a
similar level of attention. SODA allows for the development

1Jackson and Swinkels (2005) discuss examples where there are
equilibria in the discretized game, but the continuous game does
not have an equilibrium.

of numerical tools for a wide range for Bayesian games with
continuous type and action spaces and perform compara-
tive statics with respect to distributional assumptions or the
utility functions of the agents. This can be the foundation
for widely applicable equilibrium solvers. Importantly, the
paper shows that important cases of equilibrium computa-
tion problems in auctions are tractable and we can find ap-
proximate equilibria quickly in spite of discouraging general
complexity results.

Model and Algorithm
We will first introduce the necessary notation and then de-
scribe the algorithm more generally.

Notation
An incomplete-information or Bayesian game is given by
a sextuplet G = (I,V,O,A, f, u). Here I = {1, . . . , n}
denotes the set of agents participating in the game. The
joint probability density function f : O × V → R≥0 de-
scribes an atomless prior distribution over agents’ types,
given by tuples (oi, vi) of observations and valuations. We
make no further restrictions on f , thus allowing for arbi-
trary correlations. f is assumed to be common knowledge
and we will denote its marginals by fvi , foi , etc.; its con-
ditionals by fvi|oi , etc.; and its associated probability mea-
sure by F . Agent i’s private observation is then given as a
realization oi ∈ Oi, with O = O1 × · · · × On being the
set of possible observation profiles. Similarly, V denotes the
set of “true” but possibly unobserved valuations. Crucially,
we make this distinction to model interdependencies in set-
tings beyond purely private values or purely common values.
Based on the observation oi, the agent chooses an action, or
bid, bi ∈ Ai, and the set of possible action profiles is given
by A = A1 × · · · × An.

For each possible action and valuation profile, the vector
u = (u1, . . . , un) of F -integrable, individual (ex-post) util-
ity functions ui : A× Vi → R assigns the game outcome to
each player. Ex-ante, before the game, agents neither have
observations nor valuations, only knowledge about f . In the
interim stage, agents additionally observe oi providing (pos-
sibly partial or noisy) information about their own valuations
vi. Full access to the outcomes u(v, b) is given only after tak-
ing actions (ex-post). In our formulation, we do not assume
explicit ex-post access to any values (e.g., vi, v−i, b−i) be-
yond the outcome u itself. An index −i denotes a partial
profile of all agents but agent i.

Taking an ex-ante view, players are tasked with finding
strategies that link observations and bids. Instead of pure
strategies, which are measurable functions βi : Oi → Ai

that map observations to bids, we are interested in dis-
tributional strategies that induce a probability measure on
the space of observations and actions (Milgrom and Weber
1985).

Definition 1. In the private values model, a distributional
strategy for player i is probability measure σ on Oi×Ai for
which the marginal distribution on Oi is foi . Formally, the
marginal condition can be written as σ(O ×Ai) = Foi(O)



for all measurable sets O ⊂ Oi. When players adopt distri-
butional strategies (σ1, ..., σn) the expected utility is given
by

ũi(σ) =

∫
ui(b, oi)σ1(db1|oi)...σn(dbn|on)F (do) (1)

The primary Bayesian games we’ll consider are sealed-
bid auctions on m indivisible items. In general combinato-
rial auctions we thus have a set K of possible bundles of
items and the valuation- and action-spaces are therefore of
dimension |K| = 2m. In the private values setting, we al-
ways have oi = vi; in the common values setting, there is
some unobserved constant vc = v1 = · · · = vn and the
oi can be considered noisy measurements of vc. Mixed set-
tings are likewise possible. In any case, based on bid profile
b, an auction mechanism will determine two things: An al-
location x = x(b) = (x1, . . . xn) which constitutes a parti-
tion of the m items, where bidder i is allocated the bundle
xi; and a price vector p(b) ∈ Rn, where pi is the monetary
amount bidder i has to pay in order to receive xi. Formally,
one may consider the individual allocations to be one-hot-
encoded vectors xi ∈ {0, 1}|K|. In the standard risk-neutral
model the utilities ui are then described by quasilinear pay-
off functions uQL

i (vi, b) = (xi(b) · vi − pi(b)), i. e. by how
much a player values her allocated bundle minus the price
she has to pay.

An extension to this basic setting includes risk-aversion.
Here, we model risk-aversion via utilities uRA =

(
uQL

)ρ
where ρ ∈ (0, 1] is the risk attitude; ρ = 1 describes risk-
neutrality, smaller values lead to strictly concave, risk-averse
transformations of uQL. Risk aversion is an established way
to explain why in field studies of single-object first-price
sealed-bid (FPSB) auctions, bidders bid higher than their
risk-neutral counterparts in analytical BNE (Bichler, Guler,
and Mayer 2015). However, different types of utility func-
tions are possible.

Model and Algorithm
The algorithm is based on gradient dynamics applied to the
set of discrete versions of the distributional strategies. As
mentioned in the example, these are constructed by restrict-
ing ourselves to finite subsets of the observation, valuation
and action sets and considering finitely atomic measures as a
counterpart to the distributional strategies in the continuous
setting. Formally speaking, we construct a discrete version
Gd = (I,Vd,Od,Ad, fd, u) of the incomplete-information
game G. This is done by defining a set of discrete observa-
tions Od = Od

1 × ... × Od
n where Od

i := {oi1, ..., oiN} ⊂
Oi. Similarly we define Ad

i := {bi1, ..., biM} ⊂ Ai and
Vd
i := {vi1, ..., viL} ⊂ Vi. We further replace the joint

probability density function f by a discrete version fd over
Vd × Od. The marginal distribution of fd over Od

i can
be written as fd

oi =
∑N

νi=1(f
d
oi)νi

δoiν . The discrete ver-
sion si of a distributional strategy σi for bidder i is now
an atomic measure over Od

i × Ad
i and can be written as

si =
∑N,M

νi,µi=1(si)νiµi
δoik⊗δbil with oiν ∈ Od

i and bµi ∈ Ad
i .

Since the discrete points are fixed, the probability measures

are completely determined by their coefficients. For simplic-
ity in the notation, we will focus from now on them. In that
case, the marginal condition translates to

∑
µi
(si)νiµi =

(fd
oi)νi

for all νi = 1, ..., N . Therefore the set of all possible
discrete distributional strategies for bidder i can be identified
by the following set of coefficients:

Sd
i := {si ∈ RN×M : (si)νiµi ≥ 0 ∀νi, µi,∑

µi

sνiµi
= (fd

oi)νi
∀νi} (2)

For a given strategy profile (s1, ..., sn) ∈ Sd
1 × ... × Sd

n we
can compute the expected utility. This corresponds to equa-
tion (1) but in the discrete setting.

ũi(s1, ..., sn) =
∑
λ,ν,µ

(
ui(bµ, vλi

)

n∏
j=1

(sj)νjµj

(fd)λ,ν
(fd

o1)ν1
· · · (fd

on)νn

)
(3)

Note that µ = (µ1, ..., µn) is a multi-index and bµ =
(b1µ1

, ..., bnµn
) the action profile of all bidders (same for v

and o respectively). We can split the sum in equation (3)
in two parts. First we sum over νi, µi and multiply (si)νiµi

with the remaining terms. Then we denote the second part as
(ci)νi,µi

and write ũi(s1, ..., sn) = ⟨si, ci⟩F . Since the sec-
ond sum, i. e. ci, does not depend on si, the expected utility
function for bidder i is linear in the bidder’s own strategy.
Instead of considering the discretized game Gd, we can use
the expected utility ũi and the sets of discrete distributional
strategies Sd

i to define a complete-information game.
Definition 2. Given the Bayesian game G =
(I,V,O,A, f, u), we construct a discrete version
Gd = (I,Vd,Od,Ad, fd, u) of the game by discretiz-
ing the respective spaces and probability distributions. The
resulting sets of discrete distributional strategies Sd

i and
the expected utility ũi define a complete-information game
Γ = (I,Sd, ũ), which we call the approximation game of
G.

Besides the linear utility function ũi, the continuous ac-
tion sets, namely the sets of discrete distributional strategies
Sd
i , are also compact and convex. This structure allows us

to use algorithms from online convex optimization. We will
focus on Dual Averaging (DA) (Nesterov 2009), which was
analyzed in the context of games with continuous action sets
by Mertikopoulos and Zhou (2019). The method is closely
related to other no-regret learners such as Online Mirror De-
scent (OMD). An overview and comparison of these algo-
rithms in a more general framework can be found for in-
stance in McMahan (2017). Dual Averaging is based on two
steps: (1) Given a current state (strategy profile) st ∈ Sd,
one computes the individual gradients and uses them to up-
date a score variable θt in the dual space. (2) The updated
score variable θt+1 is then linked or mirrored back to the fea-
sible set in the primal space using a link function g, resulting
in the new state st+1. Formally speaking, for all i ∈ I we
have

(1) θi,t+1 = θi,t + ηt ∇si ũi(si,t, s−i,t)

(2) si,t+1 = g(θi,t+1).
(DA)



For the update step of the score variable we use a nonin-
creasing sequence of step sizes {ηt} of the form ηt = η0/t

β

for some β ∈ (0, 1] as proposed in Mertikopoulos and Zhou
(2019). For the second part we use the link function

g(θi,t+1) := argmax
si∈Sd

i

⟨θi,t+1, si⟩ −H(si) (4)

with a strongly convex regularizer H . If we ignore H for a
moment, the link function returns a strategy which is most
closely aligned with the aggregated gradients. Since the util-
ity function in our application is linear, we can interpret
the output as the strategy, which performs best over an ag-
gregated version of all previous adversarial strategies. This
makes the connection to the basic idea of no-regret learning
even clearer. Including the regularizer again, there is a natu-
ral choice in the context of our problem. The entropic regu-
larization or negative Gibbs entropy H(x) =

∑d
l=1 xl log xl

is 1-strongly convex with respect to the 1-norm over the
probability simplex {x ∈ Rd : x ≥ 0, ∥x∥1 = 1}. Since
the set of feasible discrete distributional strategies Sd

i is a
subset of the probability simplex in RNM we use this regu-
larization term and get

H(si) =
∑
νi,µi

(si)νi,µi log(si)νi,µi . (5)

Another advantage of the entropic regularizer is that the re-
cursive rule of (DA) can be written into a single update step,
also known as normalized exponentiated gradient:

(si,t+1)νiµi
= (fd

oi)νi

(si,t)νiµi
exp (ηt(ci,t)νiµi

)∑
µ′
i

(si,t)νiµ′
i
exp(ηt(ci,t)νiµ′

i
)

(6)

for all νi, µi. Note that all gradients ci,t = ∇si ũi(si,t, s−i,t)
in (DA) are computed simultanously, i. e., they depend only
on the current strategy profile st. Therefore we refer to the
algorithm as simultaneous online dual averaging (SODA). If
the algorithm is implemented with a fixed step size ηt = η,
it is similar to online mirror descent (OMD) as described in
Shalev-Shwartz (2012).

Convergence of the Discretization
Next, we show that approximate BNEs of the discrete game
Gd naturally induce approximate BNEs of the continous
game G, where the quality of the approximation depends on
the coarseness of the discretization. Thus, if our algorithm
finds a good solution to the discretized setting, this also in-
duces a good solution for the continuous setting, where the
quality depends on the coarseness of the discretization. For
the sake of brevity, we only consider the case of single-
object first-price sealed-bid auctions here. Apart from that,
we do not postulate any strong assumptions, like symmetry
or independence.

Proposition 3. Let s ∈ Sd be an ε-BNE of the discrete
game Gd of a first-price sealed-bid single-object auction.
Let σ ∈ S be the strategy profile, where each σi is the strat-
egy induced by si. Then σ is an ε +O(Mδ + Lδ2)-BNE of
the continuous game G.

Here M and L are constants that are introduced in the
appendix and are independent of the actual discretization of
the game. δ denotes the coarseness of the discretization. The
central message of the proposition is that if we found an ap-
proximate BNE for the discrete game, we also found an ap-
proximate BNE for the continuous game with an additional
error term decreasing linearly with the coarseness of the dis-
cretization.

The idea of the proof is as follows. Given an arbitrary
strategy profile s ∈ Sd of the discrete game, we show that
s naturally induces a feasible strategy profile σ ∈ S of the
continuous game and that the difference of utilities of these
two solutions is in O(δ). Conversely, we can construct a
feasible discrete strategy profile s from a given continuous
strategy profile σ. Our central argument is that if we start
with a continuous strategy profile σ ∈ S, consider the in-
duced discrete strategy profile s ∈ Sd, which in turn induces
a continuous strategy σ̃i ∈ Si for each agent i, the loss of
utility is in O(δ). Now suppose we found an ε-BNE s∗ ∈ Sd

of the discrete game and consider the induced continuous
strategy profile σ∗. Let σi be a best response to σ∗

−i. Then
the discrete strategy si induced by σi cannot be much better
than s∗i , since s∗ is an ε-BNE. But by the result mentioned
above, the utility of the continuous strategy σ̃i neither differs
by much from si, nor from σ∗

i . Thus, the gain of utility from
switching to σi is in O(δ).

Mertikopoulos and Zhou (2019) proved in their Theo-
rem 4.1 that if a complete-information game with finite-
dimensional continuous action space A ⊆ Rd is pseudo-
concave and the sequence of pure strategy profiles (ati)t∈T

resulting from dual averaging converges to a∗i ∈ Ai for all
i ∈ I with positive probability, then a∗ is a Nash equilib-
rium. A consequence of the distributional strategies that we
learn is that the expected utility ũ(s1, · · · , sn) is linear in the
bidder’s own strategy. Consequently, if SODA converges to
a pure strategy, it also converges to a Nash equilibrium.

Whether the gradient dynamics converge or they don’t
depends on the very game or the type of equilibrium in a
game. In our experiments the SODA always converged in
games with only a few players. Convergence can be checked
quickly, for example, by looking at the distance to the last it-
erate, i.e., the computed solution.

There are also some conditions, when convergence is
known a priori. This is the case when the utility gradients
are variationally stable (Mertikopoulos and Zhou 2019), or
when a game has strict Nash equilibria. As a matter of fact,
variational stability and strictness of the Nash equilibrium
coincide. In contrast, in games with only mixed Nash equi-
libria the broader class of no-regret learners cannot be ex-
pected to converge (Vlatakis-Gkaragkounis et al. 2020).
Definition 4. Let s∗ ∈ S be a pure Nash equilibrium of the
approximation Γ, which is characterized by

ũi(s
∗) ≥ ũi(si, s

∗
−i) ∀si ∈ Sd

i , ∀i ∈ I (7)

If the equation holds as a strict inequality for all si ̸= s∗i for
all i ∈ I, the equilibrium is said to be strict.

For example, the continuous game G of a first-price
sealed-bid auction in the standard independent private values



model has a strict equilibrium (Krishna 2009). This means,
each equilibrium strategy has a unique best response. The
result by Vlatakis-Gkaragkounis et al. (2020) is for finite
games with a finite set of actions, while our actions are con-
tinuous probabilities si(o, b). However, the argument applies
to our environment as well:

Proposition 5. Let s∗ ∈ Sd be a strict Nash equilibrium in
the approximation game Γ = (I,Sd, ũ). Then s∗ is varia-
tionally stable in a neighborhood U of s∗.

The proof follows the lines of argument in Proposition
A.6 by Giannou, Vlatakis-Gkaragkounis, and Mertikopou-
los (2021)

Scaleability

Drivers for complexity of SODA are the number of players,
the number of items or bundles (which drives the number of
strategies), and the level of discretization. If the number of
strategies is exponential in the number of items (as in a com-
binatorial auction with general valuations), then gradient-
based optimization like in SODA explores all exponentially-
many strategies. As a result, an algorithm learning even only
approximate ε-BNE cannot be polynomial in the number of
items. Cai and Papadimitriou (2014) showed with a similar
argument that computing approximate ε-BNE in combina-
torial auctions is NP-hard.

In most auction-theoretical models, the number of items
or strategies per agent is small. Examples include single-
minded bidders in combinatorial auctions or split-award
auctions with two or three items only. Apart from this, a
standard assumption in auction theory is that of symmetric
priors and symmetric equilibrium strategies, which leads to
the fact that we only need to explore the strategies of a sin-
gle and not of multiple players. For example, if we further
assume that the bidders are independent, the computational
effort can be further reduced. In such a first-price sealed-bid
auction, the expected utility can be written as

ũi(s1, ..., sn) =
∑
ν,µ

(
(si)νiµi(oνi − bµi)

P(bµi
is highest bid; s−i)

)
.

(8)

Compared to the very general formulation (3), where we
sum over all combination of bids which grows exponentially
in the number of bidders n, we compute the first order statis-
tic. This way the complexity depends linearly on n, which
allows us to analyze much larger settings.

So, while we know that the complexity of finding ε-BNE
in general is NP-hard, computation is not necessarily a lim-
iting factor in most of the models analyzed in economic the-
ory and we can compute approximate BNE in due time with
an appropriate level discretization.

Experimental Evaluation
Let us first describe the auction games that we analyze, be-
fore we discuss the evaluation criteria and the results.

Auction Games
We illustrate the versatility of our method in the context
of single-object auctions and combinatorial auctions. For
single-object and combinatorial auctions with only a few
bidders, we can compute BNE within a few minutes or sec-
onds. We compare our results to those in (Bichler et al. 2021)
in order to illustrate the performance increase we get for
these environments. Let us briefly revisit the auction mod-
els analyzed in their paper and in the following.

Single-Object Auctions We start with interdependencies
in single-item auctions. The most well-known examples of
interdependencies are the common value model (with inde-
pendent observations o) and the affiliated value model for
single-item auctions (Krishna 2009). We explore the second-
price auction in an environment where there is one pure
common value that is the same among all bidders. Three
bidders i ∈ {1, 2, 3} share a common U(0, 1)-distributed
value for the item of interest. Conditioned on this value,
the observation oi of bidder i is uniformly—and indepen-
dently from the other observations—distributed on the inter-
val from zero to two-times the common value. Formally, we
can define the joint prior probability density function f with
a four-dimensional uniformly distributed random variable
Ω = [0, 1]4. For a draw ω ∼ U(Ω) we set each player’s type
to vi(ω) = ω4 and each observation to be oi(ω) = 2 ·ωi ·ω4.
Notice, all agents have the same value (or type), but they
only learn their value if they win the auction. In this model,
the symmetric BNE strategy profile can be stated in closed
form as

β∗
i (oi) =

2oi
2 + oi

. (9)

For this setting, all functions required for the calculation of
the utility loss from (15) can be derived analytically.

In the affiliated values model the individual observations
are correlated. In a model with two bidders (see also (Kr-
ishna 2009, Example 6.2)), we can set Ω = [0, 1]3 and bid-
der i ∈ {1, 2} then makes the observation

oi(ω) = ωi + ω3 (10)

and both have a common value of v(ω) = 1
2 (ω1 + ω2) +

ω3. The symmetric BNE-strategy for both agents under a
second-price payment rule is to bid truthfully and for a first-
price payment rule to bid according to β∗

i (oi) =
2
3oi.

The Local-Local-Global Model The LLG model consists
of two objects {1, 2}, two local bidders i ∈ {1, 2} and one
global bidder i = 3, each being only interested in one spe-
cific bundle (of the single object i (locals) or both objects
(global)), and we denote the valuation of each bidder’s sin-
gle bundle by vi ∈ R. We consider a private values (but not
independent private values) setting with oi = vi which al-
lows for correlation. It was shown that with independent pri-
vate values and risk-neutral bidders, core-selecting payment
rules lead to significant inefficiencies in equilibrium (Go-
eree and Lien 2016) in combinatorial auctions. Essentially,
the two local bidders attempt to free-ride on each other. De-
pending on the prior value distributions, it can happen that
both local bidders bid too low in total and they fail to out-
bid the global bidder, even if their combined valuations are



higher than the global bidder’s. This results in an inefficient
outcome and it has been used as an argument against core-
selecting combinatorial auctions (Bichler and Goeree 2017).
Now, it is interesting to understand equilibria with different
assumptions. For example, it is reasonable to believe that
bidder valuations in spectrum auctions are correlated, be-
cause telecoms face the same downstream market.

Ausubel and Baranov (2019) investigate two models of
correlation among local bidders’ private values and derive
analytical BNE, which we will use as a baseline in our ex-
periments besides the results of NPGA. Let’s define the joint
prior f to be the five-dimensional uniform distribution of a
latent random variable ω ∼ U [0, 1]5. Then let v3 = 2ω3 be
the valuation of the global bidder and

v1(ω) = wω4 + (1− w)ω1

v2(ω) = wω4 + (1− w)ω2
(11)

be the valuations of the local bidders where the weight w is a
random variable depending on ω5 only. The valuations of the
local bidders can be thought of a as a linear combination of
an individual component ωi and a common component ω4.
Now given an exogenous correlation parameter γ ∈ [0, 1],
Ausubel and Baranov (2019) propose (among other ways)
to choose w such that corr(v1, v2) = γ via the Bernoulli
weights model:

w(ω) =

{
1 if ω5 < γ,

0 else,
(12)

The authors analytically derive the unique symmetric
BNE strategies for multiple bidder-optimal core-selecting
payment rules including the nearest-zero (NZ), nearest-VCG
(NVCG), and nearest-bid (NB) rule in the Bernoulli weights
model. These rules all choose the efficient allocation x (ac-
cording to the submitted bids) but select different price
vectors p from the set of core-stable outcomes. For exam-
ple, the nearest-VCG rule picks the point in the core that
minimizes the Euclidean distance to the (unique) Vickrey-
Clarke-Groves payments. Similarly, the nearest-zero point
takes the origin of the coordinate system as a reference point,
while the nearest-bid rule minimizes the distance to the vec-
tor of submitted bids b.

Evaluation Criteria
The experiments are evaluated using two metrics. First we
use the relative utility loss with respect to the best re-
sponse ℓ to decide whether we are close to a equilibrium
within the approximation game Γ. For a given strategy pro-
file (s1, ..., sn), the best response sbri of bidder i given the
opponents strategies s−i can be computed by solving the re-
spective LP. The relative utility loss is then given by

ℓ(si, s
br
i ; s−i) = 1− ũi(si, s−i)

ũi(sbri , s−i)
(13)

After computing a discrete distributional strategy with suffi-
ciently small relative utility loss ℓ, we want to evaluate the
solution within the initial continuous setting of the auction
game G. To compare our results with NPGA from Bichler

et al. (2021), we choose the same approach and estimate the
ex-ante utility using the sample-mean of the ex-post utilities:

ûi(·, β−i) :=
1

H

∑
h

ui(·, β−i((o−i)h)) (14)

We then compare the outcome of a player bidding according
to the computed strategy si versus bidding according to the
known equilibrium strategy βi, while all opponents j play
the equilibrium strategy βj .

L(si;β) = 1− ûi(si, β−i)

ûi(βi, β−i)
(15)

Similar to NPGA, we sample H = 222 observation/valua-
tion profiles and choose the actions according to the given
strategies. For a given equilibrium strategy βi : Oi → Ai

the bid for an observed oi is simply bi = βi(oi). In the case
of a discrete distributional strategy si it is not that obvious
to get a corresponding action in the continuous setting. The
idea is that we identify the corresponding interval or rather
discrete value oνi

to the signal oi and sample a bid accord-
ing the induced behavioral strategy ((si)νiµi

)
M
µi=1. Instead

of sampling only the discretized values bµi , we extend the
behavioral strategy to Ai by using the corresponding piece-
wise constant probability densities. This induces a piecewise
linear cumulative distribution function from which we can
sample using inverse transform sampling.

In these experiments the discretizations was done by us-
ing equidistant points. The discrete prior was then computed
by evaluating the density function at these points and scaling
the vector accordingly (basically midpoint rule). Other dis-
cretizations, that take the specific priors into account might
lead to better results but weren’t considered here.

To visualize discrete distributional strategies, i. e. proba-
bility measures over the discretized spaces, we plot for each
fixed observation the 0.5% and 99.5% quantiles of the in-
duced probability measure over the discretized action space.
This way, we get areas where 99% of the bids for all valu-
ations are contained. This allows for a visual comparison to
the pure equilibrium strategies.

Our test computer contains an Intel Core i7-8565U CPU
@ 1.80 Ghz and 16GB of RAM. The implementation of the
algorithm uses Python 3.8.5.

Results
Single-Item Auctions In the common values and the af-
filiated values model all spaces are discretized using N =
M = 64 (L = 64) discretization points. We assume that
bidders are symmetric and therefore compute only one strat-
egy that is played by all bidders. In both cases the algorithm
starts with a random inintial strategy, an initial step size η0
and is stopped after the relative utility loss ℓ is less than
some threshold. For the affiliated values model we choose
η0 = 0.1 and ℓ < 0.1%. In all ten runs SODA stopped
after less than 5 seconds. In the commin value model we
have η0 = 0.7 and ℓ < 0.5% which leads to a running time
of 1-2 minutes. In contrast, NPGA was run for 15 minutes
to achieve a comparable utility loss. The resulting approx-
imated utility loss L for NPGA and SODA is reported in
Table 1.



Table 1: Results for single-item auctions with interdepen-
dencies.
Mean and standard deviation of L over 10 runs.

Auction Game NPGA SODA
Common Value 0.000 (0.000) 0.003 (0.002)
Affiliated Values 0.002 (0.001) 0.003 (0.001)
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Figure 1: Computed strategies for single-item auctions with
interdependencies

Combinatorial Auctions Next, we report our results for
core-selecting combinatorial auctions in the LLG model.
In this experiment, the action space and the observation
space are both discretized using N = M = 64 points.
We assume that the local bidders are symmetric and com-
pute one strategy for both. We focus the Bernoulli weights
model γ ∈ {0.1, 0.5, 0.9} and the three core-selecting pay-
ment rules: nearest-zero (NZ), nearest-VCG (NVCG), and
nearest-bid (NB). Starting with a random initial strategy, we
used a step size η0 = 5 and stop with a relative utility loss ℓ
of less than 10−4. The algorithm converged for the nearest-
zero rule in less than 1-3 min, and for the other rules in less
than 1 min. In comparison to NPGA, the results (see Table 2)
show an equally low utility loss for both methods. However
NPGA was again run for 15 minutes. Figure 2 illustrates the
resulting BNE strategies for the local bidders assuming dif-
ferent Bernoulli weights.

Table 2: Relative utility loss L of NPGA and SODA in the
LLG model with Bernoulli weight γ = 0.5. Mean and stan-
dard deviation of experiments over 10 runs.

Auction Game NPGA SODA
LLG NZ -0.000 (0.000) 0.000 (0.001)
LLG NVCG 0.000 (0.000) 0.002 (0.002)
LLG NB 0.001 (0.000) 0.000 (0.001)

All strategies where computed with a relative utility loss ℓ less than
0.01%.
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Figure 2: Computed strategies for the local bidders in the
LLG model

Conclusions

Equilibrium learning has almost exclusively focused on fi-
nite normal-form games. Computing Bayesian Nash equilib-
ria for continuous-type and -action auction games was con-
sidered intractable and only recently numerical techniques
have addressed this problem. SODA is a new technique that
relies on distributional strategies and a discretization of the
type and action spaces. The method is very fast for auction
models with a small number of bidders or with symmetric
bidders. In the standard independent private values environ-
ment SODA computes approximate equilibria also for large
numbers of bidders very quickly, which makes SODA a con-
venient numerical tool for auction theorists and a fast and
simple alternative to other equilibrium computation meth-
ods. We analyzed a wide variety of auction environments
and SODA converged in all of them. This suggests that al-
though equilibrium computation in general is computation-
ally very hard, for many relevant models an approximate
equilibrium can even be found in minutes or seconds. We
also know that if the gradient dynamics in SODA converge,
then they converge to a Nash equilibrium.

The fact that SODA converges in such a wide variety of
auction games is remarkable. Not only do we know that ap-
proximating Bayesian Nash equilibrium in multi-item auc-
tion games can be NP-hard (Cai and Papadimitriou 2014),
also the analysis of adaptive learning in games is notoriously
difficult and experiments suggest that non-equilibrium be-
havior, exemplified by chaos, may be the norm for compli-
cated games with many players (Sanders, Farmer, and Galla
2018). Unfortunately, the dynamics generated by gradient-
based learning can be very intricate and hard to interpret.
Andrade, Frongillo, and Piliouras (2021) leave little hope
for a general understanding of the behaviors arising from
optimization-driven dynamics in games. As such, the rea-
sons why SODA converges to an equilibrium in so many
auction environments is a challenging question and one that
we leave for future research.
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