Cooperation Learning in Time-Varying Multi-Agent Networks

Vasanth Reddy Baddam!, Almuatazbellah Boker?, Hoda Eldardiry’
'Department of Computer Science
2Department of Electrical and Computer Engineering
Virginia Tech
vasanth2608 @vt.edu, boker @vt.edu, hdardiry @vt.edu

Abstract

We propose a Multi-Agent Systems coordination framework
for complex and dynamic environments, where agents’ neigh-
bors vary over time. We consider an agent-agent communica-
tion network, where we represent time-varying interactions as
weighted network edges, and propose a heat kernel mechanism
to compute those time-varying edge weights. We represent
our network as a graph and build a heat diffusion kernel using
the graph Laplacian. The key idea of our proposed approach
is to model time-varying edge weights using the heat diffu-
sion approach. Our proposed approach Cooperation Learner
in MultiAgent Networks (CooLMAN) has a number of fea-
tures: (1) it captures information flow in a dynamic environ-
ment using temporal indexing, (2) agents can achieve optimal
policy and stability by the system-enabled timed interaction
and coordination, thereby (3) providing trained weights that
can be deployed to larger swarms in a scalable manner. We
demonstrate the effectiveness of our proposed method using a
cooperation task, where our model significantly outperforms
state-of-the-art method.

Introduction

Reinforcement Learning (RL) is an emerging field in
which learning happens through trial and error. RL is espe-
cially advantageous in real-time applications when an agent
is expected to perform tasks in hazardous environments such
as extreme weather conditions, high altitudes, or uncertain
conditions (e.g, in outer space). In some environments, only
a single agent is modeled and trained to perform the designed
task. However, in many other cases, there is a need for more
than one agent to cooperate with other agents to accomplish
a task.

Multi-Agent Systems (MAS) is a field that focuses on
control, collaboration between robots, and a wide range of
problems where agents need to cooperate to achieve global
tasks and sometimes compete. The remarkable characteristic
of MAS is that it enables robots to work together to reach a
common goal. Robots can have similar or various tasks de-
pending on their role (local and/or global), design objectives,
and environmental conditions. MAS can solve complex tasks
that individual robots cannot. This is due to several key ad-
vantages of MAS including more robustness, fault tolerance,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and low-cost operation compared to single robots. In MAS,
agents typically need to mutually achieve an optimal policy
in cooperative settings like traffic control (Wei et al. 2019),
multirobot control (Cortés and Egerstedt 2017), smart grid
network (Mocanu et al. 2016), multiplayer games (Jaderberg
et al. 2019), and construction tasks (Petersen, Nagpal, and
Werfel 2011), (Sartoretti et al. 2019). This gives rise to a set
of MAS challenges including non-stationarity, communica-
tion, task allocation, and scalability.

Jiang (Jiang and Lu 2018) proposed Graph Convolutional
Reinforcement Learning (DGN), in which MAS is modelled
as a graph. where nodes represent the observation encoding
of agents and edges represent the dynamic communication
channel between agents through which they can interact and
exchange the information between the each other. Thus shar-
ing the information would let the agents perceive the area
of the environment that was not in their vision and could
overcome the non-stationarity issue. DGN uses attention
mechanism as the convolutional kernel to extract the rep-
resentation between the agents. Additionally, to mitigate the
inconsistency in learning the cooperative policy occurring
from changing neighbors, they temporally regularized the
attention weights (representation weights). They empirically
were able to outperform the existing methods and show the
consistent cooperation between the agents.

Inspired by the work of (Jiang et al. 2019), we propose
a mechanism for explicit parameter sharing across agents
in a dynamic environment. Our proposed parameter sharing
idea is based on the well-known heat diffusion mecha-
nism (Unsworth and Duarte 1979). In particular, we use heat
diffusion to represent the flow of exchange of information.
Unlike the convolutional kernel-based approach proposed
by Jiang et. al (Jiang et al. 2019), heat kernel captures the
gradient flow of information and provides stability when
the neighboring agents changes constantly. Moreover, we
use multiple channels with heat kernel in parallel to capture
the different variations of information and concatenating
them together to capture the information enriched encoder.
The model parameters are then trained end-to-end and
updated based on Proximal Policy Optimization. We refer to
our algorithm as CooLMAN, which is an abbreviation for
Cooperation Learner in Multi Agent Networks. We show the
efficacy of our approach in the context of battle environment
in which two competing groups try to replace each other.

Through this work, we show empirically that CooLMAN
outperforms (Jiang et al. 2019) and DQN (Mnih et al. 2013)
in a dynamic cooperative environment. More specifically,
we show that by following our approach all the agents
cooperatively achieve a relatively large mean reward when
compared to other methods. Furthermore, though we train
our model on a smaller network of agents, through our exper-
imental results we show that CooLMAN is able to scale to
relatively larger network with the considerate average returns.

Related work

Multi-Agent Reinforcement Learning (MARL) is one of the
fields that is gaining momentum in recent years. At first, they
used to train each agent individually assuming that all other
agents are part of the environment (Tan 1993). However, this
process creates instability and inconsistent policy since the
environment is non-stationary and it would eventually fail
to scale for more agents. This is the main reason for us to
focus on the dynamic (time-varying) environment. In this
section, we discuss different architectures relevant to the
MARL domain.

In Decentralized learning, each agent acts independently
without any explicit information from other agents towards
the common goal. Previous work proposed Hysteric Q-
learning, which uses an extension of tabular - Q learn-
ing (Watkins and Dayan 1992), and performs tasks with-
out any need for additional communication assuming that
it is fully observable (Matignon, Laurent, and Le Fort-Piat
2007). More recent work has focused on partial observ-
ability by using the Decentralized Hysteric Deep Recur-
rent Q-Network (Dec-HDRQN) model which surmounts the
non-stationarity (Omidshafiei et al. 2017). Both of these ap-
proaches suffer from a number of limitations. The first is the
convergence and then the scalability, as it does not go beyond
two agents. Dec-HDRQN (Omidshafiei et al. 2017), achieves
cooperation but is still limited as there is no communication
setup between the agents.

The work in (Lowe et al. 2017) employs the actor-critic
algorithm in which a centralized critic is learned by using the
joint set of states and actions of all agents. During execution,
only an actor is used for individual agents that choose the
policy for the observed individual state. The work in (Foerster
et al. 2017) is similar to (Lowe et al. 2017) as it employs a
centralized critic and an individual actor. It addresses the mul-
tiagent credit assignment by using a counterfactual baseline
that marginalises out a single agent’s action while keeping the
other agents’ actions fixed. Value decomposition in (Sune-
hag et al. 2017) used centralized critic to learn the value
function during training and deploying the actor during exe-
cution, decomposes central state action value function into
a sum of individual agent functions. However, it limits the
complexity of the action value function and, additionally, it
does not use the whole state information. QMIX (Rashid et
al. 2018) overcomes this limitation by eliminating the neces-
sity of additive decomposition of the centralised critic. This
architecture enables scalability as the trained weights can
be reused on any number of agents but does not consider
inter-agent communication.

In all the previously mentioned work, there is no commu-
nication setup between agents. Instead, it only managed to
achieve co-operative policy during training. TarMac (Das
et al. 2019) uses attention mechanism to enable the inter-
agent communication, where an agent learns what kind of
messages and to whom it should be addressed. This model
shows that communication between agents improves the co-
operation policy. DGN (Jiang et al. 2019) follows the same
approach but with limited communication between agents.
More precisely, DGN restricts communication to only a cer-
tain number of agents using the distance metric, and thereby
reducing communication cost. Moreover, DGN introduced
regularisation kernel that helps in stabilizing the long term co-
operative policy. However, all the above work do not consider
time-varying edges in the dynamic multi-agent networks. Our
work bridges this gap by modelling the time-varying edges
through the function of heat diffusion.

Problem Formulation

We consider a partially observable, fully cooperative task,
where the MAS is described by a Markov Decision Process
(MDP). A Markov Decision Process G is defined by the tuple
Mg = (S, A, P,R,0O, N,~), where the environment has N
agents receiving the local observations (01,02, 0,) € O
which has the partial information of the global state s € .S.

For each time step, each agent chooses an action,
(a1,az,...,an) € A following the transition probability
function P : S x a1 X ag X --+ X ay — [0, 1], for which
each agent 4, i € (1,2,...N), receives an individual reward,
r; € R and transits into the next state o;. v € [0,1] is the
discount factor which prioritize rewards in the immediate
time steps. Accordingly, conditioning on the partial observa-
tion and the transition probability, each agent learns a policy
T, 1 0; X a; — [0,1]. where ®; are the parameters of the
policy network.

The goal is that each agent learns a policy that maximizes
their expected discounted returns, which is given by

o0
J(‘I)Z) =]E<o,i,ai,7‘1,,0;>ND lz FYt *Ty (Oi7 ai, Oi)] (1)
t=0
where D is the experience buffer used to store the experience
tuples, < 0y, a;, 14, 0; > .. [E represents the expected sum of
the samples. Ultimately, the agents need to cooperate together
to solve a global objective, which is based on the composition
of the local objectives. The agents will share information with
neighbors while optimizing their own local objective (1).

Background

Policy Gradient for Single Agent The core idea of policy
gradients methods is to tune the parameters ® of policy net-
work in the direction of the gradient of the objective function
J(®) using the stochastic gradient descent, minimizing the
objective function J(®) and it is given as:

J(®) = Egup gy [logma(a | s)A], 2)

where 74 is the policy and A is the advantage function, which
could be the expected return as given in (1). The objective

MLP Layer Final Layer
M e o ot
o >t L V)
P
—
hy
Mool L ot
2 . — » V(o
o4 L ! 3
P P
hz -
M| gt M Fteot
¢ i L — V(o)
Op —»
P P
b

Adjacency| | Hear
weights Kernel H

Information Aggregation

Heat Layer

Figure 1: Illustrates the main architecture of the proposed heat
diffused critic model, which perceives the local observations
of all the agents and gives out the state values for each agent

function differs in how we choose to estimate the advantage
function. The gradient for equation (2) is given by:

VoJ(?) =Esup aomy [Vq> log e (a | s)fl] . 3

The main drawback of the Policy Gradient method is that
it needs to perform multiple number of policy step updates
on the same batch of experiences. This would lead to destruc-
tively larger policy updates (Schulman et al. 2015a).

Proximity Policy Optimization This method overcomes
the above problem by updating the policies by taking a large
step updates while keeping the measure of closeness of new
policy to old policy as the objective. The main idea here is
to clip the objective in between certain values, inhibiting the
overflow of the measure of the closeness.

The objective function with the clipping contribution is given
by (Schulman et al. 2017):

JOHP (D) = E [min(r(®) A, clip(r(®),1 —¢,1+¢))] ,

4)
where r(®) is the probability ratio between the new pol-
icy and old policy and it is given as r(®) = 7s,,, (o |

s)/ma,,,(a | s) and € is the clipping parameter. min and
clip are the functions to find the minimum and to clip the val-
ues, respectively. Equation (4) is used to optimize the policy
network parameters.

In the next section, we are going to extend the Proximity
Policy Optimization to Multi Agent Systems by: 1. Utilizing
the policy update as given in equation (4). 2. presenting the
novel state value network i.e. Heat Diffused Ceritic, to com-
pute the advantage function, which is used in equation (4).

Proposed Approach

Cooperative Learner in Multi Agent
Network(CooLMAN)

In extending the PPO to Multi Agent Systems, we utilize the
heat diffused critic networks and actors during the training
phase and deploy the actors in a decentralized manner. To
adapt this, we use two separate networks for each agent; one
for critic Vp to estimate the value of the state and another
network g for actor to predict the policy. where, 6 are the
parameters of the critic network.

Heat Diffused Critic In this work, we represent the MAS
network as a graph network, in which observation features
are accommodated as the nodes and the parameter sharing
channels as the edges between the nodes. Taking this into
account, we model the parameter sharing between the critic
networks of other agents as a heat function. We employ the
graph’s heat kernel to mimic a heat transfer diffusion pro-
cess over time, which is subsequently used by the critic to
appropriately weight the signals received by neighboring
critic nodes. Since we allowed to share the parameters, our
learning paradigm would also help in overcoming the non-
stationarity issue and also further helps in learning the stable
policy (Omidshafiei et al. 2017). Figure 1 demonstrates the
main components of our critic networks. The proposed critic
framework method involves the following components:

Multi Layer Perception (MLP) Layer: Local observa-
tion o; of an agent ¢ is fed into the MLP to extract the hidden
state e;, which further can be used to capture the important
information from the neighbors as well as passing the hidden
state to the final layer.

Each critic perceives the observation o; of an agent and
the important information from the neighboring agents as an
input and outputs the value function V;(0).

Vi(o) = Fi(bi(04), hi) &)

where, F; and b; are linear functions. h; is the aggregated
information from the i*” agent neighboring agents. It should
be noted that MLP can also be replaced by Convolutional
Neural Network or Recurrent Neural Network based on the
observation input. The following layer contains the mecha-
nism of how to find the aggregated information h; from the
neighboring agents.

Heat Layer: We represent the critic networks as the nodes
in the time-varying graph. Each node embodies the observa-
tion feature which is an input to the critic. The edge across
the nodes serves as a communication link between agents
through which they could share the information. Considering
a weighted graph with n nodes, G* = (V, E*), where v; € V
is the node of the graph and ef; € E" is the edge connecting
the node i and node j at a time ¢. The Laplacian matrix £! of
the graph network G at time ¢ is given by:

Lt =Dt A, (6)

where, D? is the diagonal matrix at a time ¢ and it is given
by Dt = Zvj cy A (v;,v;) and A* is the adjacency matrix,

Dot Product

Oz [aw\léN] a%:[a%\le/\/]

(a) Adjacency matrix elements

s =)
HI,ZXE :e‘2

Hl «H
LHel,
Information Aggregation

(b) Information aggregation

Figure 2: Left (a) illustrates the dot-product mechanism outputs the adjacency matrix elements and the same would be followed
for M communication channels. Right (b) illustrates the step Information aggregation which emulates the information from the
agents neighborhood and concatenating the m different variations of information to produce the final feature vector.

whose elements are given by

t (7% if (Ul',’U‘)GEt
Ay = { 0 ’ otherwis]e)
Recall that each critic has a hidden state embedding e}
at a time ¢ that correlates with the observation state o! and
the whole graph network has a set of hidden state features
(el,eh,.eh, ..., el) as the features of nodes. We find the en-
coding of each edge using dot-product mechanism (Vaswani
et al. 2017), which contains the information of agents con-
necting that edge. This can be done as follows

ety = (gWe) - (KiWe)T, ®)

where W, and W, are trainable weights. where, ¢; and k; are
the copies of the embedding state e;.

We next find the elements of the adjacency matrix by
passing the encoding of edges through the softmax function
so that the adjacency matrix is row stochastic. This can be
done as follows

exp(“¢)

ZkENi exp((lik) ’
where N; is the neighborhood set of agent ¢ and d is the
dimension of hidden state. This is illustrated in Figure 2a.

Note: In this paper, we mostly use the normalized Lapla-
cian matrix £, as it is the fundamental term of the heat
flow equation and it is given by L=D"3LD2 1gnor-
ing time ¢ for simplicity. Normalized Lapla01an matrix is
then represented in its elgenspectrum form £t = ®IAtP"
where A = diag(\}, A5, Nk,; AL) is the diagonal ma-

trix with ordered eigenvalues of Lt as elements and ®* =
(gt \¢§|¢§|A |¢L) is the matrix with ordered eigenvectors as

columns. L is a positive semidefinite matrix.

Heat Kernel: Heat kernel gives us the amount of informa-
tion flowing from one node to another and how information
propagates across the network. Heat kernel matrix is the fun-
damental solution of the heat flow equation that is associated
with the normalized Laplacian matrix and it is given as

®

Oéz‘j =

OH? P

5% = L'H (10)

where H' and L' are the heat kernel and normalized Lapla-

cian matrices at a time ¢, respectively. The solution to the

equation is found by solving the first-order differential equa-
tion and it is given by:

Ht = e £ (11)

We can also find the Heat Kernel by exponentiating the Lapla-
cian eigenspectrum,

H' = &' exp(—A')d!" (12)

where the matrix ®! is previously defined and is the Jordan
form of L!. More specifically, the information flow across
two nodes (Xiao, Wilson, and Hancock 2005), v; and v; at a
time ¢ can be written as

H . Zexp N gt (0:)6f (v5) (13)

=1

where ¢! (v;) is the eigenvector of ith node.

Information Aggregation: To obtain the information from
the neighboring agents for a specific target agent, we project
the respective heat flow element onto the hidden state feature
of its neighbors as follows

fileg) = Hy, o, (e5Wo) (14)
W, is the trainable weights and H, v is defined in (13).
Notice that f;(e}) represents the information flow from an
agent j to the target agent ¢ at a time ¢. We then concatenate
the information from all neighboring agents to the target
agent and pass it through the dense layer to obtain the updated

feature encoding of the target agent. This can be done as
follows:

hhy=o | Wy > fileh) +be (15)
JEN;

where W), and b, are trainable weights and bias and fi(hz»)
is defined in (14). eé- is the feature embedding from previous
layer of agent j at a time ¢.

Through performing different linear projections in parallel,
we obtain different variants of information. We then concate-
nate all the different output encodings and then pass them
through the dense layer to obtain the final feature encoding
of the target agent. This can be written as follows:

hi=o(g, ®g;d...q"), (16)
where
g =Y " (hy), (17)
JEN;

fi(e;) = HY (ejW,;”) and W7 are network weight
parameters for m heads, m is the number of communication
channels, \V; is the neighborhood set of an agent 4 and the
symbol & denotes the concatenation operator. Notice that ¢
is omitted to make the presentation simple. This procedure is

illustrated in Figure 2b.

Final Layer: Final layer, as shown in Figure 1, is fit with
the value function (18). It is fed with the hidden state e; and
aggregated state information h; as the input. This process is
represented as:

‘/;,(07,) = Gi(eiahi)a (]8)

where G; is a linear function. We then estimate the state value
function for each critic, outputs the state value for each agent.
Introducing the heat kernel helps us capture the dynamic
nature of the graph and establish the cooperative stability
between the agents over the long term.

Critic Training In setting up learning the critic networks,
we use a training critic network Vj, and a target critic network
Vo, Initially, the target network has the same weights as
the training network. The target network acts as the desired
stationary value. It is used to inhibit the running state values
and its weights are updated frequently for a given number of
time steps using the soft update (Mnih et al. 2013).

All the critics are updated together using the joint loss
function given as:

N
Jcritic(a) _ ZE<Ot7’I",Ot+1>ND [(yfd — ‘/61 (Ot))2] »

i=1
(19)
where y!¢ is the target temporal difference.

We use the joint loss function across all the agents so
that we accommodate the common gradients for the shared
parameters in the heat layer. The target temporal difference
ytd is given as:

yit = AFAE + Vi, (04), (20)
where AS4F is the Generalized Advantage Estimate (Schul-
man et al. 2015b) and it is given as:

AFAE = 5+ (N6 +- -4+ ()T o, 1)

where 0; = 7 + YV, (0441) — Vi, (0¢), T is the number of
time steps and y € [0, 1] is the discount factor.

Algorithm 1 CooLMAN

Initialize training state value networks (Vp,, Vg, ..
and target state value (V,,, Vi, ...
agents
Initialize actor networks (mg, , Tg,, - - -, Ty,) for N agents
while episode < max episodes do
reset environment, steps (t) = 0
while steps < max steps do
Get observations (0}, 0} ... ol)
Sample actions (af, . .. al;) from observations using
Prediction
Get reward (!, ...r%;) and transits to next state
Next observations (of™,... o’ﬁl) correlates with
state
store tuple < o
steps += 1
Recall the stored batch of
<ot al,rt, ottt >
Estimate Generalizes Advantage Estimate
Compute joint critic loss using Equation 19 and up-
date critics
for 1 to P epochs do
Sample mini-batch of experiences
Update actor networks using the loss Equation 22
end for
Update the target critic networks using the soft update
ov = B0+ (1 — B)o"
end while
end while

- Vo)
, Vo) networks for N

t ot .t t+l
is Qs 55 04

> for N agents

experiences

Actor Each actor network 7y, takes the local observation
o; of an agent as the input. We allow the actors to learn
in a conventional PPO way using the loss function (4) in
an independent manner. Accordingly, using the advantage
function given in equation (21), we define the loss for each
actor g, as:

JEHE (8,) = E [min(r(®;) AFAE,
cip(r(®;),1 —¢,1+¢€)). (22)

Parameter sharing After finding the heat kernel matrix H
for each agent ¢ through (12), we limit the communication as
described below:

| Hy,, if Hy, o, >p
Ho, ;= { 0 ! otherwis]e (23)

where p = argsort([H,, .,|j € N])[K] and, K is the
number of neighbors of each agent. In essence, through (23),
we limit the communication neighborhood of each agent to
K agents. This neighborhood size is selected through trial
and error in the training phase.

To summarize, the CooLMAN algorithm is given in
Algorithm 1 and 2.

—— CooLMAN
DQON
—— DGN

1.2 4

1.0

0.8 1

0.6

Mean reward

0.4 1

0.2 4

0.0

T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
Episodes

(a) Mean reward for different models

1.0 3

0.8 1

0.6

Mean reward

0.4

0.2 4

T T T T
0 1000 2000 3000 4000 5000
Episodes

(b) Mean reward for different number of neighbors

Figure 3: (a): This figure illustrates the plot of mean reward over 4000 episodes for three models. CooLMAN, DGN and DQN
are fighting against ‘enemy army’, which are pre-trained using DQN model. It is the reason why DQN in the plot performs worse
as it is competing against itself. (b) Performance comparison of CooLMAN when varying number of neighbors around 8 agents

during training.
Experiments

To verify the results of our work, we consider a battle sce-
nario. In this environment, there are two competing multi-
agent systems, each with a given number of agents, that need
to compete and eliminate each other. Agents in each group
should cooperate by forming mini-groups within the whole
MAS system as a strategy. Both groups have N agents and
each agent is given the same set of abilities. We define the
environment as a n X n grid and the view range and attacking
range of each agent by six and two nearby units, respectively.
Each agent corresponds to one unit in the grid. No agent is
superior to other agents. An agent can only be removed if
it is hit six times, and the agents need to coordinate with
each other and hit the opposing agents persistently. During
training, as soon as an agent is eliminated, it is replaced with
another new agent with the same memory as the replaced
agent. During the evaluation, we consider a scenario in which
agents in the ‘adversarial group’ are pre-trained using a DQN
model (Tampuu et al. 2017), which provides the skills to beat
an amateur group of agents. On the other side, agents that
are trained by our CooLMAN algorithm need to cooperate
with others and have to develop strategies to win against the
opposing group. More information regarding the reward and
observation of each agent is given in Table 2. To demonstrate
our strategy, we use a cooperative battle environment from
MAgent platform!(Zheng et al. 2018). In the environment
Battle, we chose to evaluate CooLMAN against graph con-
volutional reinforcement learning (DGN) (Jiang et al. 2019)
and DQN (Tampuu et al. 2017). This is because of different
reasons. First, the DGN algorithm has similar features to
CooLMAN since it uses the attention mechanism to achieve
the communication between agents with temporal regulariza-
tion to achieve long-term cooperative policy. However, it does

"Environment can be downloaded at: https://github.com/geek-
ai/MAgent or can be installed using pip.

not adequately address the dynamic nature of the MAS net-
work. The DQN, on the other hand, is a basic algorithm used
to train the adversarial group and is based on a decentralized
architecture with no interaction between agents. We trained
all the three models with hyperparameter settings as given in
Table 3 over 4000 episodes and unfolding each episode over
500 time-steps to calculate the mean reward® for 3 different
models. Figure 3a shows the plot of the mean reward of the
episodes. We strict our measure of success in this scenario
by maximizing the mean reward attained by each algorithm.
As it can be seen from the figure, the best performance is
achieved by our CooLMAN algorithm, converging to higher
reward than DGN and DQN. It can be noticed that DGN
outperforms both CooLMAN and DQN during the first few
episodes but then fails to take off with a higher reward as
it is unable to maintain the same cooperation between the
agents. It can be deduced that DQN converges to a policy
that results in lower reward as there is no such communica-
tion between agents, since agents are working individually
to achieve their local policies. We further evaluated the
trained models through three experiments; (i) we evaluated
the models on a test round by running each model for 50
test episodes with each episode over 500-time steps using
the same setting of the environment as given in Table 2 and
the results can be seen in Table 4. As can be noticed, sim-
ilar to the training phase, CooLMAN performs better than
DGN and DQN during the testing with higher mean reward.
(i) We then test our model for scalability to see how well
CooLMAN performs if we increase the number of agents.
We trained CooLMAN on two different settings; one using 8
agents and another using 14 agents. After the training is done
on two different scenarios, we deployed the updated weights
to larger swarms of up to 100 agents. As can be seen from
Table 1, the mean reward does not drop much as we increase

Total reward
Number of agents * Number of time steps

2Mean reward =

Table 1: Mean reward for the different number of agents during testing. is the size of the neighborhood set of the agents. Map
size is the metric given for n x n grid. Mean reward for agents 50 and 100 during testing using the weights trained on 8§ agents
are omitted as the number of agents does not fit in the given map size.

DURING TESTING
NUMBER OF AGENTS(MEAN REWARD)

TRAINED ON MAP SIZE N 8 14 20 50 100
2 1.21 1.03 1.10 - -

8 AGENTS(N = 2) 12 3 1.08 1.06 1.12 - -
4 1.07 1.08 1.14 - -
2 - 0.95 090 0.83 0.74

14 AGENTS(N = 4) 21 3 - 0.93 0.87 0.82 0.73
4 - 0.95 0.84 0.80 0.74

Table 2: Setting of Battle Environment

NAME VALUE
STATE SPACE (13,13,7)
ACTION SPACE DISCRETE(21)

STEP REWARD: 0.0
KILL REWARD: 5

REWARD DEAD PENALTY: -0.01
ATTACK PENALTY:-0.02

AGENTS 8

ENEMIES 8

NEIGHBORHOOD SIZE 2

Table 3: Hyperpaarameters for CooLMAN

HYPERPARAMETER VALUE

B 0.01

DISCOUNT FACTOR(7y) 0.96

EPSILON(€) 0.6

REPLAY BUFFER BATCH S1zE: 128
OPTIMIZER ADAM(LR= 0.9¢-5)
COMMUNICATION CHANNELS 3

CNN LAYERS 3

ENCODER UNITS (512, 128)

the number of agents. (iii) We further tested our model on
various neighborhood sets. During training, we varied the
number of neighboring agents and plotted the mean reward
against the number of episodes as can be seen in Figure 3b. It
is observed that the mean reward is higher for the model hav-
ing the neighboring set of 2 agents rather than 3 and 4. It is
worth noting that, in (Jiang et al. 2019), DGN outperformed
the baseline models (Das et al. 2019), (Sukhbaatar, Szlam,
and Fergus 2016), (Yang et al. 2018), (Jiang and Lu 2018).
This makes the results reported in this work significant as
we are showing empirically that CooLMAN performs better
than DGN.

Table 4: Statistics for different models. Hit is the number
of agents that the model removed its opposite agents and
Expired is the number of that respective agents got removed

STATS CooLMAN DGN DQN

HiT 412 289 4

EXPIRED 2 3 381

MEAN REWARD 1.14 0.76 -0.015
Conclusion

By modelling time-varying edges as the function of heat dif-
fusion, we enable dynamic communication channel between
agents. Thus our model fits the dynamic nature of the com-
plex time-varying multi-agent systems. Besides, linear pro-
jections in parallel helped in obtaining the information flow
across agents in different variations. On the whole, our model
converged to a consistent policy and achieved long-term sta-
bility. Empirically, we showed that our model(CooLMAN)
out-performed the DGN model and DQN in a dynamic en-
vironment scenario. As a future work, it is interesting to
see how CooLMAN would preform in more challenging en-
vironments, for example, where heterogeneous agents face
obstructions in their path.

References

Cortés, J., and Egerstedt, M. 2017. Coordinated control of multi-
robot systems: A survey. SICE Journal of Control, Measurement,
and System Integration 10(6):495-503.

Das, A.; Gervet, T.; Romoff, J.; Batra, D.; Parikh, D.; Rabbat, M.;
and Pineau, J. 2019. Tarmac: Targeted multi-agent communication.
In International Conference on Machine Learning, 1538—1546.
Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and Whiteson, S.

2017. Counterfactual multi-agent policy gradients. arXiv preprint
arXiv:1705.08926.

Jaderberg, M.; Czarnecki, W. M.; Dunning, I.; Marris, L.; Lever, G.;
Castaneda, A. G.; Beattie, C.; Rabinowitz, N. C.; Morcos, A. S.;
Ruderman, A.; et al. 2019. Human-level performance in 3d multi-
player games with population-based reinforcement learning. Science
364(6443):859-865.

Jiang, J., and Lu, Z. 2018. Learning attentional communication for

multi-agent cooperation. Advances in Neural Information Process-
ing Systems 31:7254-7264.

Jiang, J.; Dun, C.; Huang, T.; and Lu, Z. 2019. Graph convolutional
reinforcement learning. In International Conference on Learning
Representations.

Lowe, R.; Wu, Y. 1.; Tamar, A.; Harb, J.; Abbeel, O. P.; and Mor-
datch, I. 2017. Multi-agent actor-critic for mixed cooperative-
competitive environments. In Advances in neural information pro-
cessing systems, 6379-6390.

Matignon, L.; Laurent, G. J.; and Le Fort-Piat, N. 2007. Hysteretic
g-learning: an algorithm for decentralized reinforcement learning
in cooperative multi-agent teams. In 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 64—69. IEEE.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.;
Wierstra, D.; and Riedmiller, M. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602.

Mocanu, E.; Nguyen, P. H.; Kling, W. L.; and Gibescu, M. 2016.
Unsupervised energy prediction in a smart grid context using rein-
forcement cross-building transfer learning. Energy and Buildings
116:646-655.

Omidshafiei, S.; Pazis, J.; Amato, C.; How, J. P.; and Vian, J. 2017.
Deep decentralized multi-task multi-agent reinforcement learning
under partial observability. In International Conference on Machine
Learning, 2681-2690.

Petersen, K. H.; Nagpal, R.; and Werfel, J. K. 2011. Termes:
An autonomous robotic system for three-dimensional collective
construction. Robotics: science and systems VII.

Rashid, T.; Samvelyan, M.; Schroeder, C.; Farquhar, G.; Foerster,
J.; and Whiteson, S. 2018. Qmix: Monotonic value function factori-
sation for deep multi-agent reinforcement learning. In International
Conference on Machine Learning, 4295-4304.

Sartoretti, G.; Wu, Y.; Paivine, W.; Kumar, T. S.; Koenig, S.; and
Choset, H. 2019. Distributed reinforcement learning for multi-robot
decentralized collective construction. In Distributed Autonomous
Robotic Systems. Springer. 35—49.

Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz, P.
2015a. Trust region policy optimization. In International conference
on machine learning, 1889-1897. PMLR.

Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and Abbeel, P.
2015b. High-dimensional continuous control using generalized
advantage estimation. arXiv preprint arXiv:1506.02438.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and Klimov,
0. 2017. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Sukhbaatar, S.; Szlam, A.; and Fergus, R. 2016. Learning multiagent
communication with backpropagation. In NIPS.

Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W. M.; Zambaldi,
V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.; Leibo, J. Z.; Tuyls,
K.; et al. 2017. Value-decomposition networks for cooperative
multi-agent learning. arXiv preprint arXiv:1706.05296.

Tampuu, A.; Matiisen, T.; Kodelja, D.; Kuzovkin, I.; Korjus, K.; Aru,
J.; Aru, J.; and Vicente, R. 2017. Multiagent cooperation and compe-
tition with deep reinforcement learning. PloS one 12(4):e0172395.

Tan, M. 1993. Multi-agent reinforcement learning: Independent
vs. cooperative agents. In Proceedings of the tenth international
conference on machine learning, 330-337.

Unsworth, J., and Duarte, F. 1979. Heat diffusion in a solid sphere
and fourier theory: an elementary practical example. American
Journal of Physics 47(11):981-983.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. Attention
is all you need. In Advances in neural information processing
systems, 5998—-6008.

Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine learning
8(3-4):279-292.

Wei, H.; Xu, N.; Zhang, H.; Zheng, G.; Zang, X.; Chen, C.; Zhang,
W.; Zhu, Y.; Xu, K.; and Li, Z. 2019. Colight: Learning network-
level cooperation for traffic signal control. In Proceedings of the
28th ACM International Conference on Information and Knowledge
Management, 1913-1922.

Xiao, B.; Wilson, R. C.; and Hancock, E. R. 2005. Characterising
graphs using the heat kernel. In Proc. BMVC.

Yang, Y.; Luo, R.; Li, M.; Zhou, M.; Zhang, W.; and Wang, J. 2018.
Mean field multi-agent reinforcement learning. In 35th International
Conference on Machine Learning, ICML 2018, volume 80, 5571—
5580. PMLR.

Zheng, L.; Yang, J.; Cai, H.; Zhang, W.; Wang, J.; and Yu, Y. 2018.
Magent: A many-agent reinforcement learning platform for artifi-
cial collective intelligence. In 32nd AAAI Conference on Artificial
Intelligence, AAAI 2018, 8222-8223. AAAIL

