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Abstract

Despite the recent successful application of Artificial Intelli-
gence (AI) to games, the performance of cooperative agents
in imperfect information games is still far from surpassing
humans. Cooperating with teammates whose play-styles are
not previously known poses additional challenges to current
state-of-the-art algorithms. In the Swiss card game Jass, coor-
dination within the two opposing teams is crucial for winning.
Since verbal communication is forbidden, the only way to
transmit information within the team is through a player’s
play-style. This makes the game a particularly suitable can-
didate subject to continue the research on AI in cooperation
games with hidden information. In this work, we analyse the
effectiveness and shortcomings of several state-of-the-art algo-
rithms (Monte Carlo Tree Search (MCTS) variants and Deep
Neural Networks (DNNs)) at playing the Jass game. Our key
contributions are two-fold. First, we provide a performance
overview for state-of-the-art algorithms, thus, setting a strong
foundation for further research on the subject. Second, we im-
plement and open-source1 a platform where different agents
(both humans and AI) can play Jass in an automated fashion,
effectively reducing the overhead for other researchers who
want to perform further experiments.

1 Introduction
In recent years, numerous breakthroughs have taken place
in the field of research for AI in games. In particular, in the
perfect information games division — where all players are
familiar with the entire game state at all times — computers
prevail over skilled human players on various occasions, such
as Chess (Campbell, Hoane, and hsiung Hsu 2002), the Atari
games (Mnih et al. 2015) or Go (Silver et al. 2016).

When it comes to imperfect information games — where
players do not know some of the information, such as in card
games — there is a thin line separating AI from people who
still have the upper hand over state-of-the-art bots. Hidden
information is also present in many real-world scenarios,
such as business, negotiations, physics, surgery, and others.
Many of these situations can be formalized as games that, in
turn, can be solved using the methods developed in the card
games testbed.
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Recent work has shown that the distance between humans
and AI is becoming smaller in constrained situations. This
is particularly evident when considering developments on
Texas hold’em no-limit poker (Brown and Sandholm 2018),
(Brown and Sandholm 2019) and the StarCraft II computer
game (Vinyals et al. 2019). The multiplayer computer game
Dota 2 includes hidden information and team play. Although
OpenAI Five won against world champions in a 5 vs. 5 game,
collaboration remains as an open research area in AI2.

To instill AI systems with collaboration, card games may
be a very suitable testbed since they a) include hidden infor-
mation, b) frequently have a collaborative aspect, and c) are
computationally easy to simulate because they have a finite
set of actions.

Motivation
Jass is a trick-taking card game featuring hidden information.
In the 4-player Schieber variant, good coordination within
the team is crucial for achieving victories in top tournaments.

DeepMind introduced the Hanabi Challenge, opening a
new frontier in AI research using the fully cooperative card
game Hanabi (Bard et al. 2019). In Hanabi, the players need
to lay down cards in order having only the knowledge of
the other players’ cards. Therefore, the players need to work
together to be able to win the game. Jass combines both a
cooperative aspect as it includes two competing teams of two
cooperating players.

Since there are approximately 1.16e28 states in Schieber
after the cards have been dealt (see Section 2.2) and addition-
ally it is not known in what state the player is because of the
hidden cards, the game is computationally complex.

Jass is a very popular Swiss card game and is closely as-
sociated with Swiss culture. It is also similar to other games
like the American Spades, the British Bridge, and the Ger-
man Skat. Thus research in Jass is valuable for many other
domains.

Contributions
• We perform an analysis of the most promising state-

of-the-art methods for AI in card games (Determinized
Monte Carlo Tree Search (DMCTS), Information Set

2https://openai.com/blog/how-to-train-your-openai-five/



Figure 1: This figure depicts a trick in the Schieber variant.
The order of play is counter-clockwise (Harry started with
trump diamond 8). Ron had to follow suit with his Diamond
6 and Hermine did not have any Diamonds left, since she
played Spades 6. Ginny’s card (Diamond Jack) wins this trick
because it is the highest trump card. The picture is taken from
our Jass server.

Monte Carlo Tree Search (ISMCTS), DNN and Rule-
Based (RB)).

• We lay the groundwork for further research on AI in Jass.

• We release public open-source software infrastructure (see
Section 5.2) and an Application Programming Interface
(API), so anyone can quickly connect their bots and test
them both against other bots as well as against human via
a GUI.

2 The Jass Game
2.1 Jass in a Nutshell
Jass is a traditional Swiss card game that is trick-taking and
often played at social events. It involves hidden information,
both a cooperative (cooperation within the team) and a non-
cooperative aspect (two opposing teams), is sequential, finite,
and constant-sum (since in each game there are always 157
points).

The Schieber variant — our testbed — is one of the most
widely played variants of Jass in Switzerland. It is played
with two opposing teams of two players each. Each round
consists of a trump selection phase and a consecutive card
play phase. Since choosing a trump is a significant advan-
tage, tournaments are played by a fixed number of rounds
(divisible by 4) so that each player can choose trump an equal
number of times. Trump selection implies that the selecting
player can determine one of the four suits as trump or alterna-
tively no trump with the card precedence top down or bottom
up respectively. The player can also decide to pass on the

decision to his teammate. This is called "schieben" and gave
the name to the game. An example Schieber trick is shown
in Figure 1.

Terminology 4 played cards are called a trick, 9 tricks are
a round (all 36 cards played) and a game lasts for 1000 points,
or in tournaments for a number of rounds. When a player
passes in trump selection, the partner can nominate the trump.

The Swiss Intercantonal Lottery provides a guide for gen-
eral Jass rules3 and for the variant Schieber specifically4.

2.2 Complexity
In Schieber, the number of possible paths through the game
tree is 36! = 3.72e41 since there are 36 cards in the game
because every card is only played once, and the order matters.

At the beginning of the game the cards are being dealt ran-
domly to the players. There are

(
36
9
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27
9

)(
18
9

)(
9
9

)
= 2.15e19

possibilities to distribute the 36 cards to 4 stacks. After the
cards have been dealt, each player knows their cards, so the
possible distributions of the other cards are 2.28e11.

To estimate the number of possibilities that a round can
be played, we gathered empirical evidence from 1.8 million
played rounds (see Section 5.1 for the data) to determine
the number of valid plays permitted by the rules for each
of the 36 cards played. We found 5.1e16 possible playouts,
so the number of states that an algorithm has to deal with
after receiving the cards is in the order of 5.1e16 · 2.28e11 =
1.16e28.

This brings more possibilities and thus makes card play
harder.

3 Related Work
In this section, we provide a short overview of the research
done in AI development for card games with hidden informa-
tion and cooperative elements

Sievers and Helmert (2015) applied Upper Confidence
Bound for Trees (UCT) to Doppelkopf reaching par-human
(on par with average humans) performance. We compare
the performance of UCT with a DNN implementation at the
example of the similar trick-taking card game Jass.

Applying DMCTS to the multiplayer games Spades and
Hearts, Sturtevant (2008) reported similar performance to
the state-of-the-art at that time in Spades and slightly bet-
ter performance in Hearts. He noted that random rollouts
outperformed RB rollouts. Similarly, we investigate the ef-
fectiveness of random rollouts in comparison to RB rollouts
and also the output of the value function of a DNN trained
on data obtained from human games.

Whitehouse, Powley, and Cowling (2011) applied DMCTS
and ISMCTS to Dou Di Zhu reaching comparable perfor-
mance. In this work, we compare different configurations of
DMCTS with different configurations of ISMCTS and addi-
tionally with DNNs and RB baseline algorithms in the card
game Jass.

3www.swisslos.ch/en/jass/informations/jass-rules/principles-
of-jass.html

4www.swisslos.ch/en/jass/informations/jass-rules/schieber-
jass.html



Using ISMCTS, Watanabe and Lanzi (2018) presented a
high-human (on par with the best humans) AI for the Italian
card game Scopone consistently beating strong RB players.

Whitehouse et al. (2013) found a MCTS player to be
stronger than RB players in the card game Spades. Integrat-
ing ISMCTS with knowledge-based methods, they created a
more engaging play. Similarly, we compare a DMCTS player
with a RB player.

Niklaus et al. (2019) provided an overview of current state-
of-the-art methods and discussed them from a theoretical
point of view. In contrast, in our work, we implement the
most prominent methods (DMCTS, ISMCTS, DNN, and RB)
and show their different strengths and shortcomings.

Super-human performance has not yet been achieved in
the current state-of-the-art in AI for card games with hidden
information and cooperative aspects. In none of these games,
a complete analysis of the relevant methods has been carried
out. To the best of our knowledge, there has not yet been pre-
sented any general AI capable of achieving high performance
in more than two of these games.

4 Methods
4.1 Monte Carlo Tree Search
In their literature review, Niklaus et al. (2019) found MCTS
variants to be the most promising methods for trick-taking
card games like Jass. MCTS is a successful algorithm for per-
fect information games(Browne et al. 2012). It incrementally
builds a search tree for the next few actions and estimates
the value of a new node by simulating the game to the end
using a rollout policy. Over time, the value of a node be-
comes the average of all the simulations that passed through
it. The decision which part of the tree to extend uses a tree
policy that balances exploration and exploitation, guided by
the exploration hyper parameter c.

Browne et al. (2012) provide a detailed MCTS family
overview. MCTS cannot directly be applied to imperfect in-
formation games. DMCTS (Section 4.2) and ISMCTS (Sec-
tion 4.3) are two major extensions addressing this problem.

4.2 Determinized Monte Carlo Tree Search
A common approach for imperfect information games is to
assign values to the unobservable variables and then apply
perfect information search methods. For MCTS this sampling
is called determinization, leading to DMCTS. By sampling
and searching multiple states, a more accurate evaluation can
be performed. For each sampling, MCTS is performed using
a number of iterations.

DMCTS shows the most promising results for imperfect
information trick-taking card games according to the liter-
ature (Niklaus et al. 2019). It can be parallelized in differ-
ent ways (leaf, root or tree (Chaslot, Winands, and van den
Herik 2008)) and thus scales well on multi-core architec-
tures (Browne et al. 2012). We use root parallelization, where
multiple trees are in memory at the same time.

4.3 Information Set Monte Carlo Tree Search
Another possibility to adapt MCTS to imperfect information
games is ISMCTS(Cowling, Powley, and Whitehouse 2012).

In ISMCTS only a single tree is used for all determinizations
and each node in the tree represents an information set. The
information set captures all states of the games that are indis-
tinguishable for the current player based on his knowledge
of the game. This results in a tree where the children are de-
termined not by a single determinization, but by all possible
determinizations encountered so far.

To incorporate ISMCTS in the MCTS algorithms, first a
determinization is calculated like in DMCTS. Then in the
selection phase of MCTS, only children valid with the cur-
rent determinization are considered. If a node with unvisited
children corresponding to the determinization is encountered,
that node is expanded. For each determinization, a number
of MCTS iterations are performed.

An advantage of ISMCTS is that only a single tree is used
so that in later determinization, we expect parts of the tree
to be reused, whereas DMCTS starts with a new tree each
time. On the other hand, the branching factor of the tree
in ISMCTS gets much larger, making it harder to obtain a
deeper search tree.

4.4 Deep Neural Network
In contrast to search based methods, Supervised Learning
(SL) methods use data from played games to directly learn
the best actions or to determine the expected result from an
action. For SL we use a DNN, explained in more detail in
Section 6.3.

5 General Setup
5.1 Data Sets
Data for training and evaluation was taken from an online
platform5, where users can play the game and either register
or play anonymously.

The collected data is from a period of 6 months, starting
in October 2017 and consists of about 1.8M played rounds.
Each round consists of playing 36 cards, and only completed
rounds were taken. The data is split into training, validation,
and test sets with a ratio of 0.6:0.2:0.2 by random selection.
As plays from the same round are correlated, we further
split the files into records for single card plays and shuffle
them randomly. From this data set, we filtered out plays by
all players that performed less than average, i.e., did not
get an average score of 78.5 points. This also eliminates
the unregistered players who performed with 78.43 points
on average. The resulting data set contains about 14M card
plays in the training set and about 4.8M card plays in the test
and validation sets.

5.2 Technical Infrastructure
We publish repositories for a Jass server (deployment6 and
sources7 that can run games and tournaments and display the
results, as well as a Python development kit to implement
algorithms.

5https://www.swisslos.ch
6https://jass-server.abiz.ch
7https://gitlab.enterpriselab.ch/jass/info/



Any bot implementing a REST API8 can be connected to
the Jass server. We also provide a GUI9 allowing humans to
play on the Jass server10.

5.3 Tournament Setup
Friendly Jass matches are played until an agreed number of
points is reached. Tournaments, however, are usually played
for a number of rounds, and the number of points over all
rounds are accumulated.

In many card games like Jass, Bridge and Skat, cards are
dealt at random in the beginning, and it is much easier to
get more points with a good hand than with a bad one. This
randomness makes it hard to compare the absolute strength
of players.

We address this issue in our experiments by dealing the
cards dealt to the North/South pair in the first game to the
East/West pair in the second round, which we call a double
round. We compare the performance of two bots against each
other by playing 10 times 100 rounds (= 50 double rounds)
and report the mean and the Standard Deviation (STD) of the
accumulated score over the 100 rounds.

For more reliability, we disabled additional points awarded
to card combinations like Melds (Weisen) and Marriages
(Stöck) as well as the Matchbonus (100 points if a team wins
all tricks in a round).

6 Implementation
6.1 Time-based DMCTS
The implementation of the Time-based Determinized Monte
Carlo Tree Search (T-DMCTS) is publicly available on
Github11. It uses a ranked RB trump selection. If no trump
surpasses a given threshold, it passes.

It uses a time budget as a termination criterion for the
search, so it can easily be compared to other bots with the
same resources. We use robust child as final selection policy,
choosing the most visited node after the search. It does not
use any heuristic function in the tree policy, does not prune
branches, does not bound the scores and uses the standard
exploration constant

√
2, since different configurations did

not improve the performance in our hyper parameter search.
It uses a determinization factor of 15 and runs for 10s

per move. This factor multiplied with the number of tricks
remaining in the round results in the number of determiniza-
tions created. Example: In the third trick, six tricks are re-
maining (the current trick included). This means that in this
trick, it generates 6 · 15 = 90 determinizations. For each one
we create a thread which after the search returns a selected
move together with a score for this move. Then we bundle
together all of the determinizations for the same moves and
average the scores. Multiplying the average score of a move
with the number of times it has been selected gives us a final
score. This final score is then used for the final selection. This

8https://jasschamp.ch/wp-content/uploads/2019/09/
JassInterface.pdf

9https://github.com/JoelNiklaus/jass-server
10https://jassteppich.abiz.ch
11https://github.com/JoelNiklaus/JassTheRipper

comes with the advantage that not only the number of times a
specific move is selected is considered but also the estimated
score it is associated with.

6.2 Iteration-based DMCTS and ISMCTS
The Iteration-based Determinized Monte Carlo Tree Search
(I-DMCTS) uses a configurable number of determinization
and MCTS iterations, independent of the time budget, to
enable testing of different configurations. Results for dif-
ferent numbers of determinization and iterations are given
in Section 8.1. The ISMCTS implementation uses the same
framework as the I-DMCTS.

6.3 Deep Neural Network
Card Play Network We trained a DNN to perform 3 dif-
ferent tasks using SL. We a) predict the action a, i.e. the
card played by a player as a policy function p(a|so), b) the
value function v(so) and c) the card distribution probability
pcard(player = i|c) that the card c was in the hand of player i
at the beginning of the game. so describes the current state
of the game observable by the player.

A single convolutional neural network was used with 3
different heads and loss functions. The loss function for the
policy head is the cross entropy loss between the predicted
action probability p and the actual action a. The loss of the
value prediction is the mean squared error between the pre-
dicted value v and the actual result z of the game and finally
the loss of the card prediction is the sum of the cross entropy
losses between the predicted and actual card distributions for
each player.

The DNN consists of 6 convolutional layers with 256 chan-
nels and kernel sizes of 2x3 for the first 3 layers, and 1x2,
1x2 and 1x2 for the following layers, whereby each layer
reduces the size of the input as valid padding is used. The 6
layers result in a 1x256 vector that connects to each loss func-
tion by a fully connected layer. The total loss is calculated
as the weighted sum of the 3 losses, whereas the weights are
chosen so that they scale the magnitude of each loss in the
same range i.e., each loss will contributes the same.

The input to the DNN is a 4x9 matrix of 43 channels
containing all the information available to the player. This
consists of the cards that have been played so far and in
which trick and by which player, the cards in the hand of the
current player and the valid cards to play, as well as global
information about the game, i.e. who declared trump, how
many cards have been played so far and how many points has
each team achieved.

Training was done for 200 epochs using an Adam opti-
mizer. R2 regularization was enabled on all weights, but no
dropout or batch normalization was used. Training achieved
an accuracy of 0.776 for the policy, and 0.771 for the card
distribution and Mean Squared Error (MSE) of 0.016 for the
value function.

Convolutional networks outperformed similar fully con-
nected networks using the same input by 4% in card accuracy,
2% in the card distribution and 10% in the MSE for the value
function.

We use the card-distribution prediction in variants of the
search algorithms as P-DMCTS and P-ISMCTS to draw cards



according to the predicted distribution during determiniza-
tion. The value function is used as a card play algorithm
by evaluating all valid cards and selecting the one with the
highest value.

Trump Selection Network Trump selection was trained
by a different DNN that uses only the cards in the hand of
a player as input, as well if the player is the first or second
player of the team to be asked to declare trump. The net-
work consists of two fully connected layers with 592 chan-
nels followed by a fully connected layer with 7 channels,
which corresponds to the 7 possible actions (4 colors, top-
down, bottom-up and passing). The accuracy of the network
reached 0.8193 on the validation set. Deeper networks did
not perform better.

7 Value Estimation Comparison
In this section we compare different methods to estimate the
value of a current game state. We assume that estimating the
value better leads to a better overall card play performance.

After DMCTS samples a determinization, the algorithm
finds itself in a perfect information game situation, so that all
the cards are known. To evaluate algorithms in this setting,
we omit the sampling and give them the perfect information
of the card distribution. The experiment is performed on the
on the validation set (described in Section 5.1).

As a baseline comparison, we plot the value estimation
from the DNN, which, however, only uses information about
the cards in the hand of the current player. The DNN Max.
Policy is used to compute a heavy rollout, resulting in a score
of the game at the end of the round. The average of a different
number of random rollouts (without any tree search!) is also
listed. Finally, different numbers of MCTS iterations with
random rollout are shown. To calculate the estimated value,
we multiply the probability of an action with the value of
that action and sum this for all actions. All the methods have
access to the hidden information except DNN Value.

Figure 2 shows the results of the different investigated
methods. While the improvement from 25 random rollouts
to 10 is evident, the improvement of 1000 to 25 random
rollouts is only marginal. The DNN value function seems
to be comparable to the average of 10 random rollouts. The
policy function does not give significantly better results than
using random rollout with 1000 iterations or 100 MCTS
iterations. The accuracy of the MCTS based value estimation
improves clearly with the number of iterations.

Random rollouts do not seem to improve much after a
number of iterations have been reached, while MCTS contin-
ually improves the accuracy with more iterations. We expect
that this improved accuracy translates to stronger overall card
play. Overall, already 100 MCTS iterations outperform both
1000 random rollouts and the DNN Max Policy rollout in
the perfect information game setting. The difference between
the investigated methods is particularly evident in the first
few tricks (0 to 24 cards played). Our analyses show that this
phase is also the most crucial time in a round. The further
the round progressed, the easier it becomes to play optimally
and thus, the smaller the difference between different bots.

Table 1: Percentage of total points of I-DMCTS playing
against DNN with different number of determinizations and
iterations and exploration constant 1.5.

Iter. Determinizations

25 100 1K 10K

25 48.07± 0.85 48.76± 1.58 49.45± 1.00 50.02± 1.34
100 49.53± 1.10 49.92± 0.66 49.89± 1.21 49.55± 0.97
1K 50.11± 1.27 50.30± 0.93 50.65± 0.66 50.75± 1.34

10K 49.98± 0.71 50.79± 0.89 50.38± 1.02 very costly

Table 2: Percentage of total points of different trump selection
algorithms playing against DNN.

Bot Result (%)

Random 34.19±2.02
Simple Rule 47.69±0.82
Ranked Based Rule 49.26±1.11
MCTS 48.23±1.98

8 Experiments Between Bots
In Section 8.1 we describe experiments with DMCTS hyper
parameters. Since Jass consists of two distinct phases (trump
selection and card play) we can also separately evaluate our
bots in these two phases, explained in detail in Section 8.2 and
8.3 respectively. In all of these experiments between bots we
used double rounds (see Section 5.3) to reduce randomness.

Note that already a small difference in points between two
teams can lead to a victory in a Jass game, like in a ski race a
difference of 0.5s can bring an athlete from outside the top
20 to winning the gold medal.

Each experiment consists of playing a game of 100 rounds
(= 50 double rounds) 10 times. We report the mean percentage
of total points and the STD of the 10 different games. The
p-value has been calculated with an unpaired t-test.

8.1 Hyper Parameters for DMCTS
We conducted several experiments to find the best hyper pa-
rameters for DMCTS. Given a specified number of iterations
to be performed, or a specific time constraint, we investigate
if is it better to have a larger number of determinizations,
thus exploring many different card configurations, or if it is
better to devote more resources to the MCTS giving a more
accurate result for the cards.

Determinizations and Iterations Figure 4 shows an
overview of the performance of DMCTS with different al-
locations of a fixed budget against DNN Max Policy. The
budget is 800K iterations (e.g., 20K determinizations with 40
iterations each, or 500 determinizations with 1600 iterations
each). We find that an increase in the number of determiniza-
tions is beneficial up to a certain point (p = 0.015 for 1Kx800
and 500x1600). However, further increasing the number of
determinizations to over 1K shows no improvement. We find
the sweet spot with this particular budget to be at 1K deter-
minizations with 800 iterations each.
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Figure 3: Each experiment consists of playing a game of 100 rounds (= 50 double rounds) 10 times, and the average received
percentage of total points is shown. The error bar is the STD of the 10 different games.

Exploration Constant In pure MCTS experiments we
have found that an exploration factor of 0.2 gives the best
results. However, in DMCTS, much larger exploration values
than for pure MCTS result in better performance. We find the
standard value of around

√
2 to show the highest mean value

(p = 0.13 for 0.5 and 1.5) This corresponds with the findings
of Browne et al. (2012), stating that for perfect information
games, very low exploration constants are optimal, but for
imperfect information games, the value lies higher.

Scalability In Section 7 we saw that a bigger number of
MCTS iterations can increase the accuracy of estimating the
value at the end of the game. In this paragraph we present
an experiment that checks if more iterations and more de-
terminizations really are beneficial to the overall card play
strength (measured in percentage of total points).

Table 1 shows different combinations of iterations and
determinizations of DMCTS against DNN which allows us
to interpret the scalability properties of DMCTS.

With 25 determinizations there is a strong improvement
from 25 to 100 iterations (p < 0.01). However, our data does
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d = 1000 and i = 1000.

not clearly support an improvement from 100 to 10K itera-
tions (p = 0.29). Yet, for 100 determinizations, there is an
increase from 100 to 10K iterations (p = 0.023). Increasing
both the determinizations and the iterations clearly has a pos-
itive effect on the overall card play strength (p < 0.0001 for
25x25 to 1Kx1K). When the number of determinizations or it-
erations are high though (1Kx1K to 10Kx1K and to 1Kx10K),
our data does not support clear claims. It would be very inter-
esting to see how the card play strength changes from 1Kx1K
to 10Kx10K and further to 1Mx1M. However, running exper-
iments in these dimensions are very costly (10Kx10K would
take 600h (25 days) on a 8 core machine running 16 threads).

8.2 Trump Selection Phase
To evaluate the trump selection methods, we let four differ-
ent trump selection methods play against each other while
using the same card play algorithm, DNN, for all of them.
DNN card play is fast, robust, and deterministic, putting no
additional variance into the experiment.

The four trump selection methods we tested were the fol-
lowing: First, the Random chooses the trump completely ran-
domly. The Simple RB method tries to estimate the number
of certain tricks that can be won. The Ranked RB implements
a ranking algorithm and is used in T-DMCTS. The MCTS
method considers the trump selection as just another move
in the tree to be searched. Finally, the DNN performs trump
selection as described in Section 6.3.

The results are shown in the Table 2 for playing 100 rounds
10 times as described in Section 5.3. DNN achieves the best
results, while the more elaborate RB algorithm based on
the ranking is only slightly worse (p = 0.063 for DNN and
Ranked RB).

Trump selection proves quite essential, as even a simple
algorithm is much better than random selection, so a good
bot must combine good trump selection and card play. In
Schieber, passing can be very valuable in trump selection,
since more information is available afterward. The player
who selects trump after the first one passed knows for ex-

ample that the first player does not have very good cards to
choose a trump. So, with passing, the players have another
shot at a good trump. We analyzed the choices of the MCTS
based trump selection method and noticed that it rarely passes.
This may be a reason for it to perform worse than the DNN
method (p = 0.012).

8.3 Card Play Phase
To evaluate the different card play algorithms, we let them
play against each other with the settings described in Sec-
tion 5.3. The DMCTS and ISMCTS are the bots as described
in Section 4. The RB bot12 is a baseline bot and builds on the
Jass Challenge environment released by the Software Engi-
neering company Zühlke13. It won the Zühlke Jass Challenge
Competition in 2017. The T-DMCTS RB rollouts uses RB
rollouts instead of random rollouts. The random bot selects a
random card while using DNN for trump selection, the Max
Value bot evaluates the value network for each valid card out
of 1000 card distributions and plays the card with the highest
value. The P-DMCTS and P-ISMCTS bots use the probabil-
ity distributions of the cards from the DNN and draw cards
according to this distribution instead of random cards. The
cheating MCTS has access to the hidden information (the
cards of the other players) and is added as an upper bound.

Figure 3(a) displays the results of the different bots against
the DNN method, while Figure 3(b) compares the strength
of different bots against the T-DMCTS method. The bots
are configured with their best settings; comparisons between
different settings are explored more in the following sections.

As expected, knowledge of the unknown cards is precious,
which can be seen in the big jump in strength by the cheating
MCTS player. However, surprisingly, having access to the
probability distributions of the cards does not improve the
card play strength compared to just sampling random cards
(p = 0.046 for P-DMCTS and I-DMCTS and p = 0.17 for
P-ISMCTS and ISMCTS). Rather, the variance increases,
suggesting that there are both occasions where the DNN
guessed the distribution of the cards correctly and others
where it did not.

9 Conclusion and Outlook
We provide a comparison of the most widely used methods
in trick-taking card games at the example of the Schieber
variant of the Swiss card game Jass. In the trump selection
phase, empirical evaluation suggests that the DNN slightly
outperforms the ranked RB method. In the card play phase,
we found that the similarly strong DMCTS and DNN outper-
form the random baseline, a robust RB bot and also ISMCTS.
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