
Learning Generalizable Behavior via Visual Rewrite Rules

Yiheng Xie*1, Mingxuan Li*2, Shangqun Yu*1, Michael L. Littman1

1Department of Computer Science, Brown University,
2Department of Computer Science, Columbia University

{yiheng xie, shangqun yu, michael littman}@brown.edu, ml@cs.columbia.edu

Abstract

Though deep reinforcement learning agents have achieved
unprecedented success in recent years, their learned policies
can be brittle, failing to generalize to even slight modifi-
cations of their environments or unfamiliar situations. The
black-box nature of the neural network learning dynamics
makes it impossible to audit trained deep agents and recover
from such failures. In this paper, we propose a novel rep-
resentation and learning approach to capture environment
dynamics without using neural networks. It originates from
the observation that, in games designed for people, the ef-
fect of an action can often be perceived in the form of local
changes in consecutive visual observations. Our algorithm is
designed to extract such vision-based changes and condense
them into a set of action-dependent descriptive rules, which
we call “visual rewrite rules” (VRRs). We also present pre-
liminary results from a VRR agent that can explore, expand
its rule set, and solve a game via planning with its learned
VRR world model. In several classical games, our non-deep
agent demonstrates superior performance, extreme sample ef-
ficiency, and robust generalization ability compared with sev-
eral mainstream deep agents.

Introduction
While deep reinforcement-learning agents have achieved
impressive performance in Atari games (Espeholt et al.
2018; Badia et al. 2020; Schrittwieser et al. 2020; Hafner
et al. 2021), the vast amount of data they require for train-
ing and their limited generalization ability preclude us from
extending these approaches to more meaningful and chal-
lenging real world tasks. The sample efficiency problem has
been long existed in the reinforcement-learning (RL) liter-
ature due to the challenges of the “curse of dimensional-
ity” (Bellman 1966). Even deep RL agents must contend
with the hardness of learning good representations (Glorot
and Bengio 2010; Laskin et al. 2020). For the generalization
issue, studies (Cobbe et al. 2020, 2019; Witty et al. 2018)
have demonstrated that deep RL agents can easily memorize
and overfit to training environments instead of truly under-
standing the dynamics that underpin the task. As a conse-
quence, even simple variations in an environment that hu-

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

man learners barely even notice can undermine the perfor-
mance of a deep RL agent.

Though there are extensive studies trying to address the
aforementioned problems (Lee et al. 2020; Cobbe et al.
2020; Laskin et al. 2020), most continue to adopt an end-
to-end learning framework. We show that by disentangling
representation learning from policy learning, problems can
successfully be solved in parts.

Specifically, human game playing priors (Dubey et al.
2018; Tsividis et al. 2017) support the learning of high-level
factored rules built upon the concept of an object (Diuk, Co-
hen, and Littman 2008), which support planning in a wide
variety of related tasks. Motivated by the observation that
it is possible to reason (Furnas 1991) and compute (Ack-
ley 2018) with picture-to-picture rules, we examine using
such an approach to learn environmental dynamics in RL.
We present visual rewrite learning, a simple learning al-
gorithm that captures local action-dependent visual rewrite
rules (VRRs) of the environment. We also present a model-
based agent framework integrating VRR and planning.

We demonstrate the effectiveness of the VRR agent in a
series of publicly available environments. Our VRR agent
outperforms state-of-the-art model-free and model-based
deep RL agents in tests of generalization and uses signifi-
cantly fewer training samples. To the best of our knowledge,
we are the first to beat deep networks with a non-deep ap-
proach in these environments.

Background
In this work, we use Markov Decision Processes (MDPs) to
model an agent interacting with its environment while solv-
ing a task. An MDP is defined by the tuple ⟨S,A,R,P, γ⟩
where state s ∈ S , action a ∈ A, reward r ∈ R, state
transition described by P(st+1, rt|st, at) and discount fac-
tor γ ∈ [0, 1). The RL agent’s goal is to maximize dis-
counted reward

∑∞
t=0 γ

trt.
In model-based reinforcement learning, an agent learns

an environment model composed of a state-transition model
and a reward model. It then uses the learned model to navi-
gate through the environment, gathering reward. Dyna (Sut-
ton 1991), which integrates model-free learning with gen-
erated data from a learned model, is an example of such
an approach. Deep RL, with its focus on visual observa-
tions, was slow to incorporate model-based learning. But,



𝑚𝑎𝑠𝑘 𝑚𝑎𝑠𝑘(1) 𝑠

𝑠𝑙𝑜𝑐𝑎𝑙
′

𝑠𝑙𝑜𝑐𝑎𝑙

Visual Rewrite Rule (VRR)

𝑠

𝑠𝑙𝑜𝑐𝑎𝑙

Visual Rewrite Rule (VRR)

𝑠𝑙𝑜𝑐𝑎𝑙
′ = 𝑠𝑙𝑜𝑐𝑎𝑙

𝑠′ 𝑠′(2)

Action: 
right

Action: 
right

Figure 1: Example Visual Rewrite Rules (VRRs) in Sokoban. State change can be decomposed into a static non-local component
and a dynamic local component near the agent. The local region is highlighted by mask. (1) The Sokoban agent (green) moves
right onto the empty space, in response to action right. (2) Agent cannot move into the brick wall with action right, instead no
state change occurs (st = st+1).

by now, deep world models are being used to generate agent-
simulated trajectories for training model-free agents (Ha and
Schmidhuber 2018; Racanière et al. 2017; Hamrick et al.
2017; Kaiser et al. 2020; Hafner et al. 2021) or can be in-
tegrated with lookahead planning (Schrittwieser et al. 2020;
Goldwaser and Thielscher 2020; Hamrick et al. 2021). A
major challenge is that the quality of predicted trajectories
typically degrades quickly as small errors compound as tra-
jectories are rolled out (Janner et al. 2019; Asadi et al. 2019).
In addition, overfitting hampers the application of a deep-
learned world model to predictions on out-of-distribution
(training) states, even when they share dynamics. We argue
that without an organized, structural way of learning and us-
ing the learned environment dynamics, it is nearly impossi-
ble to verify if the world model has grasped the essential
knowledge for solving the task and therefore applying to
novel situations. We investigate a more structured non-deep-
network-based approach for learning a world model.

Our approach can be viewed as a form of abstraction (Li,
Walsh, and Littman 2006; Konidaris 2019) in which obser-
vations are decomposed into patches of pixels observed to
change together. Two main forms of abstraction in RL are
state abstraction and action abstraction. The former maps
the original larger state space into a smaller state space while
preserving the essential properties for solving the task (Dean
and Givan 1997; Jong and Stone 2005; Jiang, Kulesza, and
Singh 2015; Abel et al. 2018). The latter approach aggre-
gates the atomic actions into new units enabling high level
planning and skill reuse (Sutton, Precup, and Singh 1999;
Konidaris and Barto 2009; Sharma et al. 2020).

Visual Rewrite Rules
We introduce Visual Rewrite Rules (VRRs) as a new rep-
resentation for describing game-environment dynamics. In
contrast to deep neural networks, VRRs are an intuitive, ele-
gant, yet robust method to model environments. In this sec-
tion, we first offer an intuitive explanation of how VRRs de-
scribe state transitions. Then, we introduce the formal defi-
nition of visual rewrite rules, along with their strengths and

limitations. We then explain how to learn VRRs from expe-
rience data. Finally, we present subtleties to implementing
VRRs with pure-vision observations.

reward: 0

reward: 1

left

reward: 0

reward: 0

𝑠𝑙𝑜𝑐𝑎𝑙
′

𝑠𝑙𝑜𝑐𝑎𝑙

Visual Rewrite Rules 
(VRRs)

right

𝐴𝑐𝑡𝑖𝑜𝑛

right

down

reward: 1

reward: 1

toggle door

reward: 0

reward: 0

𝑠𝑙𝑜𝑐𝑎𝑙
′

𝑠𝑙𝑜𝑐𝑎𝑙

Visual Rewrite Rules 
(VRRs)

down

𝐴𝑐𝑡𝑖𝑜𝑛

pick up

forward

forward

Figure 2: Example Visual Rewrite Rules in Sokoban (left)
and MiniGrid (right).

State Transitions as VRRs
Intuitively, one may think of a VRR state transition as updat-
ing a subset of the state vector representing the state accord-
ing to the action, while the rest of the state vector remains
the same. The dynamic, changing component is “rewritten”
based on the outcome of the action, hence the name “visual
rewrite”. Fig. 1 shows an example of modeling the state tran-
sitions in Sokoban using VRRs. In the first graph of Fig. 1,
the agent moves from one blank cell to another blank cell
under action “move right”. All other grid cells remain the
same between the two time steps. The two cells are “rewrit-
ten” with the outcome of the action. In the second graph of
Fig. 1, the agent tries to move right but bumps into a wall.
There is no state change. The reason that the same action
results in different transitions is explained by the two cells
located around the agent, the difference being the presence
and absence of a wall.

In many games, the effects of agent actions is localized
near the agent. Hence, VRRs decompose the state transition



into a local component near the agent, and a static non-local
component. We use Visual Rewrite Rules (VRRs) to model
such state transitions. Each VRR describes the shape of the
local component of the state vector, what the local compo-
nent looks like, how the local component changes under the
influence of actions, and the reward. Fig 2 shows a selection
of VRRs from the Sokoban and MiniGrid games.

Formally, each VRR is defined as F : (s[mask], a) →
(s′[mask], reward) mapping the current local component of
s and action a to the local component after the transition
and reward. We define mask as an indicator function for the
shape of the local component of the state vector, specifically
slocal = s[mask].

When a state transition occurs (as in Figure 1, left), mask
indicates the position where the pixel values have changed
between s and s′: mask = where(s ̸= s′). The set of
VRRs are stored as a dictionary, where the key-value pair
is ((s[mask], a), (s′[mask], reward)).

VRR World Model
VRRs form a vision-based world model. At inference time,
a VRR can be “stamped” onto a new state vector to predict
state transitions. Algo 1 describes the VRR world model.

Algorithm 1: world model. VRRs as a world model.
Input : State vector s. Action a. Rule set VRRs.

Agent position agent.pos.
Output: State vector s′. reward. status.

1 mask = where(s ̸= s′);
// Compute local component.

2 slocal = s[mask];
3 for srule ∈ VRRs[a] do
4 tmpSrule = srule shifted to agent.pos;
5 Compare tmpSrule with current slocal;

// Found a match.
6 if tmpSrule = slocal then
7 (s′local, reward) = VRRs[a, srule];
8 Update s with s′local to obtain s′;
9 status = known rule;

10 return s′, reward, status;
11 end
12 end
// No matching local states found.

13 status = unknown rule;
14 return status;

Given a state vector s and agent position agent.pos, we
compare the local region centered around the agent slocal to
each local component srule stored in the VRRs dictionary
keys. If there is a match, we use the tuple of agent action a
and slocal to find the resulting state transition s′local, and re-
ward r. If there’s no matching dictionary entry, this indicates
a previously unseen local component of the state vector.

By the nature of most games, the number of VRRs needed
for constructing a perfect VRR world model is small, since
the game dynamics is usually composed of basic compo-
nents such as movements, pick up, and toggle. We leverage

this sparsity of game rules to learn an efficient set of VRRs.
VRR is also invariant to rotation and translation, since we
only focus on the local action effect while ignoring the static
components. This leads to robust and generalizable world
model, which we show in the experiments section.

Learning VRRs
From the definition of VRR, the most straightforward way
of learning it is by contrasting s with s′, and recording the
pixels that are affected by the action. Algo 2 illustrates this
basic idea of learning VRRs.

Algorithm 2: Learning VRR from state difference.
Input : Game state vector (grid) from two adjacent

time steps s, s′. Action a. Global Rules set
VRRs

// Mask out the unchanged region.
1 mask = (s ̸= s′);
// Store the change in dictionary.

2 VRRs[a, s[mask]] = s′[mask];

But there is subtlety here. Normally, one would expect
that every action leads to some changes in the visual rep-
resentation of the environment. However, it is very com-
mon that certain state–action pairs result in no state change
at all. For example, in Sokoban, if the agent tries to push
the box into a wall, s′ is exactly the same as s (Fig. 1 part
2). In such cases, s = s′ leads to an empty mask. That is,
mask = where(s ̸= s′) = ∅, s′local = slocal = ∅.

A naive solution is to store the entire game state, but this
is impractical, and defeats our goal of building a compact,
canonical rule set. Therefore, an appropriate inductive bias
is necessary for choosing where to look for evidence that
could explain the absence of state change (for example, the
wall in front of the agent).

We extend Algo 2 into Algo 3, where the “if” statement
explains why a state transition occurred, while the “else”
clause seeks to explain why a state didn’t change under cer-
tain actions. In the latter case, the local region is where the
VRRs expect changes to happen.

For example, a previously learned VRR expects the agent
to move forward with action “forward”, where the input of
this VRR has a two-cell local component—the agent, and
the empty space in front of it. When such state transition
does not occur, we first mask out the same local component
and notice that the empty space in srule is now a wall, which
explains the absence of change. In the case when no state
change is ever observed with a certain action, VRRs simply
assume this action does not lead to state changes. When this
is proven to be wrong, VRR will record the local component
change, and proceed as normal.

With this strategy, VRR can now handle the situation
when null state transition happens.

VRR in Practice
Agent Position In previous sections, we assume that the
agent is not only given the observation but also knows its



Algorithm 3: learn vrr. Learning VRRs with expec-
tation correction.

Input : State vectors s, s′. reward. Action a. Rules
set VRRs. Agent position agent.pos.

Output: Updated rules set VRRs.
1 mask = (s ̸= s′);
2 if mask ̸= ∅ then
3 VRRs[a, s[mask]] = (s′[mask], reward);
4 else

// Given no state change
occurred, we take the existing
VRRs’ local scope as mask.

5 mask = intersection of all slocal from current
VRRs;

6 mask′ = mask shifted to agent.pos;
7 VRRs[a, s[mask′]] = (s[mask′], reward);
8 end

own position. In other words, the controllable object, which
is the agent, is differentiated from other game objects. This
information is crucial because the locality of visual changes
is defined relative to the agent’s position. Though identifying
the controllable object seems to be intuitive for us, it’s not so
obvious for an algorithm without any prior knowledge that
human players do.

To relax this assumption, we use a principled method to
identify the agent in the game. We define the agent as the ob-
ject that exhibits the ability to independently move as a result
of input actions. Other passive game objects, such as boxes
in Sokoban, can only move as a result of the agent’s actions.
Hence, state changes always occur near the agent, since the
object exhibiting agency is always present to produce those
state changes. We leave handling more complex games with
independent moving objects (Frogger, Space Invaders, etc.)
for future work.

Object Centric Representation During implementation,
we adopt a discrete-space and object-centric representation
of the state space. Given a rendered game observation in pix-
els, we discretize the screen into squared grid cells. The grid
size is not assumed to be given. Instead, we search for the
minimal sprite unit by picking the grid size that yields the
least number of object types while also being semantically
meaningful (Fig. 3). An erroneous grid size (for example
slicing between the ground truth grids) would result in an
explosion of the number of object types and the number of
rules. At last each distinct object type is assigned with an
unique id. This approach transforms the visual observation
into a compact yet expressive object-oriented state vector
that also preserves the spatial topology.

Although we only show results for games whose obser-
vation space is discrete and two-dimensional, in principle,
VRRs are compatible with games that do not fit into a regu-
lar grid, such as balls and paddles in Pong. Additionally, the
idea of VRR can also model stochastic state transitions eas-
ily by extending the dictionary keys to a distribution of pos-
sible future states. We reserve these topics for future work.

A VRR Agent

Algorithm 4: VRR agent.
Input : Game environment env. Rules set VRRs.

1 while not done do
2 BFS from current state, using VRR world model;

// Algo. 1
3 BFStree = empty tree, where nodes are states,

edges are actions;
// BFS keeps track of reward, and

status
4 if BFS maximum reward > 0 then
5 actions =action sequence from root to

winning state;
6 else if status = new rule then

/* If agent cannot complete
the game with current VRRs,
explore new rules. */

7 actions =action sequence from root to novel
state;

8 else
/* No more new rules, games

not winnable (such as a box
in corner in Sokoban). */

9 agent gives up this round;
10 for a ∈ actions do
11 s, s′, reward = env.step(a);

// Expand VRRs with Algo.3
12 VRRs =

learn vrr(s, s′, reward, a,VRRs, agent.pos);

13 end
14 end

A VRR agent is composed of a VRR world model de-
scribed above and a compatible planning algorithm. We
choose breadth-first search (BFS) for its simplicity, but VRR
is trivially compatible with more sophisticated search algo-
rithms such as Monte-Carlo Tree Search (Coulom 2006).

To learn the VRRs efficiently, a principled method for
exploring the game is needed. As described in Algo 4, the
agent first attempts to solve the game via BFS planning with
the current set of learned VRRs. If BFS returns an action se-
quence that leads to the winning state, then the set of learned
game rules is sufficient for the agent to solve the task. The

Incorrect Grid Size Correct Grid Size

Figure 3: Correct grid size results in a minimal number of
object types, while incorrect grid slicing results in a combi-
natorial number of object types.



agent then executes this action sequence to receive the re-
ward and moves onto the next round without wasting any
time. Conversely, if BFS terminates without finding the win-
ning state, there must exist state transitions that the agent is
yet to learn, that is, ∃ game rule /∈ VRRs.

The VRR world model is capable of indicating when it
has encountered an unknown local component rewrite. That
is, when a key is absent from the VRRs dictionary. In this
circumstance, BFS planning will return an action sequence
that guides the agent to explore this new transition. Fig. 4 il-
lustrates such an example. If the agent has not yet interacted
with the door, and thus cannot solve the game, the BFS will
return action sequences that explore unknown state transi-
tions. One of such action sequence will navigate the agent to
the door, and then execute the action “toggle.” The new rule
describing door-opening will then be recorded in VRRs.

A notable exception here is Sokoban, in which irreversible
behaviours exist. When agent pushes a box into a corner, it
can never get that box out. VRR agent is able to identify
such situations: neither is the game solvable, nor are there
any unknown states to be explored. The agent will promptly
give up the current round.

A VRR agent can learn game rules without any prior
knowledge from scratch with extreme sample efficiency. At
test time, VRR agent is capable of zero-shot generalization
to new game levels, which we demonstrate in experiments.
VRR agent learning is also amenable to lifelong learning,
where it can learn a subset of game rules and update its
knowledge in an online fashion as the game complexity in-
creases. Moreover, devoid of any black box components,
the VRR agent’s learning and planning is completely inter-
pretable, as shown in Fig. 4.

Experiments
In this section, we demonstrate the sample efficiency and
generalization ability of our VRR agent in comparison with
several deep RL agents: PPO (Schulman et al. 2017), IM-
PALA (Espeholt et al. 2018), and DreamerV2 (Hafner et al.
2021). With the exception of using the original implemen-
tation for DreamerV2, we adopt the Ray RLib (Liang et al.
2018) version for our baselines. The following environments
are used for training and evaluation: MiniGrid (Chevalier-
Boisvert, Willems, and Pal 2018) and gym-Sokoban en-
vironment (Schrader 2018). They are both procedurally-
generated environments with varying game layouts and
clearly-defined difficulty levels. See Fig. 5 for a brief de-
scription of the training environments and their variations.
When reporting the average return of deep RL baselines, we
show the mean and standard derivation from 3 independent
runs. The average return is calculated as the rolling mean of
the last 10 episodes. We will release our source code soon.

Sample Efficiency in Training
As described in Algo 4, we train the VRR agent from scratch
with an initially empty rule set. By interacting with the game
environment, the VRR agent gradually expands its rule set
(as shown in Fig. 7, top). In Fig. 6, we show that the VRR
agent requires orders of magnitude fewer environment steps

than the deep baselines before converging. In Sokoban, the
VRR agent also achieves higher return at convergence.

0 200 400 600
Steps 

0

10

20

30

Sokoban

0 200 400 600 800
Steps 

0

25

50

75

DoorKey

0 20 40 60
Steps 

5

10

15

Sokoban

0 20 40 60 80
Steps 

0

10

20

30

DoorKey

Nu
m

be
r o

f V
RR

s

Figure 7: Number of VRRs learned during training as a func-
tion of training steps. Top: learning from scratch by interact-
ing with the game environment. Bottom: learning from an
extremely small set of human play data.

Game Data Src. Steps Avg. Return Avg. Steps

Sokoban scratch 440 1.0 4.528
human 81 0.96 4.239

DoorKey scratch 1058 1.0 12.724
human 89 1.0 10.249

Table 1: VRR agent trained on a small human play dataset
achieves comparable performance at test time, while using
an order of magnitude fewer training steps. Sokoban and
DoorKey game board sizes are 7 × 7, and 6 × 6, respec-
tively.

Minimal Guided Learning The sample efficiency of the
VRR agent is explained by that the rule set captures only
the novel and necessary local component transitions with-
out redundancy. However, the sample efficiency is ultimately
bounded by the exploration efficiency of the agent. The
faster the agent discovers new game rules, the sooner it can
solve the game.

To test the VRR agent’s sample efficiency in the limit. We
demonstrate that VRR agent can learn from an extremely
small training set of under 100 steps (Fig. 7), while achiev-
ing identical performance as learning from scratch (Table 1).
The dataset is collected from a human player, who solves
a few levels of the game while demonstrating all the ba-
sic movements required to complete the task. Such a lim-
ited dataset is completely insufficient for training deep RL
agents, for whom the required number of training steps be-
fore convergence is often 4-5 orders of magnitude larger.
This resonates with our argument that by disentangling rep-
resentation learning from policy learning, the sample effi-
ciency problem will be greatly alleviated. So does the gen-
eralization problem, as we show below.



(1) (2) (3) (4)

Figure 4: VRR agent explores new rules when its current knowledge is insufficient to solve the game. It balances exploration
and exploitation leading to sample-efficient learning. For a live demo, see Sokoban experiments and DoorKey experiments.

1 2 3

4 5 6

Figure 5: Game environments. 1) 7× 7 Sokoban with 1 box
(train), 2) 7 × 7 Sokoban with 4 boxes (test), 3) 13 × 13
Sokoban with 5 boxes (test), 4) 6 × 6 DoorKey (train), 5)
6× 6 DoorKey rotated (test), 6) 32× 32 DoorKey (test).

Generalization Experiments
Next, we test the zero-shot generalization performance of
VRR agent. Since both DoorKey and Sokoban are proce-
durally generated, their underlying game rules remain un-
changed regardless of game parameters. The game parame-
ters we investigate include (Fig. 5):

• number of boxes in Sokoban,
• random rotation to initial states in DoorKey,
• game board size (such as 7× 7 vs. 13× 13).

We show that the VRR agent can solve more complex game
levels with the essential rule set learned from the most ba-
sic level. For all zero-shot generalization experiments below,
we train VRR and baseline agents on 7 × 7 Sokoban envi-
ronment with 1 box, and 6× 6 DoorKey environment.

Sokoban There are primarily two game parameters that
affect the complexity of the game: number of boxes and
board size. We test the performance of VRR agent in larger
maps with the same number of boxes used during training.
Table 2 shows that VRR agent performance is invariant to

Sokoban board size, while baselines struggle to generalize
to larger board sizes. Empirically, a larger map enables more
complex layouts and larger search spaces, which makes it
easier to trap the agent in irreversible situations. Further-
more, CNN-based networks are trained to a fixed resolution.
When the spatial resolution of the observation changes, the
convolutional feature scales accordingly, which severely de-
grades the performance. Conversely, VRR world model is
only concerned with the local subset of state vector, and its
performance is invariant to the overall resolution. The only
limiting factor for VRR agent is the search algorithm’s run-
time, which isn’t problematic in a 13× 13 board.

We further test the agents’ ability to solve in 2-, 3-, and 4-
box Sokoban after being trained only on the 1-box Sokoban.
Game board size is fixed to 7 × 7. Fig. 8 shows that VRR
agent’s performance degrades gracefully, and far outper-
forms baseline agents in the multiple-box Sokoban games.
Note that the agent has never seen more than 1 box, and is
disallowed to learn new rules. Notably, VRR agent not only
accrues higher returns, but also solves each game episode
with fewer steps. We accredit this advantage to the explicit
planning via search tree in VRR agent.

Average Return
Game VRR DreamerV2 IMPALA PPO

Original 1.0 0.91 1.0 1.0
Rotated 1.0 0.07 0.43 0.37

Table 3: Zero-shot agent performance on the randomly ro-
tated DoorKey environment.

Average Return
Game VRR Dream IMPALA PPO

Sokoban (7× 7) 1.0 0.65 0.76 0.64
Sokoban (13× 13) 1.0 0.04 0.11 0.0
DoorKey (6× 6) 1.0 1.0 1.0 1.0

DoorKey (32× 32) 1.0 0.0 0.0 0.0

Table 2: Zero-shot performance with varying grid size.
Note: Sokoban is the 1-box map. Dream: DreamerV2.

https://youtu.be/P7USC23NwXs
https://youtu.be/OmqycU3f2UU


Figure 6: Average return during training. From left to right: DoorKey (6 × 6), DoorKey (6 × 6) zoomed, Sokoban (7 × 7),
Sokoban (7× 7) zoomed. The VRR agent achieves the same reward while using 3 orders of magnitude fewer training steps.

1 Box 2 Boxes 3 Boxes 4 Boxes
0

1

2

3

Av
g.

 E
pi

so
de

 R
et

ur
n IMPALA

DreamerV2
PPO
VRR

1 Box 2 Boxes 3 Boxes 4 Boxes
0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 W
in

 R
at

e

1 Box 2 Boxes 3 Boxes 4 Boxes

101

102

103

Av
g.

 E
pi

so
de

 S
te

ps

Figure 8: VRR and baseline agents on 7x7 Sokoban with
varying number of boxes.

DoorKey First, the VRR and baseline agents are tested
in a larger 32 × 32 DoorKey environment (Fig. 5, pic.(6)),
where the layout is exactly identical: the agent starting po-
sition and the key are located to the left of the vertical
wall, and the goal is located at the bottom right. Similar to
Sokoban, Table 2 shows that VRR agent performance is in-
variant to board size, while baselines completely fail.

Additionally, we test VRR and baseline agents in 6 × 6
DoorKey environment with randomly rotated initial states.
For example, the goal state and agent initial positions may
be swapped, or the agent may need to move upwards to open
the door, instead of to the right. Table 3 shows that VRR
agent generalizes to rotated game board layouts, while base-
lines overfit to a particular orientation of the game board.
The generalization ability of VRR agent is due to the VRR
world model is invariant to rotations by design.

Conclusion and Future Work
In this paper, we attacked the generalization problem in
RL using the concept of visual rewrite rules (VRR). VRR
agents maintain a set of action-dependent graphical rules
that describe action effects as local visual changes around
the agent. Inspired by human game-playing priors, VRR
models environment dynamics as minimal factored local
changes. Given its simplicity and locality, a VRR agent can
be trained with orders of magnitudes less data but still gen-
eralize better than the deep RL agents. Though we demon-
strate the effectiveness of our method in grid-based environ-
ments, many open questions emerge from the assumptions
of VRR. For example, can visual rewrite rules be easily gen-
eralized to continuous space environments? We suppose one
could easily plug in an object detector to get the factored
state observation and follow the same VRR algorithm, but
we do not know if the training cost of the object detector
will cancel out the efficiency and generalization ability of
VRR. We also do not deny that deep representation learning
is essential to high-dimensional problems. So it is natural
to ask if the idea of visual rewrite is compatible with deep
representation learning. Will this approach impose new in-
ductive biases in deep agent design? Relaxations of any of
the assumptions identified in the paper would be interesting
future topics.

References
Abel, D.; Arumugam, D.; Lehnert, L.; and Littman, M. L.
2018. State Abstractions for Lifelong Reinforcement Learn-
ing. In Dy, J. G.; and Krause, A., eds., Proceedings of the
35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning Re-
search, 10–19. PMLR.
Ackley, D. H. 2018. Digital protocells with dynamic size,
position, and topology. In ALIFE 2018: The 2018 Confer-
ence on Artificial Life, 83–90.
Asadi, K.; Misra, D.; Kim, S.; and Littman, M. L. 2019.
Combating the Compounding-Error Problem with a Multi-
step Model. ArXiv preprint arXiv:1905.13320.
Badia, A. P.; Piot, B.; Kapturowski, S.; Sprechmann, P.;
Vitvitskyi, A.; Guo, Z. D.; and Blundell, C. 2020. Agent57:



Outperforming the Atari Human Benchmark. In Pro-
ceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, vol-
ume 119 of Proceedings of Machine Learning Research,
507–517. PMLR.
Bellman, R. 1966. Dynamic programming. Science,
153(3731): 34–37.
Chevalier-Boisvert, M.; Willems, L.; and Pal, S. 2018. Min-
imalistic Gridworld Environment for OpenAI Gym. https:
//github.com/maximecb/gym-minigrid.
Cobbe, K.; Hesse, C.; Hilton, J.; and Schulman, J. 2020.
Leveraging Procedural Generation to Benchmark Reinforce-
ment Learning. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, 2048–2056. PMLR.
Cobbe, K.; Klimov, O.; Hesse, C.; Kim, T.; and Schulman, J.
2019. Quantifying Generalization in Reinforcement Learn-
ing. In Chaudhuri, K.; and Salakhutdinov, R., eds., Pro-
ceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine Learn-
ing Research, 1282–1289. PMLR.
Coulom, R. 2006. Efficient Selectivity and Backup Opera-
tors in Monte-Carlo Tree Search. In van den Herik, H. J.;
Ciancarini, P.; and Donkers, H. H. L. M., eds., Computers
and Games, 5th International Conference, CG 2006, Turin,
Italy, May 29-31, 2006. Revised Papers, volume 4630 of
Lecture Notes in Computer Science, 72–83. Springer.
Dean, T. L.; and Givan, R. 1997. Model Minimization in
Markov Decision Processes. In Kuipers, B.; and Webber,
B. L., eds., Proceedings of the Fourteenth National Confer-
ence on Artificial Intelligence and Ninth Innovative Applica-
tions of Artificial Intelligence Conference, AAAI 97, IAAI 97,
July 27-31, 1997, Providence, Rhode Island, USA, 106–111.
AAAI Press / The MIT Press.
Diuk, C.; Cohen, A.; and Littman, M. L. 2008. An object-
oriented representation for efficient reinforcement learning.
In Cohen, W. W.; McCallum, A.; and Roweis, S. T., eds.,
Machine Learning, Proceedings of the Twenty-Fifth Interna-
tional Conference (ICML 2008), Helsinki, Finland, June 5-
9, 2008, volume 307 of ACM International Conference Pro-
ceeding Series, 240–247. ACM.
Dubey, R.; Agrawal, P.; Pathak, D.; Griffiths, T.; and Efros,
A. A. 2018. Investigating Human Priors for Playing Video
Games. In Dy, J. G.; and Krause, A., eds., Proceedings of the
35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning Re-
search, 1348–1356. PMLR.
Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih,
V.; Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning,
I.; Legg, S.; and Kavukcuoglu, K. 2018. IMPALA: Scal-
able Distributed Deep-RL with Importance Weighted Actor-
Learner Architectures. In Dy, J. G.; and Krause, A., eds.,
Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stockholm,

Sweden, July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, 1406–1415. PMLR.
Furnas, G. W. 1991. New graphical reasoning models for
understanding graphical interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Sys-
tems, 71–78.
Glorot, X.; and Bengio, Y. 2010. Understanding the dif-
ficulty of training deep feedforward neural networks. In
Teh, Y. W.; and Titterington, D. M., eds., Proceedings of
the Thirteenth International Conference on Artificial Intel-
ligence and Statistics, AISTATS 2010, Chia Laguna Resort,
Sardinia, Italy, May 13-15, 2010, volume 9 of JMLR Pro-
ceedings, 249–256. JMLR.org.
Goldwaser, A.; and Thielscher, M. 2020. Deep Reinforce-
ment Learning for General Game Playing. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artifi-
cial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2020, New York, NY, USA, February 7-12,
2020, 1701–1708. AAAI Press.
Ha, D.; and Schmidhuber, J. 2018. Recurrent World Models
Facilitate Policy Evolution. In Bengio, S.; Wallach, H. M.;
Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and Gar-
nett, R., eds., Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, 2455–2467.
Hafner, D.; Lillicrap, T. P.; Norouzi, M.; and Ba, J. 2021.
Mastering Atari with Discrete World Models. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net.
Hamrick, J. B.; Ballard, A. J.; Pascanu, R.; Vinyals, O.;
Heess, N.; and Battaglia, P. W. 2017. Metacontrol for
Adaptive Imagination-Based Optimization. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.
Hamrick, J. B.; Friesen, A. L.; Behbahani, F.; Guez, A.; Vi-
ola, F.; Witherspoon, S.; Anthony, T.; Buesing, L. H.; Velick-
ovic, P.; and Weber, T. 2021. On the role of planning in
model-based deep reinforcement learning. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net.
Janner, M.; Fu, J.; Zhang, M.; and Levine, S. 2019.
When to Trust Your Model: Model-Based Policy Optimiza-
tion. In Wallach, H. M.; Larochelle, H.; Beygelzimer, A.;
d’Alché-Buc, F.; Fox, E. B.; and Garnett, R., eds., Ad-
vances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, 12498–12509.
Jiang, N.; Kulesza, A.; and Singh, S. P. 2015. Abstraction
Selection in Model-based Reinforcement Learning. In Bach,
F. R.; and Blei, D. M., eds., Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015, Lille,

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid


France, 6-11 July 2015, volume 37 of JMLR Workshop and
Conference Proceedings, 179–188. JMLR.org.
Jong, N. K.; and Stone, P. 2005. State Abstraction Discovery
from Irrelevant State Variables. In Kaelbling, L. P.; and Saf-
fiotti, A., eds., IJCAI-05, Proceedings of the Nineteenth In-
ternational Joint Conference on Artificial Intelligence, 752–
757. Professional Book Center.
Kaiser, L.; Babaeizadeh, M.; Milos, P.; Osinski, B.; Camp-
bell, R. H.; Czechowski, K.; Erhan, D.; Finn, C.; Koza-
kowski, P.; Levine, S.; Mohiuddin, A.; Sepassi, R.; Tucker,
G.; and Michalewski, H. 2020. Model Based Reinforce-
ment Learning for Atari. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.
Konidaris, G. 2019. On the necessity of abstraction. Current
Opinion in Behavioral Sciences, 29: 1–7. Artificial Intelli-
gence.
Konidaris, G. D.; and Barto, A. G. 2009. Skill Discovery
in Continuous Reinforcement Learning Domains using Skill
Chaining. In Bengio, Y.; Schuurmans, D.; Lafferty, J. D.;
Williams, C. K. I.; and Culotta, A., eds., Advances in Neu-
ral Information Processing Systems 22: 23rd Annual Con-
ference on Neural Information Processing Systems 2009.,
1015–1023. Curran Associates, Inc.
Laskin, M.; Lee, K.; Stooke, A.; Pinto, L.; Abbeel, P.; and
Srinivas, A. 2020. Reinforcement Learning with Augmented
Data. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan,
M.; and Lin, H., eds., Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual.
Lee, K.; Lee, K.; Shin, J.; and Lee, H. 2020. Network Ran-
domization: A Simple Technique for Generalization in Deep
Reinforcement Learning. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.
Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
Unified Theory of State Abstraction for MDPs. In Ninth In-
ternational Symposium on Artificial Intelligence and Math-
ematics.
Liang, E.; Liaw, R.; Nishihara, R.; Moritz, P.; Fox, R.; Gold-
berg, K.; Gonzalez, J.; Jordan, M. I.; and Stoica, I. 2018. RL-
lib: Abstractions for Distributed Reinforcement Learning. In
Dy, J. G.; and Krause, A., eds., Proceedings of the 35th In-
ternational Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research,
3059–3068. PMLR.
Racanière, S.; Weber, T.; Reichert, D. P.; Buesing, L.; Guez,
A.; Rezende, D. J.; Badia, A. P.; Vinyals, O.; Heess, N.; Li,
Y.; Pascanu, R.; Battaglia, P. W.; Hassabis, D.; Silver, D.;
and Wierstra, D. 2017. Imagination-Augmented Agents for
Deep Reinforcement Learning. In Guyon, I.; von Luxburg,
U.; Bengio, S.; Wallach, H. M.; Fergus, R.; Vishwanathan,
S. V. N.; and Garnett, R., eds., Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neural

Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, 5690–5701.
Schrader, M.-P. B. 2018. gym-sokoban. https://github.com/
mpSchrader/gym-sokoban.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2020. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839): 604–
609.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
CoRR, abs/1707.06347.
Sharma, A.; Gu, S.; Levine, S.; Kumar, V.; and Hausman, K.
2020. Dynamics-Aware Unsupervised Discovery of Skills.
In 8th International Conference on Learning Representa-
tions, ICLR 2020. OpenReview.net.
Sutton, R. S. 1991. Dyna, an Integrated Architecture for
Learning, Planning, and Reacting. SIGART Bull., 2(4): 160–
163.
Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Between
MDPs and Semi-MDPs: A Framework for Temporal Ab-
straction in Reinforcement Learning. Artif. Intell., 112(1-2):
181–211.
Tsividis, P. A.; Pouncy, T.; Xu, J. L.; Tenenbaum, J. B.; and
Gershman, S. J. 2017. Human learning in Atari. In 2017
AAAI Spring Symposium Series.
Witty, S.; Lee, J. K.; Tosch, E.; Atrey, A.; Littman, M. L.;
and Jensen, D. D. 2018. Measuring and Characterizing
Generalization in Deep Reinforcement Learning. CoRR,
abs/1812.02868.

https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban

	Introduction
	Background
	Visual Rewrite Rules
	State Transitions as VRRs
	VRR World Model
	Learning VRRs
	VRR in Practice

	A VRR Agent
	Experiments
	Sample Efficiency in Training
	Generalization Experiments

	Conclusion and Future Work

