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Abstract

Exploration versus exploitation dilemma is a significant prob-
lem in reinforcement learning (RL), particularly in com-
plex environments with large state space and sparse re-
wards. When optimizing for a particular goal, running simple
smaller tasks can often be a good way to learn additional in-
formation about the environment. Exploration methods have
been used to sample better trajectories from the environment
for improved performance while auxiliary tasks have been
incorporated generally where the reward is sparse. If there
is little reward signal available, the agent should employ ex-
ploration strategies to reach parts of state space for sub-goal
identification it can then optimize towards. However, that ex-
ploration needs to be balanced with the need for exploiting
the learned policy. Hence we use ‘directed’ exploration. This
paper explores the idea of combining exploration with auxil-
iary task learning with General Value Functions (GVFs).

Introduction

Reinforcement Learning (RL) has shown great advances in
the recent years, in solving sequential decision making tasks.
Particularly in the field of games, Reinforcement Learning
algorithms have managed to achieve superhuman levels of
performance(Mnih et al. 2013) (Silver et al. 2016). In rein-
forcement learning, the problem of exploration vs exploita-
tion is a persistent problem, particularly in complicated envi-
ronments. It is a common practice to use e-greedy strategies
for exploration and that is what most algorithms use gen-
erally. However, for complicated environments for example
in the game of Montezuma’s Revenge in Atari (Mnih et al.
2013), the RL agent is unable to learn anything because the
state space for fully random exploration is too large.

In Reinforcement Learning, the main goal is to obtain a
policy, 7 that maximises the expected discounted return
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from interaction with the environment in the form of states
S¢, actions ag, and rewards r;. At the beginning, the agent
will not have much idea about the environment it is in and
thus needs to gather information before it can take useful

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

actions. If the state space is very complicated and/or the re-
ward is very sparse, obtaining useful trajectories (collection
of states, actions and rewards) can be difficult. This is the
problem of exploration in RL which is still quite an open
area for research.

There have been many recent papers that address the prob-
lem of exploration like Noisy Networks (Fortunato et al.
2017), Count-based Exploration (Tang et al. 2017), Curios-
ity Driven Exploration (Pathak et al. 2017), unsupervised
learning of goal space for intrinsically motivated exploration
(Péré et al. 2018), Go-explore (Ecoffet et al. 2019) which
goes to a previously explored state and restarts exploration
from that state. One interesting breakthrough for solving
hard exploration problems came in the Never Give Up (Ba-
dia et al. 2020b) paper, which was included in the Agent 57
(Badia et al. 2020a) paper which is able to successfully solve
all the 57 Atari games. This paper introduces two additional
rewards for defining directed exploration, the episodic and
the intrinsic reward. Agent 57 uses a family of policies with
varying degree of exploration trained by Recurrent Experi-
ence Replay in Distributed Reinforcement Learning (R2D2)
(Revaud et al. 2019) with Retrace (A\) (Munos et al. 2016) to
account for off-policy learning. Most of these methods re-
quire learning some form of novelty or generating a reward
function based on curiosity. None of them are as simple as
the traditional e-greedy approach. Recently, (Dabney, Ostro-
vski, and Barreto 2020) came up with a temporally extended
version of the e-greedy exploration strategy that can handle
complicated environments as well.

In our paper, we extend upon this strategy by using auxil-
iary task learning with the help of General Value Functions
to perform directed exploration thereby further improving
state space coverage during exploration. We thus have an
exploration strategy based that augments on the temporally
extend e-greedy exploration with sub-policies from the Gen-
eral Value Functions to perform better exploration. This re-
formulation also has major advantages, particularly with re-
spect to representation learning.

Background

Temporally Extended EZ-greedy Exploration: In generic
e-greedy exploration, the agent can either take an action that
maximizes its own state-action values with probability 1-¢
or a random action with probability €. Thus given infinite
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Figure 1: This figure represents the architecture used for
DEZ-greedy algorithm with M GVFs having M policies

time, it would explore the entirety of the state space as it
would be taking random actions infinite times provided we
always have a non-zero € always. This form of exploration
is generally very slow in covering different parts of the state
space. Thus temporally extended e-greedy (Dabney, Ostro-
vski, and Barreto 2020) fixes a random action and keeps tak-
ing the action for a certain number of time steps, called per-
sistence (Z) of the random action. So instead of taking one
random step with probability e, it executes a sequence of
same random actions. The persistence Z is not a constant
value throughout the exploration process but it is uniformly
sampled from 0 i.e. no exploration to a maximum number of
time-steps (a hyper-parameter, which would depend on the
environment). This is why the algorithm is also known as
EZ greedy.

In the paper, the authors mostly used the same random ac-

tion repeated K times, but we can easily replace a sequence
of repeated actions with a hand-crafted or learned option
(Sutton, Precup, and Singh 1999). These options could help
to reach parts of state-space that could be novel or would
help in solving the main goal. In this paper, we formulate
a framework to learn such options by using General Value
Functions.
General Value Functions: A value function provides an es-
timate of the discounted total expected return that can be ob-
tained given a certain state-action pair and a policy 7. Sim-
ilarly, General Value Functions (GVFs) (Sutton et al. 2011)
can provide an estimate of environment knowledge given it
can optimize over a certain reward function given a policy
and a discount factor. Thus, if the discounted returns be G;
and for a trajectory length T,

QGVF(Sa a;m,v,7) = E[Gy|st, ar, Apy1.0—1 ~ 7]
The input to the GVFs would thus be a policy, discount, re-
ward function (also called cumulants) and these can be de-
scribed as questions and for particular question functions,
GVFs can be trained with normal RL algorithms (like Q-
learning) and thus can provide useful information about the
environment and the transition dynamics. In the Horde ar-
chitecture (Sutton et al. 2011), the authors show the useful-
ness for answering predictive questions about the environ-
ment as well as how it can learn multiple control policies
from a single behaviour policy.

The cumulants can also be viewed as providing auxiliary
tasks the agent needs to perform before it can solve the main

task. Often such auxiliary tasks would have no reward sig-
nal associated with them otherwise. Hand-crafted cumulants
can help in learning (Jaderberg et al. 2016), but the agent
must be able to learn GVF questions on its own as formu-
lated in (Veeriah et al. 2019). In this paper, we learn the
GVFs off-policy i.e. they are learned with respect to its own
greedy policy. Thus, maximising for QY ¥ generates a dif-
ferent sub-task oriented policy which can be viewed as an
option, to be used for a short persistence period. Thus, by
following the policy for a short period we can generate use-
ful options.

Algorithm 1: DEZ-greedy exploration strategy

Function DEZGreedy (€, Zmaz) ¢
z+0
w4 —1
g+ 0
while True do
Observe state s
if z == 0 then
if random() < € then
Sample duration: z ~ [1, Z,q2]
Sample GVF: g ~ [0, M]
if g == 0 then
‘ Sample action: w + U(A)

a<+—w
else

‘ a < argmaz(Q?VF)

else .
| a+ argmaz(QM*™)
else

if g == 0 then
1" a+—w

else
a < argmaz(Q5VF)
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Directed EZ Greedy Algorithm

Directed EZ Greedy learns auxiliary tasks in the form of
GVFs and uses sub-policies obtained by greedy action se-
lection from the General Value Functions learned as options
for temporally extended e-greedy algorithm. With probabil-
ity epsilon it selects a random option which can be sub-
policies from any of the randomly chosen GVFs at that par-
ticular state and keeps taking the greedy action with respect
to that GVF. Thus, it explores different parts of the state
space by following a specific GVF policy which makes the
exploration directed, hence the name Directed EZ Greedy.
The entire algorithm is portrayed in Algorithm 1.

The algorithm learns M+1 Value Functions as shown in
Figure 1 where M is the number of GVFs. These Value
Functions are learned from a shared common representation
through which the losses for both the main Q values and the
GVFs propagate. In Algorithm 1, we sample an action from
M+1 ([0, M]) possible options. In all our experiments, we
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Figure 2: SubGoal Two Rooms Environment

include the option of repeating a random action as one addi-
tional option as well.
There are 3 main advantages of this approach:

1. There is no requirement for handcrafted options, rather
DEZ-greedy can take sub-polices defined by the GVFs.
Thus the input to generate the options can be as simple is
defining a reward and a termination function as opposed
to a sequence of actions.

2. Normally GVFs have been used to give predictive knowl-
edge of the environment and this directly helps in learn-
ing good representations. In Figure 1 as well, we employ
a similar structure whereby the GVFs not only influence
the exploration policies but also help in learning better
representations.

3. Learning GVFs while following the behavior policy
leads to divergence if we do not use importance sampling
ratios as the greedy policy of the GVFs will be off-policy.
However following the GVF policy initially helps to keep
the behavior policy closer to the greedy GVF policy (at
least during the exploration phase). Following that even
if the GVFs diverge, we do not use it explicitly because
we anneal € gradually. This further reduces the impact of
off-policy divergence.

Environments

Most of our experiments were tested in the gridworld setting
with hand-crafted cumulants. We mainly considered two en-
vironments:

* Two Rooms Environment: Here, the goal of the agent is
to reach the adjacent room by passing through a corridor.
As shown in Figure 2, the agent spawns in the bottom left
corner and it has to find its way to the green dot on the
top right. This seems like an easy task, but for larger di-
mensions it becomes difficult as the agent has to explore
for a long time before it reaches the goal. The agent re-
ceives the (x,y) coordinates of its position as its state.

The agent gets a reward of +1 on reaching the Green dot
and a step reward of -0.01 with maximum time step of
300 after which the episode ends. For this environment,
we used only one GVF which gets a cumulant of 1 for
crossing the corridor.

* SubGoal Two Rooms Environment: This is a modifi-
cation of the Two Rooms Environment with similar dy-
namics, except the agent has to collect the red dot and
then go to the green dot. The reward for reaching the
green dot without collecting the red dot is +0.1, whereas
it is +1 after collecting the red dot. The other parameters
are exactly the same. For this environment, we append
a boolean value of whether the agent has visited the red
flag to the (x,y) coordinates to make the states Markov.
In this environment, we used one additional GVF, which
receives a cuamulant of +1 if the agent visits the red dot.

Results

Algorithms compared: For our experiments, we compare
5 different algorithms.

* The RL algorithm used for our experiments is the DQN
algorithm (Mnih et al. 2013), i.e. all the GVFs and the
main Q values are learned using DQN. The baseline
to compare against would thus be DQN. DQN uses ¢-
greedy exploration with annealing € and that is what we
used for this experiment as well.

* EZ-DQN is the temporally extended e-greedy (Dabney,
Ostrovski, and Barreto 2020) version of DQN with EZ-
greedy exploration.

* DQN+GVF is the algorithm that uses GVFs only for
representation learning via the common representation
which is modified by both the main DQN agent as well
as all the GVFs. This still uses e-greedy exploration like
DON.

* EZ-DQN+GVF uses the exact architecture as above ex-
cept the behaviour policy uses EZ-greedy exploration
strategy.

* DEZ-DQN+GVF is our algorithm that uses GVFs not
only for learning better representations but also for learn-
ing options which can help in directed exploration.

For all the algorithms we used an annealing € strategy as
shown in Figure 3 and Z,,,, of 30. The Figure 3 portrays the
learning curves of the algorithms across 10 runs over 2000
episodes. The detailed hyper-parameters are listed in Table
1.

From Figure 3 it is evident that EZ-greedy helps a lot in
exploring the state space much much quickly and there is a
marked difference between algorithms that use it and normal
e-greedy. However, adding directed exploration with the use
of GVFs makes the RL agent learn even faster because of
exploration of useful state-spaces as the GVFs are designed
to stimulate goal-driven exploratory behaviour. Another in-
teresting thing worth noting is that even adding GVFs with-
out using any exploratory strategy helps in better perfor-
mance since the DQN+GVF (blue) is slightly better than
DQN (red). Even in the case of using EZ-greedy with GVFs
there is an improvement in performance in the SubGoal Two
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Rooms environment. This is likely due to GVFs learning
useful representations which can improve performance.

Another aspect that is crucial while using GVFs is off-
policy learning. Learning GVFs on-policy with respect to
the behaviour policy might not yield as useful options (sub-
policies) as learning them off-policy. In the DEZ-greedy ex-
ploration strategy since we sample actions greedily from the
GVFs often, the resulting behaviour policy is closer to the
greedy policy of the GVFs. This is particularly true in our
case as most of our GVFs are goal-driven.

Figure 5 shows us the Q values for each of the individual
actions for the GVF that gets a reward of +1 on collecting
the red dot in the SubGoal Two Rooms Environment. It is
evident that for EZ-DQN+GVF, the best performing algo-
rithm apart from ours, has divergent Q values, since we never
sample any actions greedily from the GVFs, the GVFs di-
verge to non-sensical values. However, the values for DEZ-
DQN+GVF are much well inside bound. In addition, follow-
ing the optimal policy of this GVF will lead the agent into
places close to the red dot thereby increasing the chances of
picking up the red dot during exploration.

The performance of the algorithm will be determined
by the persistence values chosen. For example, a persis-
tence value of 1 for EZ exploration reduces to ¢ greedy ex-
ploration. In Figure 4, we plot the sensitivity of the algo-
rithms across different persistence values. For smaller values
the performance degrades due to less exploration, however,
for directed exploration, the drop in performance is signifi-
cantly less as even with smaller persistence values the agent
can construct meaningful options which makes DEZ-greedy
much more robust.

Exploration is one of the critical aspects for good per-
formance for Reinforcement Learning, especially in games.
EZ-greedy (Dabney, Ostrovski, and Barreto 2020) has been
shown to perform better overall in a variety of Atari games
compared to curiosity driven methods which specialize in
exploration for some specific games. DEZ-greedy incorpo-
rates aspects of both EZ-greedy and auxiliary task learning
along with learning richer representations and is more robust
as well. Thus, it should work well in a variety of games.

Conclusion and Future Work

From the experiments, Directed EZ greedy seems to learn
much much faster because of a better exploration strategy
along with improved representation learning. Intuitively as
well, this makes sense as options generated from the GVFs
take the agent into states which are useful for optimizing
towards the main goal. However, since this architecture is
very flexible as we only require a scalar reward to learn the
GVFs.

The next steps would be to try it on exploratory demand-
ing tasks. Additionally, it would be useful to see how it com-
pares to traditional curiosity driven exploratory based meth-
ods. Additionally, DEZ-greedy can be combined with any
intrinsic motivation based exploration strategy, as well, if
they add exploratory reward functions to the main reward.
This along with goal-driven GVFs would further improve
exploration for complicated environments. It can also be
used for transfer learning in procedurally generated envi-
ronments as the GVFs learned can help in generating useful
options for newer tasks as well.
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Figure 5: Off-policy divergence with generic GVF algorithms for 11x11 SubGoal Two Rooms. The table shows Q values of
the GVF that gets a reward of +1 on collecting the red dot. The values are much more bounded for DEZ-greedy exploration.



Table 1: Hyper-Parameters

| Environment | Algorithm Learning Parameters | Model Parameters
runs = 10
DQN episodes = 2000 ) B . .
Two Rooms DQN+GVF batch = 64 Architecture = [.16 units, 16 units]
=0.99 Replay Buffer Size = 10000
EZDQN 7 Target Network Update = 100 steps
EZDQN+GVE | a=0.001
DEZDQN+GVF | €start = 1.0
€stop = 0.001
€decay = 1e-3**(1/episodes)
Persistence, Z,,q4. = 30
GVFs=1
runs = 10
DQN episodes = 2000 . ) )
Sub Goal Two DQN+GVF batch = 64 Architecture = [}6 units, 16 units]
Rooms =0.99 Replay Buffer Size = 10000
EZDQN T Target Network Update = 100 steps
EZDQN+GVF | «=0.001
DEZDQN+GVF | €start = 1.0
€stop = 0.001

€decay = 1€-3%*(1/episodes)
Persistence, Z,,,4, = 30
GVFs =2
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