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Abstract

The creation and destruction of agents in cooperative multi-
agent reinforcement learning (MARL) is a critically under-
explored area of research. Current MARL algorithms often
assume that the number of agents within a group remains
fixed throughout an experiment. However, in many practi-
cal problems, an agent may terminate before their teammates.
This early termination issue presents a challenge: the termi-
nated agent must learn from the group’s success or failure
which occurs beyond its own existence. We refer to propa-
gating value from rewards earned by remaining teammates to
terminated agents as the Posthumous Credit Assignment prob-
lem. Current MARL methods handle this problem by plac-
ing these agents in an absorbing state until the entire group
of agents reaches a termination condition. Although absorb-
ing states enable existing algorithms and APIs to handle ter-
minated agents without modification, practical training effi-
ciency and resource use problems exist.
In this work, we first demonstrate that sample complexity in-
creases with the quantity of absorbing states in a toy super-
vised learning task for a fully connected network, while at-
tention is more robust to variable size input. Then, we present
a novel architecture for an existing state-of-the-art MARL
algorithm which uses attention instead of a fully connected
layer with absorbing states. Finally, we demonstrate that this
novel architecture significantly outperforms the standard ar-
chitecture on tasks in which agents are created or destroyed
within episodes as well as standard multi-agent coordination
tasks.

1 Introduction
In many real-world scenarios, agents must cooperate to
achieve a shared objective. In these settings, single-agent
reinforcement learning (RL) methods can fail or perform
sub-optimally for various reasons, such as the partial ob-
servability inherent in multi-agent systems, exacerbated by
increasing numbers of agents. Multi-agent reinforcement
learning (MARL) promises to address these issues using the
paradigm of decentralized execution and centralized train-
ing (Lowe et al. 2017). In this paradigm, agents act using
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local observations, but all globally available information is
used during training.

The MARL literature (Lowe et al. 2017; Foerster et al.
2018; Long et al. 2020; Iqbal et al. 2021) often assumes
that we will train a fixed number of agents. However, this
is unsuitable for many practical applications of MARL. For
instance, agents in a team-based video game may “spawn”
(i.e., be created) or “die” (i.e., terminate before the other
agents) within a single episode. Similarly, robots operating
as a team may run out of battery, requiring that they termi-
nate their trajectories before their teammates. In general, an
agent can terminate early, meaning it no longer influences
the environment or other agents mid-episode. Furthermore,
one may also acquire additional agents mid-episode.

Typically, existing algorithms handle these situations by
placing inactive agents in absorbing states. An agent re-
mains in an absorbing state, irrespective of action choice,
until the entire group of agents reaches a termination condi-
tion. Absorbing states enable existing algorithms to train co-
operative agents to solve tasks with early termination with-
out any architectural changes and also simplify environment
and multi-agent API implementations. Furthermore, absorb-
ing states enable decentralized POMDPs (Oliehoek and Am-
ato 2016) and Markov Games (Littman 1994) to represent
tasks with early termination without modification.

However, absorbing states introduce practical problems in
training efficiency and resource use. Specifically, when us-
ing neural networks as function approximators, absorbing
states introduce elements into the input distribution that, by
the necessities of their construction, make the target function
more challenging to approximate. Furthermore, absorbing
states are not a scalable solution for large numbers of agents.
Depending on the problem, a non-insignificant amount of
resources may be used for agents that do not influence the
environment. In an extreme case, if a group has more than
50% attrition, more resources are consumed for communi-
cation and storage for non-influential agents. These under-
utilized resources are of particular concern when there are
strict resource constraints.

The critical challenge posed by the early termination of an
agent is credit assignment–which we call Posthumous Credit
Assignment. Agents removed from the environment will not
experience any rewards given to the group after termination.
As such, they will not learn if their actions before termina-



tion were valuable to the group. Absorbing states solve this
by creating a pathway through the state space by which to
propagate value from beyond an agent’s early termination.

In this work, we present a novel architecture which uses
attention instead of a fully connected layer with absorbing
states for the state-of-the-art MARL algorithm COunterfac-
tual Multi-Agent Policy Gradients (COMA) (Foerster et al.
2018). We refer to our proposed architecture as Multi-Agent
POsthumous Credit Assignment (MA-POCA). MA-POCA
naturally handles agents that are created or destroyed within
an episode but share a reward function. Working within the
centralized training, decentralized execution framework, we
need only enable the critic to handle a changing number
of agents per timestep. By applying a self-attention mech-
anism (Vaswani et al. 2017) to only the active agent infor-
mation before the critic, MA-POCA can scale to an arbi-
trary number of agents. Furthermore, the attention mecha-
nism allows the critic to attribute the future expected value
of the group to states with terminated agents without absorb-
ing states. Lastly, the attention mechanism enables the im-
plementation of the counterfactual baseline (Foerster et al.
2018) for agents with both continuous and discrete action
spaces.

This work has three main contributions.
• We demonstrate that sample complexity increases with

the quantity of absorbing states on a toy supervised learn-
ing task for a fully connected network, while attention is
more robust to variable size input.

• We present a novel architecture, MA-POCA, which prop-
agates rewards earned by remaining teammates to termi-
nated agents without the use of absorbing states. Fur-
thermore, because it does not rely on a fixed number
of agents, MA-POCA also supports the creation of new
agents during an episode.

• We present experiments on two standard multi-agent co-
ordination tasks and two novel tasks in which agents can
spawn or die. We show that MA-POCA provides im-
provement on the former and significantly outperforms
the baselines on the latter.

2 Preliminaries
MARL notation
The setting we consider is a decentralized-
POMDP (Oliehoek and Amato 2016) defined by:
(N,S,O,A, P, r, γ) where N ≥ 1 is the number of
agents and S is the state space of the environment. O is the
joint observation space of all agents O := O1 × ... × ON

where Oi is the observation space of agent i. At time t,
the environment is in state st ∈ S and oit ∈ Oi is the
local observation of agent i which is correlated with st.
The environment state may contain information that is not
available locally to any agent such as the total number of
agents that are currently acting. A is the joint action space
of all agents A := A1 × ... × AN where Ai is the action
space of agent i. Note, the observation and action spaces for
different agents do not need to be equal. Additionally, we
use bold vectors to represent the joint quantities over agents

e.g., a joint action a = (a1, ... , aN ) or joint observation
o = (o1, ... , oN ), where a ∈ A and o ∈ O.
P : S × A × S → [0, 1] is the transition function where

P (s′|s,a) is the probability that the environment transitions
to state s′ given the current state s and joint action a ∈ A.
r : S × A → R is the shared reward function where r(s,a)
is the reward received by all agents when the joint action
a ∈ A is taken and the environment is in state s ∈ S.

Centralized Training, Decentralized Execution
In this work, we consider the Independent Actor with Cen-
tralized Critic (IACC) learning framework (Lyu et al. 2021)
wherein a critic trained on joint information is used to up-
date a set of independent actors in an actor-critic architec-
ture (Konda and Tsitsiklis 2000). Independent Actor-Critic
(IAC), which trains an independent critic and policy for each
agent using only local information, and the Joint Actor-
Critic (JAC), which trains a single joint policy and a joint
critic, are competing approaches. In general, IAC does not
perform well in tasks that require significant coordination
because of the partial observability in using only local ob-
servations. Additionally, JAC is not practical in real world
scenarios as a joint policy needs access to all agent observa-
tions at once to generate actions, essentially presuming per-
fect communications between agents and the policy node.

Let πi, 1 ≤ i ≤ N represent the policy of each indepen-
dent actor. Given the environment state st and corresponding
joint observation ot and action at, the joint policy π(at|ot)
can be factored as π(at|ot) =

∏
i πi(a

i
t|oit) since the agents

act independently on local observations.
The centralized state value function for state st is defined

as

V π(st) = Eπ

[ ∞∑
l=0

γlr(st+l,at+l)

]
(1)

and the centralized state-action value function as

Qπ(st,at) = r(st,at) + Eπ

[ ∞∑
l=1

γlr(st+l,at+l)

]
(2)

Counterfactual Baselines
Counterfactual baselines leverage difference re-
wards (Wolpert and Tumer 2002) and introduce a per-agent
baseline such that the advantage reflects the individual
agent’s contribution to the total reward (Foerster et al.
2018). Formally, the state action value function with the
action of the individual agent marginalized out is used to
compute the baseline

bi(s,a) = Ea′∼πi(·|oi)[Q
π(s, (a−i, a′))] (3)

where a−i is the joint action without the i’th entry. Then,
the advantage of agent i is

Advi = Qπ(s,a)− bi(s,a) (4)
and the update for agent i is

∇θiJ(θi) =

E s∼ρπ
ai∼πi

[∇θi log πi(a
i|oi)(Qπ(s,a)− bi(s,a))] (5)



Using this as the advantage function provides a shaped re-
ward per agent that addresses the challenge of determining
of how much an individual agent contributed to the shared
reward of the group. Additionally, with the use of the coun-
terfactual baseline, gradient descent still converges to the lo-
cally optimal policy (Foerster et al. 2018).

3 Challenges of Early Terminating Agents
In this section, we introduce the Posthumous Credit As-
signment problem and discuss how it fits into decentralized
POMDP framework. To the author’s knowledge, this is first
time the posthumous credit assignment problem has been
explicitly mentioned in the literature. Then, we discuss how
the decentralized POMDP framework can be extended to de-
stroying agents via the use of an absorbing state. Absorbing
states appear in the MARL literature (Samvelyan et al. 2019;
Yu et al. 2021), but we provide an explicit discussion of them
which the literature lacks. Finally, we discuss practical and
theoretical issues introduced by absorbing states.

Posthumous Credit Assignment
In cooperative settings with shared rewards, an agent acts to
maximize the expected future reward of the group. There are
scenarios in which an individual agent’s current actions en-
able the group to obtain reward at a later timestep, but result
in the immediate termination of the agent itself (e.g., a self-
sacrificial event). From the perspective of a reinforcement
learning agent, it has been removed from the environment
and therefore will no longer receive the reward its group may
obtain later. Additionally, the agent is unable to observe the
state of the environment at the time the group receives the
reward. Therefore, an agent must learn to maximize rewards
that it cannot experience, presenting a critical credit assign-
ment problem. We call this the Posthumous Credit Assign-
ment problem.

Absorbing States
The decentralized POMDP framework is equipped to model
tasks with the posthumous credit assignment problem via
absorbing states. For each agent, let oabsi ∈ Oi be a unique
absorbing state which agent iwill occupy after it has reached
a termination state and is no longer active in the environ-
ment. Note, this absorbing state needs to be per agent as
agents with different observation spaces will enter absorb-
ing states of different dimensions. Once agent i has entered
oabsi , it will remain there, irrespective of actions, until the
group has reached a termination condition and all agents re-
set to a new initial state. Thus, the following is true for oabsi

p(oabsi |oabsi , ai) = 1, ∀ai ∈ Ai.

Additionally, when agent i is in state oabsi , the transition
function will be independent of that agent’s actions. For-
mally,

P (s′|s,a) = P (s′|s,a−i)

where a−i is the joint action without the i’th entry. Thus,
the introduction of an absorbing state transforms the original

Figure 1: The sample efficiency of learning to compute the
mean of a varying number of floats depends on the quantity
of absorbing states as well as the representation of the in-
put to the network. Attention outperforms absorbing states
in both performance and robustness to larger variation in the
input. Curves are mean and 95% confidence interval over 20
seeds.

problem into a standard decentralized POMDP without the
issue of posthumous credit assignment.

However, though representing the setting of dying and
spawning agents with the decentralized POMDP formalism
and absorbing states is straightforward, issues arise when us-
ing absorbing states in practice. We argue that it is best to
avoid absorbing states in general. The two major concerns
are,
• the absorbing state representation complicates the learn-

ing dynamics of neural network-based function approxi-
mators;

• the complexity introduced and wasted computational re-
sources consumed for agents that no longer impact the
environment.

Absorbing State Representation The absorbing state
representation is non-trivial since, in most algorithms, a
function approximator, like a neural network, will ingest
these state representations. Thus, the actual values and struc-
ture of the state are important as they act as input features.
Additionally, the absorbing state must be disjoint from the
observation space accessible by active agents. Otherwise,
we would introduce (additional) partial observability since
the same values could represent an active or inactive agent.

As a case study, we present a toy numerical example in
Figure 1 to illustrate that fully connected layers with ab-
sorbing states are not a sample efficient input representa-
tion compared to attention networks. We train a neural net-
work to estimate the mean of a variable number of uniformly
sampled floats (up to 10) in the range [0.25, 0.75]. We com-
pare two configurations (all hyperparameters are contained
in Appendix D):
• the remaining values are substituted with a fixed ab-

sorbing state oabs and the sample is shuffled to simulate



agents terminating early in the RL scenario. We train a
fully connected network with 2 hidden layers of 32 units
with ReLU activation functions;

• a self-attention (Vaswani et al. 2017) layer processes the
variable input. We use a single layer entity embedding of
size 32, a residual self-attention (RSA) block followed
by a linear transformation into the output space. The im-
plementation details of the RSA block are contained in
Appendix B.

In Figure 1, we provide loss curves for learning to com-
pute the mean of 2 through 10, 4 through 10, 6 through 10,
and 8 through 10 floats using both fully connected layers
with absorbing states and attention. We draw the number of
inputs from a uniform random distribution within the ranges
for each data point. In this experiment, the value of the ab-
sorbing state is oabs = 0.0 but the trends are similar for other
choices. Note that we cannot choose oabs ∈ [0.25, 0.75]
as it will not be possible for the network to learn when a
value should or should not be included in the mean. In Ap-
pendix A, we provide additional figures for the different val-
ues of oabs = −1.0, 1.0, 0.4 showing that −1.0 and 1.0
are reasonable choices but 0.4 is not as it is contained in
[0.25, 0.75]. Additionally, we provide an experiment when
the number of absorbing states is fixed per sample to demon-
strate that varying the number of floats is more challenging.

When using absorbing states, we observe that the sample
complexity increases with the number of absorbing states.
The runs with a greater maximum number of absorbing
states take longer to converge. We also observe that atten-
tion significantly outperforms absorbing states in this task.

When extrapolating this result to the RL setting, the map-
pings learned by centralized value functions are much more
complicated than this simple numerical example, likely am-
plifying the issues discussed. Furthermore, in this example,
the presence of an absorbing state has exactly one mean-
ing i.e., do not include this input in the computation of the
mean. However, in a MARL setting, the group’s outcome
can be positive, negative, or neutral following the early ter-
mination of an agent. Then, the variation in outcomes cor-
responds to high variance return targets for the single ab-
sorbing state oabs. A possible alternative is to use multiple
absorbing states, one for each outcome. However, it may not
be possible to know which outcome will follow a given early
termination or outcomes may be on a spectrum.

Implementation Complexity and Resource Constraints
From a practical standpoint, absorbing states require both
additional implementation complexity and increased re-
source overhead. These issues arise mainly in two areas: the
sizing of the function approximator that represents the cen-
tralized value function and the communication and storage
of redundant absorbing states.

In order to use absorbing states, we must size the central-
ized value function approximator to take as input all of the
observations from the absolute maximum number of agents
that can be active in the environment, regardless of how
many are active at any given time. If the function approx-
imator is a fully connected neural network, it must have
inputs for all possible agents. In addition to adding sam-

ple complexity to the learning process, these extra param-
eters present an unnecessary computational overhead during
training. Furthermore, in cases where the maximum num-
ber of agents is unknown, e.g., when agents’ actions can
spawn additional agents, we must choose some arbitrarily
large value for the maximum number of agents, exacerbat-
ing the sample complexity and computational overhead is-
sues of the function approximator.

We must also consider the computational and resource
overhead of the absorbing states themselves. Most imple-
mentations of absorbing states (e.g., SMAC (Samvelyan
et al. 2019)) add them as part of the state returned from the
environment. This has the advantage of not requiring explicit
knowledge of absorbing states by the algorithm implemen-
tation. However, as these absorbing states are treated in the
same way as any other states, they must also be processed,
stored, and communicated in the same way as other states.
In distributed RL architectures which rely on distributed in-
ference workers (Espeholt et al. 2018; Horgan et al. 2018),
these states would need to be sent from these workers to
the optimizer as part of trajectories, where they would intro-
duce a communication overhead. In addition, they will exist
in any buffers, queues, and, in the case of off-policy algo-
rithms, replay stores, taking up unnecessary memory. These
issues can be partially mitigated by moving the implemen-
tation of absorbing states from the environment to the al-
gorithm (e.g., padding states right before they are given as
input to the centralized value function), at the cost of mak-
ing the implementation of the algorithm more complex and
less general across environments.

4 Methods
In this section, we propose a novel architecture for
COMA (Foerster et al. 2018) called MA-POCA. MA-POCA
uses self-attention (Vaswani et al. 2017) over active agents
in the critic network, thereby addressing the issue of posthu-
mous credit assignment without the need for absorbing
states. Additionally, self-attention enables a network archi-
tecture that can efficiently compute counterfactual baselines
for groups of homogeneous and heterogeneous agents. Note
that, though the decentralized POMDP framework requires
that the maximum number of agents N is known, the algo-
rithm and network architecture of MA-POCA do not.

MA-POCA
MA-POCA learns a centralized value function to estimate
the expected discounted return of the group of agents and a
centralized agent-centric counterfactual baseline to achieve
credit assignment in the manner of COMA. In architectures
that use self-attention, it is common to have entity encoders
which map entities to an embedding space before passing
through the attention layer (Baker et al. 2020). In our set-
ting, we consider distinct observation spaces as entities. For
example, if two agents i, j share the same observation space
Oi = Oj , corresponding observations will be embedded
with the same encoder. However, if Oi ̸= Oj , we embed
them with different encoders. Furthermore, we consider ob-
servations and observation-action pairs as separate entities;



observation and actions are concatenated and then embed-
ded.

Formally, let gi : Oi → E be an encoding network for
observations oi ∈ Oi where E is the embedding space. As
stated previously, if Oi = Oj , then gi = gj .

MA-POCA Value Function
In this section, we discuss how to estimate the expected dis-
counted return given in Eq. 1 for a group of agents wherein
some may terminate early. Recall, in our setting, the number
of active agents depends on t. Thus, let kt denote the number
of active agents at time step t such that 1 ≤ kt ≤ N where
N is the maximum number of agents that can be alive at any
time.

In the MARL literature, there are generally two ways that
centralized state or state-action value functions are condi-
tioned on state:
• there is a separate vector containing global information

(i.e., the coordinates of all agents) that is unobserved by
any individual agent (Foerster et al. 2018; Rashid et al.
2018);

• the joint observation of the agents ot ∈ O is used as this
is a reasonable approximation to the global state (Long
et al. 2020; Lowe et al. 2017).

It is also possible to use a hybrid. In this work, we only con-
sider the joint observation of active agents, though the for-
mer would still require absorbing states or values in some
capacity and can be treated by means similarly to what fol-
lows.

To handle a varying number of agents per timestep,
we first encode the observations of all active agents
gi(o

i
t)1≤i≤kt and then pass the encodings through an RSA.

The RSA block we use is architecturally similar to those
used in the vanilla Transformer architecture (Vaswani et al.
2017) but without positional encodings (Baker et al. 2020).
For more details on the self-attention mechanism, please see
Appendix B. Then, the centralized state value function pa-
rameterized by ϕ has the form

Vϕ(RSA(gi(o
i
t)1≤i≤kt)) (6)

and is trained with TD(λ) (Sutton 1988)

J(ϕ) = (Vϕ(RSA(gi(o
i
t)1≤i≤kt))− y(λ))2 (7)

where

y(λ) = (1− λ)

∞∑
n=1

λn−1G
(n)
t

G
(n)
t =

n∑
l=1

γl−1rt+l + γnVϕ(RSA(g(o
i
t+n)1≤i≤kt+n

)))

where kt+n is the number of agents that are active at time
t+n. Note, it is possible for kt+n to be greater or less than kt
as any number of agents could have terminated early or been
spawned at time step t. It is in this way that expected value
from time t + n may propagate to an agent that terminated
at time t.

MA-POCA Counterfactual Baseline
Agents who try to maximize a shared reward function suf-
fer from a credit assignment problem since it is hard to dis-
entangle an agent’s actions contributed to the group’s re-
turn. (Foerster et al. 2018). Counterfactual baselines (Eq. 3)
marginalize out the action of an individual agent in the cen-
tralized state-action value function enabling the computation
of a shaped, per-agent advantage. Though the architecture
used in the original implementation of COMA has a number
of advantages, it is limited to problems with discrete actions
and a fixed number of agents. In this work, we propose an
alternative leveraging self-attention, that alleviates both of
these constraints.

We consider observations and observation-action pairs to
be distinct entities. Letting fi : Oi × Ai → E be an en-
coding network for observation-action pairs, the counter-
factual baseline can be learned explicitly by estimating the
expectation in Eq. 3 with Monte Carlo samples (Foerster
et al. 2018). Thus, we can learn the counterfactual base-
line for some agent j by learning a value function that is
conditioned on the observation-action pairs of all agents i
such that 1 ≤ i ≤ kt i ̸= j but only the observation of
agent j. Again using an RSA block and observation and
observation-action entity encoders, the baseline parameter-
ized by ψ for agent j has the form

Qψ(RSA(gj(o
j
t ), fi(o

i
t, a

i
t)1≤i≤kt

i̸=j
))

The objective for the baseline is

J(ψ) = (Qψ(RSA(gj(o
j
t ), fi(o

i
t, a

i
t)1≤i≤kt

i ̸=j
))− y(λ))2

(8)

which uses the same target y(λ) as the value function update
in Eq. 7.

Note that a single joint observation o = (o1, ... , oN )
(and action) generates up to N different samples on which
to update Eq. 8, one for each j, 1 ≤ j ≤ N . This is the key
reason for using separate sets of parameters for the value
function and baseline: in our training regime, the baseline
is trained on the permutations of all agent observations to
estimate the per agent baseline whereas the value function
is not. This would mean a potential factor of N more sam-
ples used to compute the baseline versus the value function.
We hypothesize that this would lead to baseline dominance
and, experimentally, we found using separate networks to
perform better.

Finally, the advantage for agent j to be used in the update
in Eq. 5 is given by

Advj = y(λ) −Qψ(RSA(gj(o
j
t ), fi(o

i
t, a

i
t)1≤i≤kt

i ̸=j
))

5 Experiments
In this section, we evaluate MA-POCA empirically on four
multi-agent environments and compare its performance to
the state-of-the-art multi-agent algorithm COMA (Foerster
et al. 2018) and the single-agent algorithm PPO (Schul-
man et al. 2017). Three of the environments are built us-
ing Unity’s ML-Agents Toolkit (Juliani et al. 2020), and one



is taken from the Multi-Agent Particle Environments (Lowe
et al. 2017). We choose to show the performance of PPO
to illustrate that the environments require coordination to
solve.

We show that, in standard cooperative tasks without dy-
ing or spawning, MA-POCA performs as well as or slightly
better than COMA and that both outperform PPO. Further-
more, we show that MA-POCA significantly outperforms
both baselines in tasks where agents die and/or spawn. Note,
we developed our own environments due to the lack of ex-
isting environments with these features. Code for all algo-
rithms and environments is available.1

Algorithm and Baselines
Architecturally, the implementation of COMA we use is
similar to what is proposed in Section 4. The key difference
being the use of an RSA block. Instead, all inputs are con-
catenated and fed into a fully connected neural network. In
the case of agents that have terminated early or have not yet
spawned, we use an absorbing state of all zeroes.

In both MA-POCA and COMA, we use separate net-
works to approximate the value function and baseline as
per the discussion in Section 4. Note, this is not a prob-
lem with the original COMA implementation (Foerster et al.
2018) because their architecture depends on the assumption
of strictly discrete actions which we do not make. However,
the COMA architecture we use was suggested in the original
work (Foerster et al. 2018).

We generate targets for the value function and baseline
updates in Eqs. 7 and 8 and analogues for COMA using
TD(λ) (Sutton 1988) as done in (Foerster et al. 2018). We
use the value function and baseline network to compute the
advantage for the policy update as in Eq. 6. However, we
do not use a target value function (Mnih et al. 2015) but in-
stead use trust region clipping (Schulman et al. 2017) for the
value function, baseline and policy updates which we found
to work better in practice.

We use the implementation of Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017), and generalized advan-
tage estimation (GAE) (Schulman et al. 2016) contained in
the Unity ML-Agents Toolkit (Juliani et al. 2020).

Results
A brief description of the environments is provided in Fig-
ure 2; further details can be found in Appendix C. Figure 3
compares the mean and 95% confidence interval of episodic
reward for MA-POCA, COMA, and PPO over 10 seeds
each. Hyperparameters for all algorithms and experiments
are contained in Appendix D.

In all four environments, PPO is unable to find the optimal
policies and converges to a local optima. This is likely due
to the partial observability introduced by exclusively decen-
tralized training and acting. In (c) and (d), PPO has no mech-
anism to address the posthumous credit assignment problem
so it is unable to learn from value beyond it’s termination.
For example, in (d) Dungeon Escape, the PPO agents are

1https://github.com/Unity-Technologies/paper-ml-
agents/tree/main/ma-poca

able to use the key when they observe it–however, they are
not able to learn that killing the green dragon is the way
to get the key as this removes them from the environment.
Thus, they solve the problem roughly half the time when
they accidentally collide with the green dragon. Also, note
that, the reward is decreasing indicating that they are learn-
ing to avoid the green dragon (possibly, to hold out for the
key when it drops).

The curves in (a) and (b) in the top row of Figure 3
contain results for the Collaborative Push Block and Sim-
ple Spreader environments which do not contain spawning
or dying agents. In these environments, MA-POCA learns
slightly faster than COMA. We hypothesize that the permu-
tation invariance of attention gives MA-POCA an advantage
as COMA’s value network needs to learn that any permu-
tation of a joint observation has the same value. Addition-
ally, the cross-comparison of entities in attention may enable
more robust modeling of the group value function.

The curves in (c) and (d) in the bottom row of Figure 3
contain results for the Baton Pass and Dungeon Escape en-
vironments which do contain spawning and/or dying agents.
In these environments, MA-POCA significantly outperforms
COMA with less variance between seeds. COMA eventually
converges to the optimal policy. Of particular interest is that
both PPO and MA-POCA are faster initially than COMA.
We hypothesize COMA’s inferior sample complexity is due
to the inefficient input representation that absorbing states
provide, as discussed in Section 3.

6 Related Work
Group-Centric MARL Value decomposition meth-
ods (Sunehag et al. 2017; Rashid et al. 2018; Iqbal et al.
2021) are an alternative to the counterfactual baseline used
by COMA and MA-POCA to address multi-agent credit
assignment. Value decomposition makes the assumption
that the group value function is a monotonic function of the
individual’s value functions and thus assumes actions are
independent which is not true in general.

Varying Agents in MARL Actor-Attention-Critic (Iqbal
and Sha 2019) uses an attention-based state-action value
function for each agent to estimate an individual’s expected
reward conditioned on the state of other agents, though the
number of agents remains constant per episode. Similarly,
Graph Policy Learning (Rahman et al. 2021) uses a graph
neural network to condition an agent’s value function and
policy on the state of a varying number of teammates. How-
ever, as both approaches depend on the individual agent to
condition the value function, they do not address posthu-
mous rewards without absorbing states. Evolutionary Pop-
ulation Curriculum (Long et al. 2020) uses attention to han-
dle a population of agents increasing in size but also uses
distinct value function for each agent and so would also
require absorbing states for posthumous credit assignment.
Randomized Entity-Wise Factorization (Iqbal et al. 2021)
applies attention dynamically group agents, but does not ad-
dress a variable number of total agents.

Environment Implementations The commonly used
StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al.
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Figure 2: (a) Collaborative Push Block. Agents (blue, yellow, purple) must push white blocks to green area; larger blocks
require more agents to push. (b) Simple Spread. Agents (large circles) must move to cover targets (small circles) without
colliding with one another. (c) Baton Pass. Blue agents must grab green food and hit green button to spawn another agent, who
can grab the next food, and so on. (d) Dungeon Escape. Blue agents must kill green dragon by sacrificing one of them to reveal
a key. Teammates must pick up key and reach the door, while avoiding pink dragons.
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Figure 3: Comparison between MA-POCA, COMA, and PPO of cumulative reward per episode for (a) Collaborative Push
Block, (b) Simple Spread, (c) Baton Pass, (d) Dungeon Escape. Results are averaged across 10 seeds. MA-POCA outperforms
COMA in all four environments, and significantly so in environments that involve agents spawning or dying ((c) and (d)). PPO
converges to a sub-optimal policy in all tasks.

2019) benchmarks return all zeros as an absorbing state for
units that have died. Death masking (Yu et al. 2021) is a vari-
ant of absorbing state which appends an agent ID to a vector
of all zeros. This is an instance of using different absorbing
states for different outcomes as discussed in Section 3.

Support for Varying Agents To the author’s knowl-
edge, there are three APIs with explicit support for dy-
ing and spawning agents: PettingZoo (Terry et al. 2020),
RLLib (Liang et al. 2018), and the Unity ML-Agents
Toolkit (Juliani et al. 2020). RLLib also contains implemen-
tations of MARL algorithms though all would require ab-
sorbing states to be used with varying numbers of agents.

7 Conclusion
This paper explicitly identified the Posthumous Credit As-
signment problem created when agents terminate early. The

is currently handled in MARL by adding an absorbing state
for agents that terminate early. Using a toy supervised learn-
ing problem, we empirically demonstrated a downside of
using absorbing states. We then introduced MA-POCA, a
novel architecture designed to train groups of agents to solve
tasks in which individual agents may terminate early or
spawn, without the use of absorbing states. MA-POCA nat-
urally handles varying numbers of agents and achieves a
counterfactual baseline via the use of self-attention. Finally,
we demonstrate that MA-POCA outperforms COMA and
PPO on two standard MARL tasks without dying or spawn-
ing agents. More importantly, MA-POCA significantly out-
performs both on tasks with dying and spawning agents. Fu-
ture work will extend other algorithms in the decentralized
POMDP framework beyond absorbing states and investi-
gate potential formalisms for problems where the maximum
number of agents N is unknown.
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A Additional Experiments for Mean
Computation

In this section, we provide additional figures for the differ-
ent values of oabs = −1.0, 1.0, 0.4 showing that −1.0 and
1.0 are reasonable choices (see Figure 4) but 0.4 is not as it
is contained in [0.25, 0.75] (see Figure 5). Additionally, we
provide a figure for the curves when we fix the number of
absorbing states (see Figure 6) to demonstrate that varying
the number of floats per sample is more challenging. All hy-
perparameters are contained in Appendix D and are the same
as the experiment discussed in the main text. In each figure,
curves are the mean and 95% confidence interval over 20
seeds.

Figure 5: oabs = 0.4. Since oabs ∈ [0.25, 0.75], this prob-
lem is partially observable and asymptotically the network
cannot converge to solve the task.

Figure 6: The number of absorbing states per sample is fixed
but still shuffled. This version of the task is significantly sim-
pler than when the number of absorbing states is varied per
sample.

B Self-Attention
MA-POCA’s centralized critic uses anRSAmodule in order
to process a variable number of agents. The agent’s observa-
tions are first embedded using a fully connected layer (Baker
et al. 2020). Each agent’s observation embedding is nor-
malized using Layer Normalization (Ba, Kiros, and Hin-
ton 2016) and then further embedded into Query : Q, Key
: K and Value: V using a fully connected network. Q, K
and V are fed into a scaled dot-product multi-head atten-
tion (Vaswani et al. 2017). The original observation em-
beddings are summed with the processed embeddings (the
residual connection) and normalized again with Layer Nor-
malization. The resulting embeddings are then averaged to-
gether to form a fixed size embedding. The same attention
mechanism is used in the calculation of average experiments
shown in Figure 1.

C Environments
Cooperative Push Block. In this environment, three agents
must push 5 blocks of various size into a goal that is at the
edge of a square stage. At the beginning of each episode, the
blocks, agents, and goals are randomly placed in the stage.
When one of the blocks hits the goal, all the agents receive
a group reward corresponding to the size of the block. Small
blocks are +1, medium +2, and large +3. Large blocks re-
quire all three agents to push together to move at any reason-
able speed, 2 blocks require two agents to collaborate, and
small blocks can be pushed by a single agent. The episode
ends when all blocks are pushed into the goal or when 1000
steps have been taken by the agents. A small time penalty
of -0.0025 per timestep is given to the agents to encourage
them to finish quickly. Agents’ observe by casting 21 rays
in a 180◦ arc front of them, similar to a LIDAR. An agent is
given the distance to an object that the ray collides with, as
well as if it is an agent, a wall, the goal, or the type of block.
Two sets of rays are given, one that is high enough to see the
walls and goal over the blocks and agents, and one that is at
agent-level.

Dungeon Escape. This environment contains five agents,
a dragon holding a key (green), two dragons that don’t hold
a key (pink), a portal, and a door in a square stage. At the
beginning of each episode, the agents, the dragons, and the
door and portal are randomly placed in the stage. The agents’
receive a +1 group reward if at least one of them to exit the
stage through the door. To do so, this agent must first have a
key, which is dropped by the green dragon. In order to slay
the dragon and make it drop the key, an agent needs to run
into it, which will cause both the agent and the dragon to
be removed from the environment. The green dragon slowly
moves towards the portal, while the pink dragons will at-
tempt to eat the closest agent. The episode ends if the green
dragon reaches the portal or an agent with the key reaches
the door. In order for the group of agents to receive a reward,
at least one of the agents must learn to sacrifice itself so that
another can grab the key and go through the door, and one
or more of them must learn to distract the pink dragons so
that they do not attack the key-holding agent. Similarly to
Cooperative Push Block, agents’ observe by casting 15 rays



oabs = 0 oabs = 1 oabs = −1

Figure 4: The sample efficiency of learning to compute the mean of a varying number of floats depends on the quantity of
absorbing states. The performance for oabs = 0.0 − 1.0, 1.0 are roughly the same and asymptotically all converge. Finally,
without absorbing states (10 inputs (FC)) the task is trivial.

in a 120◦ arc front of them. Unlike Cooperative Push Block,
only one set of rays are used as there are less elements to
obstruct them.

Baton Pass. In this environment, a single agent is
spawned along side an orb and a button. The button can only
be pressed if the orb has already been collected. Pressing
the button will create a new orb and spawn a new agent.
Only the most recently spawned agent can collect the orb or
press the button. This forces each agent to first collect the
orb, then press the button and finally stay out of the way
of the newly spawned agents. Indeed the agents are large
and can block each other. Every time an orb is collected the
whole group gets a +1 reward, the game ends when 20 orbs
have been collected. Each agent also has the possibility to
be despawned by touching an exit zone. Doing so will not
grant any rewards or penalties but will free available space
for other agents. At each time step, the agents will receive a
penalty of 0.000125 times the number of currently existing
agents. This is to force the agents to finish the task faster
and encourage agents to despawn once they can no longer
collect orbs or press the button. The agents perceive the en-
vironment with one set of 13 raycasts plus information about
their velocity and their capacity to press the button or collect
orbs. The agents can move forward, backwards and rotate.

Simple Spread. This environment is taken directly from
set of Multi-Agent Particle Environments created by (Lowe
et al. 2017). Agents are rewarded based on the minimum
distance between each landmark (shown as dots) and any
agent. Agents are penalized if they collide with other agents;
the optimal strategy is to cover all the dots without colliding
with each other. Agents observe the position of themselves,
their teammates, and all 3 landmarks. All rewards are given
as a group reward for the entire team of 3 agents.

D Hyperparameters
Common Hyperparameters for Reinforcement
Learning Tasks
Table 1 shows the hyperparameters used for all environ-
ments. As our implementations of PPO, MA-POCA and
COMA all use the same policy and value clipping and en-
tropy bonus mechanisms, all hyperparameters apply to all

three algorithms. Network size parameters apply to both the
critic and policy. In PPO, λ is used for GAE whereas in MA-
POCA and COMA it is used for TD(λ).

Dungeon Escape
Hyperparameter Baton Pass Simple Spread

Push Block
Minibatch Size 1024 512

Buffer Size 10240 5120
Epochs per Update 3 3

Learning Rate 0.0003 0.0003
Optimizer Adam Adam

Entropy Bonus β 0.01 0.01
Clip Ratio ϵ 0.2 0.2

λ 0.95 0.95
Discount Factor γ 0.99 0.99

Hidden Units 256 128
Fully Connected Layers 2 2

Attention Entity Embedding Size* 256 128
Attention Entity Embedding Layers* 1 1

Number of Attention Heads* 4 4

Table 1: Hyperparameters for all algorithms for Collabora-
tive Push Block, Baton Pass and Dungeon Escape (under the
General Case column) and for Simple Spread. The hyperpa-
rameters marked with an * only apply to MA-POCA since
PPO and COMA do not use an attention module.

Hyperparameters for Computing the Mean
For the fully connected network and for the self-attention
networks. Hyperparameters that do not apply are denoted
with a “ / ”.



Hyperparameter Fully Connected Attention
Minibatch Size 500 500
Learning Rate 0.001 0.001

Optimizer Adam Adam
Hidden Units 32 /

Layers 2 /
Entity Embedding Size / 32

Entity Embedding Layers / 1
Number of Attention Heads / 4

Table 2: Hyperparameters for fully connected network and
for self-attention network for the Compute the Mean task


