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Abstract

In the Configurable Markov Decision Processes there are two
entities, a Reinforcement Learning agent and a configurator
which can modify some parameters of the environment to im-
prove the performance of the agent. What if the configurator
does not have the same intentions as the agent? In this paper,
we introduce the Non-Cooperative Configurable Markov De-
cision Process, a framework that allows having two (possibly
different) reward functions for the configurator and for the
agent. In this setting, we consider an online learning problem,
where the configurator has to find the best among a finite set
of possible configurations. We propose a learning algorithm
to minimize the configurator expected regret, which exploits
the structure of the problem. While a naïve application of the
UCB algorithm yields a regret that grows indefinitely over
time, we show that our approach suffers only bounded regret.
Furthermore, we empirically show the performance of our
algorithm in simulated domains.

1 Introduction
Reinforcement Learning (RL, Sutton and Barto 1998) has
achieved impressive results in several fields of automatic con-
trol, including videogames (Mnih et al. 2015), robotics (Pe-
ters and Schaal 2008), and autonomous driving (Kiran et al.
2020). The standard RL framework involves an agent whose
objective is to maximize the reward collected during its inter-
action with the environment. However, there are real-world
scenarios in which the agent itself or an external supervisor
(configurator) can partially modify the environment. For ex-
ample, in a car racing problem, it is possible to modify the
car setup to better suit the driver’s needs. Recently, the Con-
figurable Markov Decision Processes (Conf-MDPs, Metelli,
Mutti, and Restelli 2018) were introduced to model these sce-
narios and exploit the configuration opportunities. Solving
a Conf-MDP consists in simultaneously optimizing a set of
environment parameters together with the agent’s policy, in
order to reach the maximum expected return. This framework
has been studied in the discrete and continuous cases (Metelli,
Mutti, and Restelli 2018), although the research limited to
the case in which the configuration activity aims at maxi-
mizing the agent’s performance. However, in some cases,
the configurator does not know the agent’s reward and its
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intention differs from that of the agent, leading to new ap-
pealing scenarios. For instance, imagine we are the owner
of a supermarket and we have to decide how to arrange the
products on the shelves. Our intention is to increase the final
profit of the company; instead, a customer aims at spending
the smallest time possible inside the supermarket and buying
the indispensable products only. Since we do not know the
customer reward function, the only possibility is to try dif-
ferent dispositions and see what is the customers’ reaction.
But what if we knew what buyers are most interested in? In
this case, we can decide strategically how to position other
products close to the popular ones, to induce the customer in
a behavior that is more profitable for us.

In this paper, we introduce the Non-Cooperative Markov
Decision Processes (NConf-MDP), a new framework which
handles the possibility to have different reward functions for
the agent and for the configurator. While Conf-MDP assumes
that the configurator acts to help the agent to optimize its
expected reward, a NConf-MDP, instead, allows modeling
a larger set of scenarios, including all the cases in which
agent and configurator display a non-cooperative behavior,
modeled by the individual reward functions (Section 3). Ob-
viously, this setting cannot be solved with straightforward
application of the algorithms designed for Conf-MDP, that
focus on the case in which both entities share the same in-
terests. In fact, if the configurator and the agent optimize
separately different objectives they might not converge to
an equilibrium strategy. Moreover, accounting of the agent’s
interest would be, as in Markov games, advantageous for the
configurator (Hu and Wellman 2003). In this novel setting,
we consider an online learning problem, where the configura-
tor has to select a configuration within a finite set of possible
configurations, in order to maximize its own return. This
setting can be seen as a leader-follower game, in which,
the follower (agent) is selfish and optimizes its own reward
function, and the leader has to decide the best configura-
tion w.r.t. the best response of the agent. Clearly, in order
to adapt its decisions, the configurator has to receive some
form of feedback related to the agent’s behavior. Specifically,
we analyze two settings based on whether the configurator
observes just the agent’s actions or also a noisy version of
the agent’s reward function (Section 4). For the two settings,
we propose algorithms based on the Optimism in the Face of
Uncertainty (OFU, Auer, Cesa-Bianchi, and Fischer 2002)



principle. We show that it is possible to achieve finite ex-
pected regret even if the configurator observes the agent’s
actions only, that scales linearly with the number of admissi-
ble configurations (Section 5). Furthermore, we prove that if
the configurator observes the noisy agent’s reward, under suit-
able conditions, it is possible to further exploit the structure
underlying the decision process, removing the dependence
on the number of configurations (Section 5). After having
revised the literature (Section 6), we provide an experimental
evaluation on benchmark domains, inspired to the motiva-
tional scenarios of NConf-MDPs, comparing our algorithms
with unstructured bandit baselines (Section 7). The proofs of
the results presented in the paper are reported in Appendix B.

2 Preliminaries
A finite-horizon Markov Decision Process (MDP, Puterman
1994) is a tupleM = (S,A, p, µ, r,H) where S is a finite
state space (S = |S|),A is a finite action space (A = |A|), p :
S ×A× S → [0, 1] is the transition model, which defines
the density p(s′|s, a) of state s′ ∈ S when taking action
a ∈ A in state s ∈ S, µ : S → [0, 1] is the initial state
distribution, r : S → [0, 1] is the reward function, and H ∈
N≥1 is the horizon. A deterministic decision rule πh : S → A
with h ∈ [H] prescribes for every states s ∈ S an action
πh(s) ∈ A. A deterministic policy π = (π1, · · · , πH) ∈
ΠH
D is a sequence of decision rules, where ΠH

D is the set of
deterministic policies.

A finite-horizon Configurable Markov Decision Pro-
cess (Conf-MDP, Metelli, Mutti, and Restelli 2018) is de-
fined as CM = (S,A,P, µ, r,H) and extends the MDP con-
sidering a configuration space P instead a single transition
model p. The Q-value of a policy π ∈ ΠH

D and configura-
tion p ∈ P is the expected sum of the rewards starting from
(s, a) ∈ S ×A at step h ∈ [H]:

Qπ,ph (s, a) = r(s) + E
sh′∼p,π

[
H∑

h′=h+1

r(sh′)|sh = s, ah = a

]
,

having denoted with Esh′∼p,π the expectation w.r.t. the distri-
bution p(·|sh′−1, πh′−1(sh′−1). The value function is given
by V π,ph (s) = Qπ,ph (s, πh(s)) and the expected return is de-
fined as V π,p = Es∼µ[V π,p1 (s)]. In a Conf-MDP the goal
consists in finding a policy π∗ together with an environment
configuration p∗ so as to maximize the expected return, i.e.,
(π∗, p∗) ∈ arg maxπ∈ΠH

D ,p∈P
V π,p.

3 Non-Cooperative Conf-MDPs
The definition of Conf-MDP allows modeling scenarios in
which agent and configurator share the same objective, en-
coded in a single reward function r. In this section, we in-
troduce an extension of this framework to account for the
presence of a configurator having interests that might differ
from those of the agent.
Definition 3.1. A Non-Cooperative Configurable Markov
Decision Process (NConf-MDP) is defined by a tuple
NCM = (S,A,P, µ, rc, ro, H), where (S,A,P, µ,H) is
a Conf-MDP without reward and rc, ro : S → [0, 1] are the
configurator and agent (opponent) reward functions, respec-
tively.

Given a policy π = (πh)h∈[H] ∈ ΠH
D and a configuration

p ∈ P , for every (s, a) ∈ S ×A and h ∈ [H] we define the
configurator and agent Q-values as:

Qπ,pc,h (s, a) = ra(s) + E
sh′∼p,π

[
H∑

h′=h+1

rc(sh′)|sh = s, ah = a

]
,

Qπ,po,h(s, a) = ro(s) + E
sh′∼p,π

[
H∑

h′=h+1

ro(sh′)|sh = s, ah = a

]
.

We denote with V π,pc,h (s) = Qπ,pc,h (s, πh(s)) and V π,po,h =

Qπ,po,h(s, πh(s)) the value functions and with V π,pc =

Es∼µ[V π,pc,1 (s)] and V π,po = Es∼µ[V π,po,1 (s)] the expected re-
turns for the configurator and the agent respectively.

4 Problem Formulation
While for classical Conf-MDPs (Metelli, Mutti, and Restelli
2018) a notion of optimality is straightforward as agent and
configurator share the same objective, in a NConf-MDP they
can display possibly conflicting interests. We assume a se-
quential interaction between the configurator and the agent,
that resembles the leader-follower protocol (Breton, Alj, and
Haurie 1988). First, the configurator (leader) selects an envi-
ronment configuration p ∈ P and then the agent (follower)
plays a best response policy π∗p ∈ ΠH

D , i.e., an optimal policy
for the MDP (S,A, p, µ, ro, H):

π∗p ∈ arg max
π∈ΠH

D

V π,po .

Before proceeding we make the following assumption.

Assumption 1. For every environment configuration p ∈ P ,
the agent will always play the same best response policy π∗p .
Furthermore, π∗p is deterministic.

Requiring that the best response policy is deterministic is
justified by the fact that for every MDP there exists at least
one deterministic optimal policy (Sutton and Barto 1998; Put-
erman 1994). The first part of the assumption states that that
the agent will react with the same optimal policy π∗p when-
ever facing configuration p. This is a common assumption in
standard Stackelberg Games (Balcan et al. 2015; Peng et al.
2019; Sessa et al. 2020).

Under Assumption 1, the goal of the configurator is well-
defined and consists in finding the configuration p∗ ∈ P that
is optimal under the agent’s best response policy:1

p∗ ∈ arg max
p∈P

V
π∗p ,p
c .

The configurator knows everything about the NConf-MDP,
except for the agent reward function ro. At each episode
k ∈ [K], the configurator selects a configuration pk ∈ P and
observes a trajectory of H steps generated by the agent’s best
response policy π∗pk . We study two types of feedback:

1From a game theoretic perspective, the pair (p∗, π∗p∗) can be re-
garded as a Stackelberg equilibrium of the corresponding game (Bre-
ton, Alj, and Haurie 1988).



• Action-feedback (Af). The configurator observes
the states and the actions played by the agent
(s1, a1, . . . , sH−1, aH−1, sH), where ah = π∗pk,h(sh).
• Reward-feedback (Rf). The configurator observes

the states, the actions played by the agent, and
a noisy version of the agent reward function
(s1, r̃1, a1, . . . , sH−1, r̃H−1, aH−1, sH , r̃H), where
ah ∼ π∗pk,h(sh) and r̃h is sampled from a distribution
with mean ro(s) and support [0, 1].2

While the Af is less demanding, the Rf tries to model sit-
uations in which the agent’s reward is either known under
uncertainty or it is obtained in an approximate way through
Inverse Reinforcement Learning (Osa et al. 2018).

From an online learning perspective, the goal of the con-
figurator is to minimize the expected regret:

E[Regret(K)] = E

[
K∑
k=1

max
p∈P

V
π∗p ,p
c − V

π∗pk ,pk
c

]
. (1)

We assume that the configuration space P is a finite set made
of M stochastic transition models P = {p1, . . . , pM}. To
lighten the notation, in the following, we will denote with πi
the agent’s best response policy to the configuration pi, i.e.,
π∗pi and with V i the configurator expected returned attained

with configuration pi and π∗pi , i.e., V
π∗pi ,pi
c . Finally, we denote

with V ∗ = maxi∈[M ] V
i.

Remark 4.1 (On the optimality of the agent’s policy). In
our setting, we assume that the policy the agent plays, at
every episode, is an optimal policy. It might be argued that
the agent, whenever experiencing a modification of the envi-
ronment configuration, needs some time to adjust its policy,
before reaching optimality. However, in real-world situa-
tions, environment configuration and agent learning typically
happen on different time scales. Indeed, the configuration
changes slowly, giving the agent the time to converge to an
optimal policy. For instance, in the supermarket example
(Section 1), the time interval between two changes of product
disposition might be more than one month, instead a buyer
takes less time (few visits) to learn the disposition and their
best policy.

5 Optimistic Configuration Learning
In this section, we present two algorithms for the online
learning problem introduced in Section 4. The first algorithm
uses only the collected agent decisions to optimistically learn
the best configuration (Section 5). In the second algorithm,
we use also the noisy reward feedback to construct an algo-
rithm that leverages on the structure that links together all the
transition probability models: the agent’s reward function ro.
We show that, under suitable assumptions, the regret of the
second algorithm removes the dependencies on the number
of configurations (Section 5). We conclude the section with
a discussion about the considered assumptions and regret
guarantees (Section 5).

2Clearly, the results we present can be directly extended to sub-
gaussian distributions on the reward.

Action-feedback Optimistic Configuration
Learning
We start with the action-feedback (Af) setting in which the
configurator observes the agent’s actions only. The idea at
the basis of the algorithm we propose, Action-feedback Opti-
mistic Configuration Learning (AfOCL), is to maintain, for
each configuration, a set of plausible policies that contains
the agent’s best response policy. The configurator plays the
transition model that maximizes an optimistic approxima-
tion of its value function. Specifically, for every i ∈ [M ],
k ∈ [K], and h ∈ [H] we denote with Aik,h(s) ⊆ A the set
of plausible actions in state s at step h for configuration pi at
the beginning of episode k. Since the agent’s best response
policy πi is deterministic, if state s is visited at step h before
episode k, we know the agent’s action in the current model
pi and therefore we set Aik,h(s) = {πi,h(s)}, otherwise we
have no knowledge and we set Aik,h(s) = A. Based on this,
we can compute an optimistic approximation Ṽ ik,h of the
configurator value function V ih :

Ṽ ik,h(s) = rc(s) + max
a∈Ai

k,h(s)

∑
s′∈S

pi(s
′|s, a)Ṽ ik,h+1(s′),

(2)

and Ṽ ik,H(s) = rc(s). For visited pairs (s, h) the maximiza-
tion over the actions reduces to the evaluation of the transi-
tion model in the agent’s action πi,h(s). Clearly, we have that
Ṽ ik,h(s) ≥ V ih(s) for all s ∈ S, h ∈ [H], and i ∈ [M ]. Thus,
at each episode k ∈ [K] the configurator plays the transition
model pIk maximizing the optimistic approximation Ṽ ik :

Ik ∈ arg max
i∈[M ]

Ṽ ik .

The pseudocode of AfOCL is reported in Algorithm 1. The
computation of the optimistic approximation Ṽ ik,h can be
simply performed applying a value-iteration-like algorithm
(Puterman 1994) that employs the iterate as in Equation (2).
Notice that the computational complexity decreases as the
number of visited states increases and, in any case, is bounded
by that of value iteration O

(
HS2A

)
. Therefore, the time

complexity of AfOCL is O
(
KMHS2A

)
.

Regret Guarantees In this section, we provide an expected
regret bound for the AfOCL algorithm. Since the policy is
deterministic, in every episode k ∈ [K], we acquire the in-
formation about which action the agent plays, in the chosen
model pIk , for every visited state. So the main effort is to
estimate the agent’s policies of every model. In fact, after
that, the algorithm will be able to compute the correct ex-
pected return for each transition model. However, due to the
stochasticity of the models pi for i ∈ [M ], some states might
be visited with low frequency. The following result exploits
the determinism of the agent’s best response policy to prove
that the regret AfOCL suffers is constant, independent on the
number of episodes K.
Theorem 5.1 (Regret of AfOCL). Let NCM =
(S,A,P, µ, rc, ro, H) with P = {p1, . . . , pM} be the M



Algorithm 1 Action-feedback Optimistic Configuration
Learning (AfOCL).

1: Input: S, A, H , P = {p1, . . . , pM}
2: Initialize Ai

1,h(s) = A for all s ∈ S, h ∈ [H], and i ∈ [M ]
3: for episodes 1, 2, . . . ,K do
4: Compute Ṽ i

k for all i ∈ [M ]

5: Play pIk with Ik ∈ argmaxi∈[M ] Ṽ
i
k

6: Observe (sk,1, ak,1, . . . , sk,H−1, ak,H−1, sk,H)
7: Compute the plausible actions for all s ∈ S and h ∈ [H]:

Ai
k+1,h(s) =

{
{ak,h} if i = Ik and s = sk,h
Ai

k,h(s) otherwise

8: end for

finite-horizon MDPs of the problem. The expected regret of
AfOCL at every episode K > 0 is bounded by:

E[Regret(K)] ≤MH3S2. (3)

The result might be surprising as the regret is constant and
independent on the suboptimality gaps between the configura-
tions, i.e., ∆i = V ∗−V i for every i ∈ [M ]. As supported by
intuition, we need to spend more time to discard MDPs that
are more similar in performance to the optimal one. Formally,
the maximum number of times a suboptimal configuration
pi is played is proportional to 1

∆i
(and not proportional to

1
∆2

i
as in standard bandits). This is because the policies are

deterministic and, to learn them, we just need one visit to the
state. More details on the proof are given in the Appendix B.

Reward-feedback Optimistic Configuration
Learning
The main drawback of AfOCL is that every transition model
is treated separately, preventing from employing the under-
lying structure of the environment. Such a structure is rep-
resented by the agent reward function ro, that is completely
ignored in AfOCL. Indeed, if the configurator knew ro, it
could find the optimal configuration with no need of interac-
tion, by simply computing the agent’s best response policies.
The algorithm we propose in this section, Reward-feedback
Optimistic Configuration Learning (RfOCL), employs the
reward feedback (Rf), i.e., at every interaction the config-
urator can see also a noisy version of the agent’s reward
function. The crucial point is that ro is the same regardless
of the chosen configuration and, for this reason, it provides a
link between them.

Specifically, for every k ∈ [K] and s ∈ S, RfOCL main-
tains a confidence interval for the agent reward function
Rk(s) = [ro,k(s), ro,k(s)] obtained using the samples col-
lected up to episode k− 1 regardless of the played configura-
tion. We apply Höeffding inequality to build the confidence
intervals obtaining:

r̂o,k(s)±

√
log(2SHk2)

max{Nk(s), 1}
, (4)

whereNk(s) is the number of visits of state s in the first k−1

episodes, and r̂o,k(s) is the sample mean of the observed
rewards for state s up to episode k.

Given the estimated reward, for every configuration
i ∈ [M ], we can compute a confidence interval
for the corresponding agent’s Q-values Qk,h(s, a) =

[Qi
o,k,h

(s, a), Q
i

o,k,h(s, a)], by simply applying the Bellman
equation:

Qi
o,k,h

(s, a) = ro,k(s) +
∑
s′∈S

pi(s
′|s, a) max

a′∈A
Qi
o,k,h+1

(s′, a′),

Q
i

o,k,h(s, a) = ro,k(s) +
∑
s′∈S

pi(s
′|s, a) max

a′∈A
Q
i

o,k,h+1(s′, a′),

and Qi
o,k,H

(s, a) = ro,k(s) and Q
i

o,k,H(s, a) = ro,k(s). If
the true reward function belongs to the confidence interval,
i.e., ro ∈ Rk, then the true Q-value belongs to the corre-
sponding confidence interval, i.e., Qih ∈ Qk,h. Consequently,
we can use Qk,h to restrict the set of plausible actions in a
state without actually observing the agent playing the action
in that state. Indeed, the plausible actions are those that have
an upper Q-value larger than the maximum Q-value lower
bound:

Ãik,h(s) =

{
a ∈ A : Q

i

o,k,h(s, a) ≥ max
a′∈A

Qi
o,k,h

(s, a′)

}
.

(5)

In other words, if the upper Q-value of an action is smaller
than the largest lower Q-value, it cannot be the greedy ac-
tion and it is discarded. Clearly, whenever we observe the
agent playing an action in (s, h) we can reduce the plausible
actions to the singleton {πi,h(s)}, as in the action-feedback
setting (Section 5). Based on this refined definition of plau-
sible actions, we can compute the optimistic estimate Ṽ ik,h
of the configurator value function V ih as in Equation (2) and
proceed playing the optimistic configuration.

The pseudocode of RfOCL is reported in Algorithm 2. It is
worth noting that we need to keep track of the states that have
been already visited because for those, we know the agent’s
action and there is no need to apply Equation (5). This is
why we introduce the counts Nk,h(s). The computational
complexity of an individual iteration of RfOCL is dominated
by the value iteration (steps 5 and 9) leading, as for AfOCL,
to O

(
KMHS2A

)
.

Regret Guarantees In this section, we give a regret bound
for the RfOCL algorithm. Obviously the same arguments for
AfOCL can be also applied for this extended version, and
then the regret bound of Theorem B.1 is valid also for RfOCL.
Moreover, for this algorithm, we prove that the regret, under
certain conditions, does not depend on the number of con-
figurations. In order to prove the result we have to make the
following assumption on the NConf-MDP.
Assumption 2. There exists ε > 0 such that:

min
i∈[M ]

min
s∈S

max
h∈[H]

dih(s) ≥ ε,

where dih(s) is the probability of visiting the state s ∈ S
at time h ∈ [H] in configuration pi under the agent’s best
response policy πi.



Algorithm 2 Reward-feedback Optimistic Configuration
Learning (RfOCL)

1: Input: S, A, H , P = {p1, . . . , pM}
2: Initialize Ai

1,h(s) = A for all s ∈ S, h ∈ [H], and i ∈ [M ]
3: Initialize ro,1(s) = 1, ro,1(s) = 0, and N1,h(s) = 0 for all
s ∈ S and h ∈ [H]

4: for episodes 1, 2, . . . ,K do
5: Compute Ṽ i

k for all i ∈ [M ]

6: Play pIk with Ik ∈ argmaxi∈[M ] Ṽ
i
k

7: Observe
(sk,1, r̃k,1, ak,1, . . . , sk,H−1, r̃k,H−1, ak,H−1, sk,H , r̃k,H)

8: Compute r0,k+1(s), ro,k+1(s), andNk+1,h(s) for all s ∈ S
and h ∈ [H] using r̃k,1 · · · r̃k,H as in Equation (4)

9: Compute Qi

o,k+1,h
(s, a), Q

i

o,k+1,h(s, a) for all s ∈ S, a ∈
A, h ∈ [H], and i ∈ [M ]

10: Compute the plausible actions for all s ∈ S and h ∈ [H]:

Ai
k+1,h(s) =


{ak,h} if i = Ik and s = sk,h
Ai

k,h(s) if Nk,h(s) > 0

Ãi
k+1,h(s) otherwise

with Ãi
k+1,h(s) as in Equation (5).

11: end for

This assumption involves that in every model pi ∈ P the
agent has non-zero probability, in some step h, to visit every
state s. This allows shrinking the confidence intervals for the
reward of every state in order to estimate correctly the agent’s
policy, regardless the played configuration. Notice that this
assumption is less strict than requiring the ergodicity of the
Markov process induced by any policy. Under Assumption 2
we can prove the following regret guarantee.
Theorem B.2 (Regret of RfOCL). Let NCM =
(S,A,P, µ, rc, ro, H) with P = {p1, . . . , pM} be the M
finite-horizon MDPs of the problem. Under Assumption 2,
the expected regret of RfOCL at every episode K > 0 is
bounded by:

E[Regret(K)] ≤ min(MH3S2,K∆ +
π2

3
),

where K is the smallest integer solution of the inequality

K ≥ 1 +

(
2H2S2 log(2SHK

2
)

2∆2
Q

+

√
K−1

2 log(SHK
2
)

)
1
ε ,

∆ = maxi∈[M ] ∆i, i.e., the maximum suboptimality gap,
and ∆Q is the minimum positive gap of the agent’s Q-values
(see Appendix B).

The regret bound removes the dependence on the number
of models M , as K is clearly independent of M , but it intro-
duces, as expected, a dependence on the minimum visitation
probability ε. The proof of the result is reported in Appendix
B. Since RfOCL exploits additional information compared
to AfOCL and the set of plausible actions Aik,h of RfOCL
are subsets of those of AfOCL, the regret bound AfOCL
(Theorem B.1) holds also for RfOCL. Thus, we can take as
regret bound for AfOCL the minimum between K∆ + π2

3

and MH3S2.

Discussion
The two proposed algorithms use different types of feedback
acquired by the configuration when interacting with the agent.
The second algorithm allows eliminating the dependence on
the number of configurations, assuming that the MDP, for
each configuration, is ergodic under the optimal policy of the
agent. On the other hand, RfOCL is heavier than AfOCL (al-
though the asymptotic complexity is the same) as it requires
to compute, for each episode, the optimistic values of the
agent Q functions for each model. However, the two algo-
rithms suffer constant regret; this is due to the assumption
that the optimal policy of the agent is deterministic. In fact, if
we remove this assumption and allow the agent’s policy to be
stochastic,3 it is reasonable to believe that the regret AfOCL,
suitably modified to maintain confidence intervals for the for
the policy, scales logarithmically with K, as in unstructured
bandits. We cannot conclude the same for the corresponding
adaptation of RfOCL. We conjecture that, under Assump-
tion 2, RfOCL continues to pay constant regret, because it
exploits the underlying structure given by the agent’s reward
function that, allows linking together the different transition
models. Thus, when playing any configuration we acquire a
finite piece of information that can be shared among all con-
figurations. We leave the investigation of this case as future
work.

The online problem that we are facing can be seen as
a stochastic multi-armed bandit (Lattimore and Szepesvári
2020), in which the arms are configurations, and the configu-
rator receives a random realization of its expected return at
every episode. Thus, it can be solved, in principle, by stan-
dard algorithms for bandit problems, such as UCB1 (Auer,
Cesa-Bianchi, and Fischer 2002). These algorithms are com-
putationally less demanding, compared to ours, but suffers
regret that grows logarithmically, i.e., indefinitely, with the
number of episodes. Indeed, they do not exploit either the
fact that the agent’s policy is deterministic or the structure
induced by the agent’s reward function.

6 Related Works
The idea of altering the environment dynamics to improve the
learning experience of an agent has been exploited before the
introduction of Conf-MDPs. Curriculum learning (Bengio
et al. 2009) provides the agent with a sequence of environ-
ments, of increasing difficulty, to shape the learning process
with possible benefits on the learning speed e.g., (Ciosek and
Whiteson 2017; Florensa et al. 2017). Although the learning
process is carried out in a different environment, the con-
figuration is typically performed in simulation only. In the
Conf-MDP framework, instead, the configuration opportu-
nities are an intrinsic property of the environment (Metelli,
Mutti, and Restelli 2018). The initial approaches entitled the
agent of the configuration activity and, consequently, this task
was totally auxiliary to the agent (Metelli, Mutti, and Restelli
2018; Silva, Melo, and Veloso 2018; ?). More recently, it has
been observed that environment configuration can be actu-
ated even by an external entity, opening new opportunities of

3For example, the agent might optimize an entropy-regularized
objective (Haarnoja et al. 2018).



application of environment configurability, including settings
in which the configurator’s interest conflict with those of
the agent. For instance, in Metelli, Manneschi, and Restelli
(2019) the configurator acts on the environment to induce
the agent revealing its capabilities in terms of perception and
actuation. Instead, in Gallego, Naveiro, and Insua (2019) a
threatener entity can change the transition probabilities either
in a stochastic or adversarial manner. More generally, envi-
ronment configuration carried out by an external entity has
been studied in the field of planning as a form of environment
design (Zhang, Chen, and Parkes 2009). Thus, our NConf-
MDP unifies these settings, allowing for arbitrary agent’s and
configurator’s reward functions. An interesting connection
is established with the robust control literature (Nilim and
Ghaoui 2003; Iyengar 2005). Whenever the two reward func-
tions are opposite, i.e., the interaction between the agent and
the configuration is fully competitive, the resulting equilib-
rium corresponds to a robust policy. Indeed, while the agent
tries to maximize its expected return, the configurator places
the agent in the worst possible environment.

The design of our approaches is inspired by classic algo-
rithms based on the OFU principle for stochastic multi-armed
bandits (e.g., Lai and Robbins 1985; Auer, Cesa-Bianchi,
and Fischer 2002; Garivier and Cappé 2011; Lattimore and
Szepesvári 2020) and MDPs (e.g., Auer, Jaksch, and Ortner
2009; Bartlett and Tewari 2012; Azar, Munos, and Kappen
2013). Moreover, our learning setting with reward feedback
is related to structured bandits or bandits with correlated
arms.4 Interestingly, for certain structures it is known that
bounded regret is achievable (Bubeck, Perchet, and Rigollet
2013; Lattimore and Munos 2014), a property that is en-
joyed by both our algorithms. Our setting is also close to
the Stochastic Games model, in which two or more agents,
acting in an MDP in order to maximize their own reward
functions. Recently, the stochastic games framework gains
a growing interest (Bai, Jin, and Yu 2020; Bai and Jin 2020;
Zhang et al. 2020), especially in the offline setting i.e., we
can control all the agents. For this reason these approaches
are not applicable to our setting, where we have the control
of the configurator only. Although there are also some works
which tracts the online setting (Wei, Hong, and Lu 2017; Xie
et al. 2020; Tian et al. 2020), where we can control only one
agent, all of these algorithms works in the zero-sum setting
only.

7 Experiments

In this section, we provide the experimental evaluation of our
algorithms on three different domains: Configurable Grid-
world (Section 7), Student-Teacher (Section 7), and Config-
urable Market (Section 7). We compare the algorithms with
the standard implementation of UCB1 (Auer, Cesa-Bianchi,
and Fischer 2002).The detailed environment description and
additional results can be found in Appendix C.

4In our case, playing a single configuration provides information
about the opponent’s reward, which, in turns, provides information
about the value of all configurations.

Configurable Gridworld
Configurable Gridworld is a configurable version of a classic
3 × 3 Gridworld. The starting state of the agent is in the
cell (0, 1) and its goal is to minimize the number of steps
required to reach the exit, located in the cell (2, 1). Instead,
the configurator takes reward 1 when the agent occupies the
central cell (1, 1) and 0 otherwise. In a classic gridworld the
optimal policy would be trivial, as the agent would proceed
straight to the exit. In this Configurable Gridworld, instead,
the configurator can set the “power” p of a stochastic obstacle
located in the cell (1, 1). In particular, when the agent is in
that cell and performs action “go right” to reach the exit, it
will hit the obstacle and it will remain in the same position
with probability p. The goal of the configurator is to tune
this probability in order to keep the agent in the central cell
for the maximum number of steps. In practice, this means
raising the probability p as much as possible. However, it
is easy to prove that if p is too large the agent will learn
to avoid the obstacle by passing close to the boundaries,
leading to a very poor performance for the configurator. The
M configurations differ in the probability p and are obtained
by a regular discretization of [0, 1].

The results of the experiments are shown in Figures 1 and
2. In the first experiment, we considered 10 and 30 config-
urations with a number of episodes K = 3000 and horizon
H = 10. We can see that the two algorithms, AfOCL and
RfOCL, suffer constant regret, whereas UCB1 displays a
logarithmic regret, as expected. Specifically, RfOCL outper-
forms AfOCL and stops playing suboptimal configuration in
less than 500 episodes in both cases. This can be explained
because, being Assumption 2 fulfilled (in fact the agent has
the probability 0.1 of failing its action), RfOCL is able to
more effectively exploit the underlying structure of the prob-
lem. In Figure 2, we present a more extreme case in which
we have only three configurations, designed so that the op-
timal agent’s policy generates a non-ergodic Markov chain.
In such a case, we violate Assumption 2 and consequently,
we observe that AfOCL and RfOCL display a very similar
behavior, but still significantly better than UCB1.

Student-Teacher
The Student-Teacher environment models a basic interaction
between a student and a teacher. The teacher has a number of
exercises available with different difficulty levels and wants
to find the optimal sequence of exercises in order to make
the student acquire as much knowledge as possible. On the
other hand, the student perceives the level of difficulties of the
exercises in a different way. The student’s goal is to maximize
the number of exercises that they know how to solve, and
we model this information with an integer between [0, S].
Thus, they may decide not to answer and with probability
0.7 they go to an exercise with a lower level of difficulties
for the teacher and receives of −1. If it does, they receive a
reward that is the level of the “correctness” of the exercise. In
Figure 3, we compare our algorithms with UCB1 for different
number of configurations M ∈ {40, 60, 100} and horizon
H = 10. In every run, we construct M random different
configurations, that represent the distribution over the next
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Figure 1: Cumulative regret as a function of the episodes for the Gridworld
experiment. 50 runs, 98% c.i.
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Figure 2: Cumulative regret as a function of the
episodes for the Gridworld experiment in the ex-
treme setting. 50 runs, 98% c.i.
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Figure 3: Cumulative regret as a function of the
episodes for the Student-Teacher experiment. 50
runs, 98% c.i.
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Figure 4: Cumulative regret as a function of the
episodes for the Configurable Market experiment.
50 runs, 98% c.i.

exercise, given the current exercise and a positive answer.
Moreover, in every run we change the mildness of an exercise
from the agent’s point of view. We observe that both AfOCL
and RfOCL suffer significantly less regret compared to UCB1
and tend to converge to a constant, especially with a small
number of configurations. It is interesting to observe that, in
line with our analysis, the gap between AfOCL and RfOCL
appears more evident as the number of configurations grows.

Configurable Market
Configurable Market is a simplified model for a marketplace.
The agent, namely the customer, wants to buy a given set of
products QA in the minimum number of steps. Instead, the
configurator has the role to place all the products Q ⊃ QA
in the marketplace with the goal to maximize the market’s
revenue inducing the agent to buy other products in addition
to those it would buy. The reward of the configurator is 1 any
time the agent passes over a state where a product is placed
and 0 in all the other states. Whereas, the reward of the agent
is −1 everywhere and gains a bonus of 0.9 when it passes
over a state with a product inQA. In other words, the products
remain fixed in the market and the configurator can change
the transition model within a set of random transition models.
However, for an abstract point of view this is equivalent to
moving the products in the gridworld.5 In Figure 4, AfOCL
and RfOCL are compared against UCB1. The number of
configurations is 10, the horizon 15 and the gridworld size
is 4 × 4. In every run, we construct 10 different transition
models, which specify the 10 configurations. Also in this

5More details are given in Appendix C.

experiment, the trend is confirmed since AfOCL and RfOCL
outperform UCB1. We observe that the two algorithms, in
this environment, behave in a similar way, and this is due to
the small number of configurations. However, we can notice
RfOCL at the end of the considered episodes approaches the
constant regret.

8 Conclusions
In this paper, we have introduced an extension of the Conf-
MDP framework to account for possible non-cooperative in-
teraction between the agent and the configurator. We focused
on an online learning problem in this new setting, propos-
ing two regret minimization algorithms for identifying the
best environment configuration within a finite set based on
the principle of optimism in face of uncertainty. We proved
that when the agent’s policy is deterministic (but the config-
uration may not) and the configurator observes the agent’s
actions, it is possible to achieve finite regret that depends
linearly on the number of admissible configurations. Further-
more, we illustrated that it is possible to remove this depen-
dence, if the configurator observes a possibly noisy version of
the agent’s reward and under sufficient regularity conditions
on the environment. The experimental evaluation showed
that our algorithms display a convergence speed significantly
faster compared to UCB1 and RfOCL tends to outperform
AfOCL thanks to the exploitation of the additional structure.
Future research directions include the extension to the case
of stochastic agent’s policy and the derivation of specific
confidence intervals for the reward function, based on inverse
reinforcement learning.
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A Notation

S State space
A Action space
P Configuration space
M Configuration space size
ro Agent’s reward function
rc Configurator’s reward function
µ Initial state distribution
H Horizon

Qπ,pc,h (s, a) Configurator’s Q-value with policy π and configuration p
Qπ,po,h(s, a) Agent’s Q-value with policy π and configuration p
V π,pc,h (s) Configurator’s value function with policy π and configuration p
V π,po,h (s) Agent’s value function with policy π and configuration p
V π,pc Configurator’s expected return with policy π and configuration p
V π,po Agent’s expected return with policy π and configuration p

πi = π∗pi Agent’s best response to configuration pi
V i = V

π∗pi
c Configurator’s expected return with the agent’s best response policy π∗pi to

configuration pi
Ṽ ik Optimistic configurator’s expected return for configuration pi at episode k
π̃i,k Estimated agent’s best response policy for configuration pi at episode k

∆i = V
π∗p∗ ,p

∗

c − V
π∗pi ,pi
c Suboptimality gap of the configuration pi

K Number of episodes
Ni Number of time the configuration pi is played

Nk(s) Number of visit of state s up to episode k
N i
k,h(s) Number of visit of state s at step h up to episode k with configuration pi
ro,k(s) Lower confidence value for the agent’s reward
ro,k(s) Upper confidence value for the agent’s reward
r̂o,k(s) Sample mean of observed rewards

Qi
o,k,h

(s, a) Lower confidence value of the agent’s Q-function with configuration pi

Q
i

o,k,h(s, a) Upper confidence value of the agent’s Q-function with configuration pi
Aik,h(s) Set of agent’s plausible actions in state s up to episode k
dih(s) Visitation probability the state s at time h with configuration pi under the

agent’s best response policy πi
d̃ih(s) Visitation probability the state s at time h with configuration pi under the

estimated agent’s best response policy π̃i,k



B Missing Proofs
In this appendix, we report the proofs of the results presented in the main paper.

Proofs of Section 5
Lemma B.1. For every episode k ∈ [K] and configuration pi ∈ P , the difference between the optimistic expected return Ṽ ik and
the true expected return V i is bounded by:

Ṽ ik − V i ≤ 2H
∑
s∈S

H−1∑
h=1

dih(s)1
{
N i
k,h(s) = 0

}
. (6)

where N i
k,h(s) is the number of times the state s ∈ S is visited at step h ∈ [H] with the configuration pi ∈ P up to episode

k − 1.

Proof. First of all, we denote with d̃ih(s) the visitation probability of visiting state s at step h under transition model pi and
playing the estimated agent’s best response policy π̃i. Moreover, the visitation probabilities satisfy the following equalities for all
h ≥ 2:

dih(s) =
∑
s′∈S

pi(s|s′, πi,h(s′))dih−1(s′)

d̃ih(s) =
∑
s′∈S

pi(s|s′, π̃i,h(s′))d̃ih−1(s′).
(7)

Thus, we have:

Ṽ ik − V i =
∑
s∈S

[
µ(s)r(s)− µ(s)r(s) +

H∑
h=2

(d̃ih(s)− dih(s))r(s)

]
(8)

=
∑
s∈S

H∑
h=2

∣∣∣d̃ih(s)− dih(s)
∣∣∣ (9)

=
∑
s∈S

H−1∑
h=1

∣∣∣∣∣∑
s′∈S

d̃ih(s′)pi(s|s′, π̃i,h(s′))− dih(s′)pi(s|s′, πi,h(s′))

∣∣∣∣∣ (10)

=
∑
s∈S

H−1∑
h=1

∑
s′∈S

∣∣∣d̃ih(s′)− dih(s′)
∣∣∣ pi(s|s′, π̃i,h(s′)) + dih(s′) |pi(s|s′, π̃i,h(s′))− pi(s|s′, πi,h(s′))|

=
∑
s′∈S

H−1∑
h=2

∣∣∣d̃ih(s′)− dih(s′)
∣∣∣+
∑
s∈S

∑
s′∈S

H−1∑
h=1

dih(s′) |pi(s|s′, π̃i,h(s′))− pi(s|s′, πi,h(s′))| (11)

=
H∑

H′=2

∑
s∈S

∑
s′∈S

H′−1∑
h=1

dih(s′) |pi(s|s′, π̃i,h(s′))− pi(s|s′, πi,h(s′))| (12)

≤ H
∑
s′∈S

H−1∑
h=1

dih(s′)
∑
s∈S
|pi(s|s′, π̃i,h(s′))− pi(s|s′, πi,h(s′))| (13)

≤ 2H
∑
s′∈S

H−1∑
h=1

1
{
N i
k,h(s) = 0

}
dih(s′), (14)

where in line (8) we use the definition of expected return. In line (9) we bound the value of every reward with its maximum
value 1. In line (10) we expanded the probability distribution of visiting states using Equations (7). In line (11) we observe that
d̃ih(s′) − dih(s′) = µ(s) − µ(s) = 0 to make the first summation start from h = 2. In line (12), we apply the recursion with
line (9). In line (13), we bound H ′ ≤ H and observe that the outer summation has less than H terms. Finally, in line (14) we
upper bound the differences between the two probabilities with 2, and we use the fact that when we have seen a state s with a
configuration pi we have learned its policy (that is deterministic).

Lemma B.2. A configuration pi ∈ P is no longer played after episode k ∈ [K] if for every state s ∈ S and h ∈ [H], with
dih(s) ≥ ∆i−c

2H2S we have N i
k,h(s) > 0, where c > 0 is arbitrary and ∆i = V ∗ − V i.



Proof. It sufficies to prove that the optimistic expected return Ṽ ik < V ∗, that, in turn, will satisfy V ∗ ≤ Ṽ i∗k :

Ṽ ik = V i + Ṽ ik − V i

≤ V i + 2H
∑
s∈S

H−2∑
h=1

dih(s)1
{
N i
h,k(s) = 0

}
(15)

≤ V i + 2H2S
∆i − c
2H2S

(16)

= V i + ∆i − c < V ∗, (17)

where in line (15) we apply Lemma B.1. In line (16) we bound the state visitation probabilities with its maximum value as in the
statement hypothesis. In line (17) we use the fact that ∆i = V ∗ − Vi.

Theorem B.1 (Regret of AfOCL). LetNCM = (S,A,P, µ, rc, ro, H) with P = {p1, . . . , pM} be the M finite-horizon MDPs
of the problem. The expected regret of AfOCL at every episode K > 0 is bounded by:

E[Regret(K)] ≤MH3S2. (18)

Proof. We define the regret as:

E[Regret(K)] =
∑

i∈[M ]:∆i>0

∆i E[Ni],

where Ni is the expected number of times that the algorithm plays model pi which is not the optimal configuration pi∗ . We start
bounding for every configuration pi s.t. ∆i > 0 the expected value of Ni. We denote with kil the round at which model i is
selected for the l-th time:

E[Ni] ≤
K∑
l=0

Pr(Ni ≥ l)

≤
∞∑
l=0

Pr(Ni ≥ l) (19)

≤
∞∑
l=0

Pr
(
Ṽ ikil
− V ∗ ≥ 0

)
(20)

(21)

In line (19) we extend the sum to∞. In line (20) we exploit the fact that if configuration i is selected then it must be Ṽ i
kil
≥ Ṽ i∗

kil

and, because of optimism Ṽ i
∗

kil
≥ V ∗. Then, we observe that for Lemma B.2, if configuration i is played at time kil , then there

must exists s ∈ S and h ∈ [H] with dih(s) ≥ ∆i−c
2H2S that is no longer visited. Formally:

E[Ni] ≤
∞∑
l=0

Pr
(
Ṽ ikil
− V ∗ ≥ 0

)
≤
∞∑
l=0

Pr

(
∃s ∈ S, ∃h ∈ [H] s.t. dih(s) ≥ ∆i − c

2H2S
: N i

kil ,h
(s) = 0

)
(22)

≤
∞∑
l=0

∑
s∈S,h∈[H]:dih(s)≥∆i−c

2H2S

Pr
(
N i
kil ,h

(s) = 0
)

(23)

≤ 1 + SH

∞∑
l=1

(
1− ∆i − c

2H2S

)l−1

(24)

= 1 + SH
1− ∆i−c

2H2S
∆i−c
2H2S

≤ H3S2

∆i − c
, (25)

where, in line (22) we use Lemma B.2. In line (23) we use the union bound over the set employed for existential quantification. In
line (24) we bound the probability as Pr

(
N i
kil ,h

(s) = 0
)

= (1− dih(s))l−1. In line (25) we use the geometric series properties.



So the expected regret is bounded by:

E[Regret(K)] =
∑

i∈[M ]:∆i>0

∆i E[Ni] ≤
∑

i∈[M ]:∆i>0

∆i
H3S2

∆i − c
≤MH3S2,

having taken the infimum over c > 0.

Proofs of Section 5
In this section, we are going to prove the regret bound RfOCL. In this second algorithm the configurator can observe at every
episode also a realization of the agent’s reward function. In the following we will show how the algorithm exploits this information
under Assumption 2.

We start defining the good events Gk for k ∈ [K]:

Gk =

{
∃s ∈ S s.t. |r̂o,k(s)− ro(s)| ≤

√
log(2SHk2)

2Nk(s)

}
The event Gk means that, at episode k ∈ [K], the estimated rewards of each state s ∈ S are inside the confidence intervals.

Lemma B.3. For every configuration pi ∈ P and state action pair (s, a) ∈ S × A, the difference between the optimistic
state-action value function Q

i

o,k,1(s, a) and the true optimal state-action value function Qio,1(s, a) is bounded by:

Q
i

o,k,1(s, a)−Qio,1(s, a) ≤ ro,k(s)− ro(s) +
∑
s′∈S

H∑
h=2

d
i

k,h(s′) (ro,k(s)− ro(s)) ,

where d
i

k,h the visitation distribution induced by a greedy policy πi,k w.r.t. Q
i

o,k. Similarly, the difference between the true
optimal state-action value function Qio,1(s, a) and the pessimistic state-action value function Qi

o,k,1
(s, a) is bounded by:

Qio,1(s, a)−Qi
o,k,1

(s, a) ≤ ro(s)− ro,k(s) +
∑
s′∈S

H∑
h=2

dik,h(s′)
(
ro(s)− ro,k(s)

)
.

Proof. The proof is basically taken from (Zanette, Kochenderfer, and Brunskill 2019; Azar, Munos, and Kappen 2013; Tirinzoni,
Poiani, and Restelli 2020):

Q
i

o,k,1(s, a)−Qio,1(s, a) ≤ Qio,k,1(s, a)−Qπi
o,1(s, a) (26)

= ro,k(s)− ro(s) +
∑
s′∈S

H∑
h=2

d
i

k,h(s′) (ro,k(s)− ro(s)) . (27)

where line (26) is due to Qio,1(s, a) ≥ Qπi,k

o,1 (s, a), recalling that Qio,1 is the optimal Q-value for the agent, under configuration pi
and the optimal agent’s policy. Line (26) derives form the application of the simulation lemma since Q

i

o,k,1(s, a) and Qπi
o,1(s, a)

are under the same policy πi. For the second statement, we proceed analogously by simply observing that Qi
o,k,1

(s, a) ≤
Q
πi,k

o,1 (s, a) where πi,k is the greedy policy w.r.t. Qi
o,k

(s, a).

Lemma B.4. If for all k ∈ [K], the good events Gk hold, for all state-action pairs (s, a) ∈ S ×A, h ∈ [H], and configuration
pi ∈ P it holds that:

Q
i

o,k,1(s, a)−Qio,1(s, a) ≤ SH

√
log(2SHk2)

2Nk(s)
,

Qio,1(s, a)−Qi
o,k,1

(s, a) ≤ SH

√
log(2SHk2)

2Nk(s)
.

Proof. We apply Lemma B.3 and recall that ro,k(s) = r̂o,k(s) +
√

log(2SHk2)
2Nk(s) and ro,k(s) = r̂o,k(s)−

√
log(2SHk2)

2Nk(s) . Then, we
bound the visitation distribution with 1.



Lemma B.5. Let s ∈ S be a state with minimum visitation probability d(s) := mini∈[M ] maxh∈[H] d
i
h(s) > 0. Then, at episode

k ∈ [K], for every δk ∈ (0, 1), with probability at least 1− δk it holds that:

Nk(s) ≥ (k − 1)d(s)−

√
k − 1

2
log

(
1

δk

)
.

Proof. First of all, we define the random variable Nu
k (s) as the count of the visits to state s, where multiple visits in the same

episode are considered just once:

Nu
k (s) =

k−1∑
i=1

1 {∃h ∈ [H] : sk,h = s} .

Clearly, Nu
k (s) ≤ Nk(s) and, consequently, E[Nu

k (s)] ≤ E[Nk(s)]. The expectation of E[Nu
k (s)] can be bounded as:

E[Nu
k (s)] = E

[
k−1∑
i=1

1 {∃h ∈ [H] : sk,h = s}

]

=

k−1∑
i=1

Pr (∃h ∈ [H] : sk,h = s|pIk , πIk) (28)

=

k−1∑
i=1

Pr

 ⋃
h∈[H]

{sk,h = s}|pIk , πIk

 (29)

≥
k−1∑
i=1

max
h∈[H]

Pr (sk,h = s|pIk , πIk) (30)

=

k−1∑
i=1

max
h∈[H]

dIkh (s) (31)

≥ (k − 1) min
i∈[M ]

max
h∈[H]

dih(s) = (k − 1)d(s), (32)

where line (28) and line (29) we simply rewrite the expectation as probability. In line (30) we bound the probability of the union
with just one term. In line (31) we employ the definition of dIkh (s). Finally, in line (32), we take the minimum over Ik. Since
0 ≤ Nu

k (s) ≤ k − 1, by using Höeffding’s inequality we have that with probability at least 1− δk it holds that:

Nu
k (s) ≥ E[Nu

k (s)]−
√
k − 1

2
log

1

δk
≥ (k − 1)d(s)−

√
k − 1

2
log

1

δk
,

having used the lower bound on E[Nu
k (s)]. The result follows from recalling thatE[Nu

k (s)] ≤ E[Nk(s)].

Lemma B.6. If for all k ∈ [K], the good events Gk hold, and for all s ∈ S it holds that
√

log(2SHk2)
2Nk(s) ≤ ∆Q−c

2SH , with arbitrary
c > 0, then for every configuration pi ∈ P we have that π̃i = πi.

Proof. Let ∆Q be the minimum gap between the Q-function in the optimal action and a different action in all transition
probabilities pi ∈ P:

∆Q = min
i∈[M ]

min
s∈S

min
h∈[H]

{
max
a∈A

Qio,h(s, a)− max
a′∈A\arg maxa∈AQ

i
o,h(s,a)

Qio,h(s, a′)

}
.

For all s ∈ S and h ∈ [H], we denote with a∗ = arg maxa∈AQ
i
o,h(s, a) and we have for all a ∈ A \ {a∗}:

Q
i

o,k,h(s, a)−Qi
o,k,h

(s, a∗) = Q
i

o,k,h(s, a)−Qi
o,k,h

(s, a∗)±Qio,h(s, a)±Qio,h(s, a∗)

= Q
i

o,k,h(s, a)−Qio,h(s, a)︸ ︷︷ ︸
(A)

+Qio,h(s, a∗)−Qi
o,k,h

(s, a∗)︸ ︷︷ ︸
(B)

+Qio,h(s, a)−Qio,h(s, a∗)︸ ︷︷ ︸
(C)

≤ 2SH

√
log(2SHk2)

2Nk(s)
−∆Q

≤ 2SH
∆Q − c
2SH

−∆Q ≤ −c,



where for (A) and (B) we applied Lemma B.4 and for (C) we used the definition of ∆Q. We have proved that the lower bound
on the Q-value of the optimal action Qi

o,k,h
(s, a∗) falls above the upper bound on the Q-value of all other actions Q

i

o,k,h(s, a).
Consequently, the greedy action will be properly identified and π̃i = πi.

Theorem B.2 (Regret of RfOCL). LetNCM = (S,A,P, µ, rc, ro, H) with P = {p1, . . . , pM} be the M finite-horizon MDPs
of the problem. Under Assumption 2, the expected regret of RfOCL at every episode K > 0 is bounded by:

E[Regret(K)] ≤ min(MH3S2,K∆ +
π2

3
),

where K is the smallest integer solution of the inequality K ≥ 1 +

(
2H2S2 log(2SHK

2
)

2∆2
Q

+

√
K−1

2 log(SHK
2
)

)
1
ε , ∆ =

maxi∈[M ] ∆i, i.e., the maximum suboptimality gap, and ∆Q is the minimum positive gap of the agent’s Q-values (see Appendix B).

Proof. We rewrite the expected regret as follows:

E[Regret(K)] =

K∑
k=1

(E[∆Ik1 {Gk}] + E[∆Ik1 {¬Gk}])

≤
K∑
k=1

E[∆Ik |Gk]︸ ︷︷ ︸
(A)

+H

K∑
k=1

Pr(¬Gk)︸ ︷︷ ︸
(B)

,

where we bounded Pr(Gk) ≤ 1 in term (A) and ∆k with its maximum value H in term (B). We start bounding the (B) term:

H

K∑
k=1

Pr(¬Gk) = H

K∑
k=1

Pr

(
∃s ∈ S s.t. |r̂o,k(s)− r(s)| >

√
log(2SHk2)

2Nk(s)

)
(33)

≤ H
K∑
k=1

∑
s∈S

Pr

(
|ro,k(s)− r(s)| >

√
log(2SHk2)

2Nk(s)

)
(34)

≤ H
K∑
k=1

∑
s∈S

1

SHk2
≤ π2

6
, (35)

where line (33) follows from the definition of the good event Gk. Line (34) is a union bound on the states. Line (35) comes
from Höeffding’s inequality.

For the first term (A) we define the event Ek for all k ∈ [K]:

Ek =

{
∀s ∈ S : Nk(s) ≥ (k − 1)d(s)−

√
k − 1

2
log (SHk2)

}
.

If this event holds then every state s ∈ S is visited at least (k − 1)d(s)−
√

k
2 log (SHk2) times, where d(s) is defined as in

Lemma ??.
Considering the term (A), we have:

K∑
k=1

E[∆Ik |Gk] ≤
K∑
k=1

E[∆Ik |Gk, Ek]︸ ︷︷ ︸
(C)

+H

K∑
k=1

Pr(¬Ek)︸ ︷︷ ︸
(D)

,

where we bound the second term with the maximum expected returns-gap with H . We start bounding the second term (D). We
apply Lemma B.5 after a union bound over the states:

H

K∑
k=1

Pr(¬Ek) = H

K∑
k=1

Pr

(
∃s ∈ S : Nk(s) < (k − 1)d(s)−

√
k − 1

2
log (SHk2)

)

≤ H
∑
s∈S

K∑
k=1

Pr

(
Nk(s) < (k − 1)d(s)−

√
k − 1

2
log (SHk2)

)

≤ H
∑
s∈S

K∑
k=1

1

SHk2
≤ π2

6
.



Now it remains to bound the term (C) that, using Lemma B.6, is zero whenever
√

log(2SHk2)
2Nk(s) ≤ ∆Q−c

2SH . Thus, under the events
Ek and recalling that under Assumption 2 we have d(s) ≥ ε, we obtain:√

log(2SHk2)

2Nk(s)
≤
√

log(2SHk2)

2(k − 1)ε−
√

2(k − 1) log (SHk2)
.

From which, we derive the condition:

K ≥ 1 +

2H2S2 log(2SHK
2
)

2(∆Q − c)2
+

√
K − 1

2
log(SHK

2
)

 1

ε
.

Then, we take the infimum over c. Thus, for the term (C), we consider the decomposition:

K∑
k=1

E[∆Ik |Gk, Ek] ≤
K∑
k=1

E[∆Ik |Gk, Ek] +

∞∑
k=K+1

E[∆Ik |Gk, Ek] = K∆ + 0,

where we bounded ∆Ik ≤ ∆ with ∆ = maxi∈[M ] ∆i. Then the total regret is given by:

E[Regret(K)] = K∆ +
π2

3
.



C Experimental Details
In this appendix, we report additional experimental details and results.

Configurable Gridworld
Description In Figure 5 the environment of the Configurable Gridworld is shown. The configurable Gridworld is a 3 × 3

gridworld with an obstacle in the cell (2, 2), which with a probability p causes the agent action right not to be performed. The
starting state is in every configuration (1, 2) and the goal state is (3, 2).

Additional Experiments We report additional experiments for the Configurable Gridworld environment. For the Configurable
Gridworld with size 3× 3, horizon 10, we perform 4 experiments with an increasing number of configurations. Figure 6 shows
the results of the experiments. We can notice that with more than 100 configurations AfOCL does not achieve constant regret in
5000 steps, instead RfOCL converges in every experiment.

Configuration #1 Configuration #2 Configuration #3

Figure 5: Configurable Gridworld: from left to right the 3 configurations represent increasing “power” of the obstacle.
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Figure 6: From left up to right down 10, 30, 100, 200 configurations’ number.



Teacher Student
In Figure 7 an illustrative example of the Teacher-Student domain is reported. Right arrows correspond to answer No, and green
arrows to answer Yes. The transparency is due to the level of probability of every transition. The configurator can change the
transition matrix for the answer Yes, instead the transition matrix for action No is fixed for all the configurations.

1

2 3

1

2 3

1

2 3

Configuration #1 Configuration #2 Configuration #3

Figure 7: Teacher Student.

Market
In Figure 8 the market domain with 3 different configurations is shown. The market domains consists in K ×K states, where
every product is assigned to a specific state. The configurator can change the transition matrix for all the states except for the
starting state and the "exit" state. Every different configuration can be thought as shuffling the cells of a gridworld.

Configuration #1 Configuration #2 Configuration #3

Figure 8: Market: the figure shows a 5× 5 market. The red state is the starting state, instead the green state is the “end” state.
The stars are the product and the orange star is the only product the agent is interested in.
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