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Abstract

Stochastic shortest path (SSP) is a well-known problem in
planning and control, in which an agent has to reach a
goal state in minimum total expected cost. In this paper we
consider adversarial SSPs that also account for adversarial
changes in the costs over time, while the dynamics (i.e., tran-
sition function) remains unchanged. Formally, an agent inter-
acts with an SSP environment for K episodes, the cost func-
tion changes arbitrarily between episodes, and the fixed dy-
namics are unknown to the agent. We give high probability
regret bounds of Õ(

√
K) assuming all costs are strictly pos-

itive, and Õ(K3/4) for the general case. To the best of our
knowledge, we are the first to consider this natural setting of
adversarial SSP and obtain sub-linear regret for it.

1 Introduction
Stochastic shortest path (SSP) is one of the most basic mod-
els in reinforcement learning (RL). In SSP the goal of the
agent is to reach a predefined goal state in minimum ex-
pected cost, and it captures a wide variety of natural sce-
narios, such as car navigation and game playing.

An important aspect that the SSP model fails to capture
is the changes in the environment over time (e.g., changes
in traffic when navigating a car). Usually, this aspect of the
environment is theoretically modeled by adversarial Markov
decision processes (MDPs), in which the cost function may
change arbitrarily over time, while still assuming a fixed
transition function. In this work we present the adversarial
SSP model that combines SSPs with adversarial MDPs.

In the adversarial SSP model, the agent interacts with
an SSP environment for K episodes, but the cost function
changes between episodes arbitrarily. The agent’s objective
is to reach the goal state in every episode while minimizing
its total expected cost. Its performance is measured by the
regret – the difference between the agent’s total cost and the
expected total cost of the best stationary policy in hindsight.

We propose the first algorithms for regret minimization
in adversarial SSPs. Our algorithms take recent advances in
learning SSP problems (Tarbouriech et al. 2019; Cohen et al.
2020) – that build upon the optimism in face of uncertainty
principle, and combine them with the O-REPS framework
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(Zimin and Neu 2013; Rosenberg and Mansour 2019a,b; Jin
and Luo 2019) for adversarial episodic MDPs – which im-
plements the online mirror descent (OMD) algorithm for on-
line convex optimization (OCO). We follow the strategy of
Tarbouriech et al. (2019); Cohen et al. (2020) for SSPs –
We start by assuming all costs are strictly positive and prove
Õ(
√
K) regret (which is optimal). Then, using a perturba-

tion argument, we remove this assumption and show that our
algorithms obtain Õ(K3/4) regret in the general case.

Our main technical contribution is the adaptation of OMD
to the SSP environment. While a naive application of this
method results in unbounded regret even in expectation, we
show that small modifications obtain near-optimal regret
bounds with high probability. Our second technical contri-
bution is the combination of OMD with optimism, which is
far more challenging than in the episodic setting (Rosenberg
and Mansour 2019a), and requires clever modifications to
the analysis. We hope that the framework created in this pa-
per for handling adversarial costs in SSP environments will
pave the way for future work to achieve tight regret bounds
with more practical algorithms.

The rest of the paper is organized as follows. First, we
consider a simplified case in which the transition function is
known to the learner and the regret should be minimized in
expectation. For this case, we establish an efficient O-REPS
based algorithm and bound its expected regret. Then, we in-
troduce an improvement that ensures the learner will not run
too long before reaching the goal, and show that this yields
a high probability regret bound. Next, we remove the known
transition function assumption and combine our algorithm
with the confidence set framework of UCRL2 (Jaksch, Ort-
ner, and Auer 2010). This allows us to prove high probability
regret bound without knowledge of the transitions. Finally,
we remove the assumption of strictly positive costs and ob-
tain high probability regret bounds for the general case.

1.1 Related work
Early work by Bertsekas and Tsitsiklis (1991) studied the
problem of planning in SSPs, that is, computing the optimal
strategy efficiently in a known SSP instance. They estab-
lished that, under certain assumptions, the optimal strategy
is a deterministic stationary policy (a mapping from states
to actions) and can be computed efficiently using standard
planning algorithms, e.g., Value Iteration or Policy Iteration.



Recently the problem of learning SSPs was addressed by
Tarbouriech et al. (2019) and then improved by Cohen et al.
(2020). The latter show an efficient algorithm based on op-
timism and prove that it obtains a high probability regret
bound of Õ(D|S|

√
|A|K), where D is the diameter, S is

the state space and A is the action space. They also prove a
nearly matching lower bound of Ω(D

√
|S||A|K).

Regret minimization in RL has been extensively studied,
but the literature mainly focuses on the average-cost infinite-
horizon model (Bartlett and Tewari 2009; Jaksch, Ortner,
and Auer 2010; Fruit et al. 2018) and on the finite-horizon
(episodic) model (Osband, Van Roy, and Wen 2016; Azar,
Osband, and Munos 2017; Dann, Lattimore, and Brunskill
2017; Jin et al. 2018; Zanette and Brunskill 2019; Efroni
et al. 2019). The extension of these ideas to SSPs is an im-
portant task due to the practical applications of this setting,
and therefore we focus on extending the adversarial MDP
literature to SSP.

Adversarial MDPs were first studied in the average-cost
infinite-horizon model (Even-Dar, Kakade, and Mansour
2009; Yu, Mannor, and Shimkin 2009; Neu et al. 2014),
before focusing on the episodic setting. Early work in the
episodic setting by Neu, György, and Szepesvári (2010)
used a reduction to multi-arm bandit (Auer et al. 2002), but
then Zimin and Neu (2013) introduced the O-REPS frame-
work. All these works assumed a known transition function,
but more recent work (Neu, György, and Szepesvári 2012;
Rosenberg and Mansour 2019a,b; Jin and Luo 2019) consid-
ered the more general case where the agent must learn the
transition function from experience. Recently, Efroni et al.
(2020); Cai et al. (2019) showed that policy optimization
methods (that are widely used in practice) can also achieve
near-optimal regret bounds in adversarial episodic MDPs.

It is important to point out that we are the first to consider
SSP with adversarially changing costs, although some pre-
vious works on finite-horizon adversarial MDPs refer to it as
“adversarial (loop-free) stochastic shortest path”.

2 Preliminaries
An adversarial SSP problem is defined by an MDP M =
(S,A, P, s0, g) and a sequence c1, . . . , cK of cost functions,
where ck : S × A → [0, 1]. We do not make any statistical
assumption on the cost functions, i.e., they can be chosen ar-
bitrarily. S and A are finite state and action spaces, respec-
tively, and P is a transition function such that P (s′ | s, a) is
the probability to move to s′ when taking action a in state s.

The learner interacts with M in episodes, where ck is the
cost function for episode k. However, it is revealed to the
learner only in the end of the episode. In every episode, the
learner begins at the initial state s0

1, and ends the interaction
with M by arriving at the goal state g (where g 6∈ S). The
full interaction is described in Algorithm 1. To simplify the
presentation we denote S+ = S ∪ {g} and thus for every
(s, a) ∈ S ×A we have that

∑
s′∈S+ P (s′ | s, a) = 1.

1For simplicity s0 is fixed, but all the results generalize to any
initial distribution.

Algorithm 1 Learner-Environment Interaction

Parameters: M = (S,A, P, s0, g), {ck}Kk=1
for k = 1 to K do

learner starts in state sk1 = s0, i← 1
while ski 6= g do

learner chooses action aki ∈ A
learner observes state ski+1 ∼ P (· | ski , aki ), i← i+1

end while
learner observes ck and suffers cost

∑i−1
j=1 ck(skj , a

k
j )

end for

2.1 Proper policies
A stationary (stochastic) policy is a mapping π : S × A →
[0, 1], where π(a | s) gives the probability that action a is se-
lected in state s. Since reaching the goal is one of the main
objectives of the learner along with minimizing its cost, we
are interested in proper policies (otherwise we cannot guar-
antee finite cost, let alone finite regret).
Definition 1. A policy π is proper if playing according to π
reaches the goal state with probability 1 when starting from
any state. A policy is improper if it is not proper.

The set of all proper deterministic policies is denoted by
Πproper. In addition, we denote by Tπ(s) the expected time it
takes for π to reach g starting at s. In particular, if π is proper
then Tπ(s) is finite for all s ∈ S, and if π is improper there
must exist some s′ ∈ S such that Tπ(s′) =∞. We make the
basic assumption that the goal is reachable from every state
(also implies that Πproper 6= ∅), and formalize it as follows.
Assumption 1. There exists at least one proper policy.

When paired with a cost function c : S ×A→ [0, 1], any
policy π induces a cost-to-go function Jπ : S → [0,∞],
where Jπ(s) is the expected cost when playing policy π and
starting at state s, i.e., Jπ(s) = limT→∞ E

[∑T
t=1 c(st, at) |

P, π, s1 = s
]
. For a proper policy π, it follows that Jπ(s) is

finite for all s ∈ S. However, note that Jπ(s′) may be finite
for some state s′ ∈ S even if π is improper.

Under Assumption 1 and the assumption that every im-
proper policy suffers infinite cost from some state, Bertsekas
and Tsitsiklis (1991) show that the optimal policy is station-
ary, deterministic and proper; and that every proper policy π
satisfies the following Bellman equations for every s ∈ S:

Jπ(s) =
∑
a∈A

π(a | s)
(
c(s, a) +

∑
s′∈S

P (s′ | s, a)Jπ(s′)
)
(1)

Tπ(s) = 1 +
∑
a∈A

∑
s′∈S

π(a | s)P (s′ | s, a)Tπ(s′) (2)

2.2 Learning formulation
The success of the learner is measured by the regret – the
difference between the learner’s total cost inK episodes and
the total expected cost of the best proper policy in hindsight:

RK =

K∑
k=1

Ik∑
i=1

ck(ski , a
k
i )− min

π∈Πproper

K∑
k=1

Jπk (s0),



where Ik is the time it takes the learner to complete episode
k (which may be infinite), (ski , a

k
i ) is the i-th state-action

pair at episode k, and Jπk is the cost-to-go of policy π with
respect to (w.r.t) cost function ck. In the case that Ik is in-
finite for some k, to ensure the goal must be reached, we
define RK =∞.

We denote π? = arg minπ∈Πproper

∑K
k=1 J

π
k (s0), and de-

fine the SSP-diameter (Tarbouriech et al. 2019), D =
maxs∈S minπ∈Πproper T

π(s), which commonly appears in re-
gret bounds but is unknown to the learning algorithms.

Our analysis makes use of the Bellman equations, that
hold under the conditions described before Eq. (1). To make
sure these are met, we make the assumption that the costs are
strictly positive. In Section 6 we remove this assumption, by
adding a small positive perturbation to the costs.

Assumption 2. All costs are positive, i.e., there exists
cmin > 0 such that ck(s, a) ≥ cmin for every k, s, a.

3 Occupancy measures
Every policy π induces an occupancy measure qπ : S×A→
[0,∞] such that qπ(s, a) is the expected number of times to
visit state s and take action a when playing according to π,

qπ(s, a) = lim
T→∞

E
[ T∑
t=1

I{st = s, at = a} | P, π, s1 = s0

]
,

where I{·} is the indicator function. Note that for a proper
policy π, qπ(s, a) is finite for all state-action pairs. Further-
more, this correspondence between proper policies and finite
occupancy measures is 1-to-1, and its inverse for q is given
by πq(a | s) = q(s,a)

q(s) , where q(s) def
=
∑
a∈A q(s, a). 2

The aforementioned equivalence between policies and oc-
cupancy measures is well-known for MDPs (see, e.g., Zimin
and Neu (2013)), but also holds for SSPs by linear program-
ming formulation (Manne 1960; d’Epenoux 1963). Notice
that the expected cost of policy π is linear w.r.t qπ ,

Jπkk (s0) = E
[ Ik∑
i=1

ck(ski , a
k
i ) | P, πk, s1 = s0

]
=
∑
s∈S

∑
a∈A

qπk(s, a)ck(s, a)
def
= 〈qπk , ck〉. (3)

Thus, minimizing the expected regret can be written as an in-
stance of online linear optimization (using tower property),

E[RK ] = E

[
K∑
k=1

Jπkk (s0)−
K∑
k=1

Jπ
?

k (s0)

]

= E

[
K∑
k=1

〈qπk − qπ
?

, ck〉

]
.

2If q(s) = 0 for some state s then the inverse mapping is not
well-defined. However, since s will not be reached, we can pick the
action there arbitrarily. More precisely, the correspondence holds
when restricting to reachable states.

4 Known transition function
Before tackling our main challenge of adversarial SSP with
unknown transition function in Section 5, we use the simpler
case of known dynamics to develop our main techniques. In
Section 4.1 we establish the implementation of the OMD
method in SSP, and then in Section 4.2 we show how to con-
vert its expected regret bound into a high probability bound.

4.1 Online mirror descent for SSP
Online mirror descent is a popular framework for OCO and
its application to occupancy measures yields the O-REPS
algorithms (Zimin and Neu 2013; Rosenberg and Mansour
2019a,b; Jin and Luo 2019). Usually these algorithms oper-
ate w.r.t to the set of all occupancy measures (which corre-
sponds to the set of all policies), but a naive application of
this kind may result in the learner playing improper policies.

Thus, we propose to use the set ∆(D/cmin) – occupancy
measures of policies π that reach the goal in expected time
Tπ(s0) ≤ D/cmin, which has a compact representation as
we show next. As mentioned before, while this is not a
concern in finite-horizon RL, limiting the running time of
our policies will be crucial in the regret analysis. The pa-
rameter D/cmin is chosen because it is the smallest such
that qπ

? ∈ ∆(D/cmin), i.e., Tπ
?

(s0) ≤ D/cmin (see Ap-
pendix C3). Another approach may be to estimate Tπ

?

(s0)
on the fly, but this seems unlikely due to the adversarial
change in the cost (that changes the best policy in hindsight).

Our algorithm, called SSP-O-REPS, follows the O-REPS
framework. In each episode we pick an occupancy mea-
sure (and thus a policy) from ∆(D/cmin) which minimizes a
trade-off between the current cost function and the distance
to the previously chosen occupancy measure. Formally,

qk+1 = qπk+1 = arg min
q∈∆(D/cmin)

η〈q, ck〉+ KL(q ‖ qk), (4)

where KL(·||·) is the un-normalized KL-divergence defined
by KL(q ‖ q′) =

∑
s,a q(s, a) log q(s,a)

q′(s,a) +q′(s, a)−q(s, a),
and η > 0 is a learning rate. To compute qk+1 we first
find the unconstrained minimizer and then project it into
∆(D/cmin) (see Zimin and Neu (2013)), i.e.,

q′k+1 = arg min
q

η〈q, ck〉+ KL(q ‖ qk) (5)

qk+1 = arg min
q∈∆(D/cmin)

KL(q ‖ q′k+1). (6)

Eq. (5) has a closed form q′k+1(s, a) = qk(s, a)e−ηck(s,a),
and Eq. (6) can be formalized as a constrained convex opti-
mization problem using the following constraints:

∀s ∈ S
∑
a∈A

q(s, a)− I{s = s0} = (7)

=
∑
s′∈S

∑
a′∈A

q(s′, a′)P (s | s′, a′)

∑
s∈S

∑
a∈A

q(s, a) ≤ D

cmin
, (8)

3The appendix can be found in the full version of the paper on
Arxiv: https://arxiv.org/abs/2006.11561.



where we omitted non-negativity constraints, constraint (7)
is standard, and constraint (8) ensures Tπ

q

(s0) ≤ D/cmin.
In Appendix A, we show how to solve this problem effi-
ciently and describe the implementation details of the algo-
rithm. In addition, we describe the efficient computation of
D by finding the optimal policy w.r.t the constant cost func-
tion c(s, a) = 1. High-level pseudocode is found in Algo-
rithm 2, and fully detailed pseudocode in Appendix B.

We follow the analysis of OMD to obtain the algorithm’s
expected regret bound. Moreover, we show that all the poli-
cies chosen by the algorithm must be proper and there-
fore the goal state will be reached with probability 1 in all
episodes. Proofs are in Appendix C.

Theorem 4.1. Under Assumptions 1 and 2, the expected
regret of SSP-O-REPS with known transition function and

η =
√

3 log(D|S||A|/cmin)
K is

E[RK ] ≤ O
(
D

cmin

√
K log

D|S||A|
cmin

)
= Õ

(
D

cmin

√
K

)
.

4.2 High probability regret bound
In contrast to the finite-horizon setting where the cost is al-
ways bounded by the horizon H , a regret bound in expec-
tation in the SSP setting does not guarantee any concrete
bound on the actual cost. Thus, it is of great importance to
bound the regret with high probability, which requires us to
bound the deviation of the suffered cost from its expectation.

The following lemma shows that this deviation is closely
related to the expected time of reaching the goal from any
state. Its proof is based on an adaptation of Azuma inequality
to martingales that are bounded only with high probability
(Theorem J.5), and might be of independent interest.

Lemma 4.2. Denote by σk the learner’s strategy in episode
k, and assume that the expected time of reaching the goal
from any state when playing σk is at most D/cmin. Then,
with probability at least 1− δ,

K∑
k=1

Ik∑
i=1

ck(ski , a
k
i ) ≤

K∑
k=1

E
[ Ik∑
i=1

ck(ski , a
k
i )|P, σk, sk1 = s0

]
+O

(
D

cmin

√
K log3 K

δ

)
.

Thus, we would like to bound Tπk(s) ≤ D/cmin for all
s ∈ S and not just s0. However, representing this constraint
with occupancy measures gives a non-convex set. We bypass
this issue with the algorithm SSP-O-REPS2 that operates as
follows. We start every episode k by playing the policy πk
chosen by SSP-O-REPS (i.e., Eq. (4)), but once we reach
a state s whose expected time to the goal is too long (i.e.,
Tπk(s) ≥ D/cmin), we switch to the fast policy πf .

The fast policy minimizes the time to the goal from any
state and can be computed efficiently similarly to the SSP-
diameter D (see Appendix A). Computing Tπk is also effi-
cient. Notice that if qπk(s) > 0 then Tπk(s) must be finite,
otherwise Tπk(s0) =∞. Thus, we can compute Tπk as fol-
lows: Ignore states that are not reachable from s0 using πk,

Algorithm 2 SSP-O-REPS

Input: S,A, P, cmin, η.
Initialization:

Compute D (see Appendix A.2).
Set q0(s, a) = 1 and c0(s, a) = 0 for every (s, a).

for k = 1, 2, . . . do
Perform OMD step (see Appendix A):

qk = arg min
q∈∆(D/cmin)

η〈q, ck−1〉+ KL(q ‖ qk−1).

Compute πk(a | s) = qk(s,a)∑
a′∈A qk(s,a′) for every (s, a).

Set sk1 ← s0 , i← 1.
while ski 6= g do

Play action according to πk, i.e., aki ∼ πk(· | ski ).
Observe next state ski+1 ∼ P (· | ski , aki ), i← i+ 1.

end while
Observe ck and suffer cost

∑i−1
j=1 ck(skj , a

k
j ).

end for

and solve the (linear) Bellman equations (Eq. (2)). Due to
lack of space, we defer to the pseudocode in Appendix D.

We denote by σk the strategy of playing πk until reach-
ing a “bad” state and then switching to the fast policy. Now
Lemma 4.2 bounds the deviation of our suffered cost from
its expectation. Next, we again turn to bounding the ex-
pected regret. We cannot apply OMD analysis immediately
since we did not play πk all through the episode. However,
Lemma 4.3 shows that our mid-episode policy switch only
decreases the expected cost, and this leads to the high prob-
ability regret bound in Theorem 4.4 (proofs in Appendix E).

The technique of switching to the fast policy was already
used by Tarbouriech et al. (2019) for non-adversarial SSP.
Our key novelty is to make the switch without suffering extra
cost, by switching only in “bad” states. While Tarbouriech
et al. (2019) leverage the non-adversarial environment to
guarantee that the number of switches is finite with high
probability, here it is crucial to avoid extra cost since the
switch may occur in every episode.

Lemma 4.3. For every k = 1, . . . ,K it holds that

E
[ Ik∑
i=1

ck(ski , a
k
i ) | P, σk, sk1 = s0

]
≤

≤ E
[ Ik∑
i=1

ck(ski , a
k
i ) | P, πk, sk1 = s0

]
= Jπkk (s0).

Theorem 4.4. Under Assumptions 1 and 2, with probabil-
ity at least 1 − δ, the regret of SSP-O-REPS2 with known

transition function and η =
√

3 log(D|S||A|/cmin)
K is

RK ≤ O
(
D

cmin

√
K log3 KD|S||A|

δcmin

)
= Õ

(
D

cmin

√
K

)
.



5 Unknown transition function
Our algorithms used the transition function in the definition
of ∆(D/cmin), and in the computation of Tπk and the fast
policy πf . When P is unknown, all of these must be per-
formed w.r.t some estimation. Thus, our algorithm SSP-O-
REPS3 keeps confidence sets that contain P with high prob-
ability, similarly to UCRL2 (Jaksch, Ortner, and Auer 2010).

The algorithm proceeds in epochs and updates the confi-
dence set at the beginning of every epoch. The first epoch
begins at the first time step, and an epoch ends once an
episode ends or the number of visits to some state-action
pair is doubled. Denote by Ne(s, a) the number of visits
to (s, a) up to (and not including) epoch e, and similarly
Ne(s, a, s′). The empirical transition function for epoch e
is defined by P̄e(s′ | s, a) = Ne(s,a,s′)

Ne+(s,a) , where Ne
+(s, a) =

max{Ne(s, a), 1}. The confidence set for epoch e contains
all transition functions P ′ such that for every (s, a, s′) ∈
S ×A× S+,

|P ′(s′ | s, a)− P̄e(s′ | s, a)| ≤ εe(s′ | s, a)
def
=

def
= 4

√
P̄e(s′ | s, a)Ae(s, a) + 28Ae(s, a),

where Ae(s, a) =
log
(
|S||A|Ne+(s,a)/δ

)
Ne+(s,a) , and the size of the

confidence set is controlled by εe(s′ | s, a).
In order to use our confidence sets together with OMD,

we must extend occupancy measures to state-action-state
triplets (Rosenberg and Mansour 2019a) as follows,

qP,π(s, a, s′) = lim
T→∞

E
[ T∑
t=1

I{st = s, at = a, st+1 = s′}
]
,

where E[·] is shorthand for E[· | P, π, s1 = s0] here. Now,
an occupancy measure q corresponds to a policy-transition
function pair with the inverse mapping given by

πq(a | s) =
q(s, a)

q(s)
; P q(s′ | s, a) =

q(s, a, s′)

q(s, a)
,

where q(s, a)
def
=
∑
s′∈S+ q(s, a, s′). Thus, we can incorpo-

rate the confidence sets into the OMD update of Eq. (4) by
replacing the set ∆(D/cmin) with the set ∆̃e(D/cmin) – oc-
cupancy measures q whose induced transition function P q
is in the confidence set of epoch e and the expected time of
πq (w.r.t P q) from s0 to the goal is at most D/cmin, i.e.,

qk+1 = qPk+1,πk+1 (9)
= arg min
q∈∆̃e(k+1)(D/cmin)

η〈q, ck〉+ KL(q ‖ qk),

where e(k) denotes the first epoch in episode k.
As in Section 4.1, this update can be performed in two

steps, where the unconstrained minimization step is identi-
cal to Eq. (5) and the projection step is implemented sim-
ilarly to Eq. (6) but with different constraints. Specifically,
we accommodate the constraints (7) and (8) for the extended
occupancy measures (see Rosenberg and Mansour (2019a)),

and show that a set of linear constraints can express the con-
dition that P q is in the confidence set (see details in Ap-
pendix F). Note that D cannot be computed without know-
ing the transition function. Here we assumeD is known, and
in Section 6 we remove this assumption.

Similarly to SSP-O-REPS2, once we reach a state whose
expected time to the goal is too long, we want to switch
to the fast policy. However, since P is unknown we can-
not compute Tπk or the fast policy. Instead, we use the ex-
pected time of πk w.r.t Pk which we denote by T̃πkk , and the
optimistic fast policy π̃fe . This policy, together with the op-
timistic fast transition function P̃ fe , minimizes the expected
time to the goal out of all pairs of policies and transition
functions from the confidence set. It is computed similarly
to Cohen et al. (2020) (described in details in Appendix F).

Algorithm 3 SSP-O-REPS3

Input: S,A, cmin, η, δ.
Initialization:

Get from user or estimate D (see Section 6).
Initialize epoch counter e← 0 and policy π̃f1 .
Set q0(s, a, s′) = 1 and c0(s, a, s′) = 0 ∀(s, a, s′).

for k = 1, 2, . . . do
Start new epoch e← e+ 1, update confidence sets.
Perform OMD step (see Appendix F):

qk = arg min
q∈∆̃e(D/cmin)

η〈q, ck−1〉+ KL(q ‖ qk−1).

Compute πk(a | s) and Pk(s′ | s, a) for every (s, a, s′).
Compute T̃πkk (s) for every s ∈ S using Eq. (2).

set sk1 ← s0 , i← 1.
while ski 6= g and T̃πkk (ski ) < D

cmin
and ski is known do

Play action according to πk, i.e., aki ∼ πk(· | ski ).
Observe next state ski+1 ∼ P (· | ski , aki ), i← i+ 1.
if number of visits to some (s, a) is doubled then

Start new epoch e← e+1, update confidence sets,
and compute optimistic fast policy π̃fe .
Break

end if
end while
while ski 6= g do

if ski is unknown then
Play action aki that was played the least in state ski .

else
Play action according to π̃fe , i.e., aki ∼ π̃fe (· | ski ).

end if
Observe next state ski+1 ∼ P (· | ski , aki ), i← i+ 1.
if number of visits to some (s, a) is doubled then

Start new epoch e← e+1, update confidence sets,
and compute optimistic fast policy π̃fe .

end if
end while
Observe ck and suffer cost

∑i−1
j=1 ck(skj , a

k
j ).

end for

To make sure the optimistic fast policy reaches the goal



with high probability we distinguish between known and un-
known states. Cohen et al. (2020) show that once all state-
action pairs were visited at least Φ = αD|S|

c2min
log D|S||A|

δcmin

times (for some constant α > 0), the optimistic fast pol-
icy is proper with high probability. Therefore, we say that a
state s is known if (s, a) was visited Φ times for all actions
a ∈ A. When reaching an unknown state, we play the least
played action so far to make sure it will become known as
fast as possible. In Cohen et al. (2020) known states are only
considered implicitly in the analysis, but in the adversarial
setting we must address them explicitly because our policies
must be stochastic and therefore we are not guaranteed that
actions that were not played enough will reach Φ visits.

To summarize, we start each episode k by playing πk
computed in Eq. (9), and maintain confidence sets that are
updated at the beginning of every epoch. When we reach a
state s such that T̃πkk (s) ≥ D/cmin, we switch to the op-
timistic fast policy. In addition, when an unknown state is
reached we play the least played action up to this point and
then switch to the optimistic fast policy. Finally, we also
make the switch to the optimistic fast policy once the num-
ber of visits to some state-action pair is doubled, at which
point we also recompute it. High-level pseudocode in Algo-
rithm 3, and full pseudocode in Appendix G. Next, we give
an overview of the regret analysis for SSP-O-REPS3, which
yields the following regret bound (full proof in Appendix H).
Theorem 5.1. Under Assumptions 1 and 2, with probability
at least 1− δ, the regret of SSP-O-REPS3 with known SSP-

diameter D and η =
√

6 log(D|S||A|/cmin)
K is

RK ≤ Õ
(
D|S|
cmin

√
|A|K +

D2|S|2|A|
c2min

)
= Õ

(
D|S|
cmin

√
|A|K

)
,

where the last equality holds for K ≥ D2|S|2|A|/c2min.
Our analysis follows the framework of Cohen et al. (2020)

for analyzing optimism in SSPs, but makes the crucial adap-
tations needed to handle the adversarial environment.

We have two objectives: bounding the number of steps T
taken by the algorithm (to show that we reach the goal in
every episode) and bounding the regret. To bound the total
time we split the time steps into intervals. The first interval
begins at the first time step, and an interval ends once (1)
an episode ends, (2) an epoch ends, (3) an unknown state
is reached, or (4) a state s such that T̃πkk (s) ≥ D/cmin is
reached when playing πk in episode k, i.e., there is a switch.

Intuitively, we will bound the length of every interval by
Õ(D/cmin) with high probability, and then use the number
of intervals Õ(K + D|S|2|A|/c2min) to bound the total time
T . Finally, we will show that the regret scales with the square
root of the total variance (which is the number of intervals
times the variance in each interval) to finish the proof. While
intuitive, this approach is technically difficult and therefore
we apply these principles in a different way.

We start by showing that the confidence sets contain P
with high probability, which is a common result (see, e.g.,

Zanette and Brunskill (2019); Efroni et al. (2019)). Define
Ωm the event that P is in the confidence set of the epoch
that interval m belongs to.
Lemma 5.2 (Cohen et al. (2020), Lemma 4.2). With proba-
bility at least 1 − δ/2, the event Ωm holds for all intervals
m simultaneously.

There are two dependant probabilistic events that are im-
portant for the analysis. The first are the events Ωm, and the
second is that the deviation in the cost of a given policy from
its expected value is not large. To disentangle these events
we define an alternative regret for every M = 1, 2, . . . ,

R̃M =

M∑
m=1

Hm∑
h=1

∑
a∈A

π̃m(a | smh )cm(smh , a)I{Ωm}−
K∑
k=1

Jπ
?

k (s0),

where cm = ck for the episode k that interval m belongs
to, π̃m is the policy followed by the learner in interval m,
Hm is the length of interval m, and the trajectory visited in
interval m is Um = (sm1 , a

m
1 , . . . , s

m
Hm , a

m
Hm , s

m
Hm+1).

We focus on bounding R̃M because we can use it to ob-
tain a bound on RK . This is done using Lemma 5.2 and an
application of Azuma inequality, when M is the number of
intervals in which the first K episodes elapse (we show that
the learner indeed completes these K episodes).

As mentioned, bounding the length of each interval com-
plicates the analysis, and therefore we introduce artificial in-
tervals. That is, an interval m also ends at the first time step
H such that

∑H
h=1

∑
a∈A π̃m(a | smh )cm(smh , a) ≥ D/cmin.

The artificial intervals are only introduced for the analysis
and do not affect the algorithm. Now, the length of each in-
terval is bounded by 2D/c2min and we can bound the number
of intervals as follows.
Observation 5.3. Let C̃M =

∑M
m=1

∑Hm

h=1

∑
a∈A π̃m(a |

smh )cm(smh , a). The total time satisfies T ≤ C̃M/cmin and
the total number of intervals satisfies

M ≤ cminC̃M
D

+2|S||A| log T+2K+2α
D|S|2|A|
c2min

log
D|S||A|
δcmin

.

Note that a confidence set update occurs only in the end
of an epoch and thus Ωm = Ωm−1 for most intervals. Also,
for artificial intervals the policy does not change. Next we
bound C̃M as a function of the number of intervals M .
Through summation of our confidence bounds, and by show-
ing that the variance in each interval is bounded by D2/c2min
we are able to obtain the following, when Lemma 5.2 holds,

C̃M ≤
K∑
k=1

〈qk, ck〉+ Õ

(
D|S|
cmin

√
M |A|+ D2|S|2|A|

c2min

)
.

Substituting in Observation 5.3 and solving for C̃M we get

R̃M = C̃M −
K∑
k=1

Jπ
?

k (s0) ≤
K∑
k=1

〈qk − qP,π
?

, ck〉

+ Õ

(
D|S|
cmin

√
|A|K +

D2|S|2|A|
c2min

)
,

Notice that the first term on the RHS of the inequality is ex-
actly the regret of OMD, and therefore analyzing it similarly
to Theorem 4.1 gives the final bound (see Appendix H.6).



5.1 Adversarial vs. stochastic costs in SSP
The main challenge in SSP with stochastic costs is estimat-
ing the transition function, since estimating the cost is faster.
Therefore, Tarbouriech et al. (2019); Cohen et al. (2020) fol-
low the optimism principle w.r.t the estimated cost function.
This approach has two benefits: the cost in each interval is
at most Õ(D) (since it is bounded by the cost of the optimal
policy), and the optimism bypasses the need to know D.

In adversarial SSP our main mechanism must be OMD
(or similar methods from online learning) to handle the ar-
bitrarily changing cost functions. The optimism is used as a
secondary mechanism, as we still need to estimate the fixed
transition function and make sure that the learner reaches the
goal state in every episode. The main challenge is accommo-
dating the optimistic framework and known states tracking
of Cohen et al. (2020), to the main method in which we pick
policies – online mirror descent.

Thus, in the adversarial setting we cannot enjoy the same
benefits as in the stochastic setting. The cost in each inter-
val is bounded by Õ(D/cmin) (since this is a bound on the
time of the best policy in hindsight, and the cost cannot be
estimated), and we need to know (or estimate) D in order to
force our policies to reach the goal fast enough. This leads to
the extra 1/cmin factor in our regret compared to Cohen et al.
(2020). However, it is worth mentioning that their bound de-
pends on cmin in the additive term, and that Tarbouriech et al.
(2019) have a 1/

√
cmin factor in the main term of the regret.

On a technical level, we have to make subtle changes
in order to use OMD in the optimistic framework of Co-
hen et al. (2020). While known states are only implicit in
the analysis of Cohen et al. (2020), using stochastic poli-
cies (which is necessary in adversarial environments) forces
us to make the known states tracking explicit, i.e., play the
least played action in unknown states to make sure the visits
count advances for all actions. Furthermore, when the dy-
namics are known it is clear that switching to the fast policy
in “bad” states does not suffer more cost, but here the switch
is w.r.t the optimistic transition function, and showing that
this does not hurt the regret is a subtle argument (see de-
tails in Appendix H). Moreover, showing that the variance
in each interval is of order D2/c2min even when OMD is in-
volved also requires some sophisticated adaptations, e.g., an
alternative definition of artificial intervals.

In terms of computational complexity, we compute the
optimistic fast policy in the end of each epoch which is sim-
ilar to Cohen et al. (2020). However, in the beginning of an
episode they compute an optimistic policy while we perform
an OMD step. While this is more costly, it is unavoidable,
similarly to adversarial episodic MDPs. In fact, an OMD
step here is more efficient than in the episodic setting since
our policies are not time-dependent, and therefore our op-
timization problem has O(|S|2|A|) variables compared to
O(H|S|2|A|) (where H is the episode length).

6 Relaxation of assumptions
Estimating the SSP-diameter. We use the SSP-diameter
D only in the definition of the sets ∆̃e(D/cmin). A key point

in the analysis is that the occupancy measure of the best pol-
icy in hindsight qP,π

?

is contained in the sets on which we
perform OMD ∆̃e(D/cmin) (with high probability). To that
end, we chose D/cmin as upper bound on Tπ

?

(s0) (see Ap-
pendix E). Once D is unknown, we want to compute an al-
ternative upper bound D̃ on the expected time of the fast
policy Tπ

f

(s0), and then D̃/cmin will upper bound Tπ
?

(s0).
We dedicate the first L episodes to estimating this upper

bound D̃, before running SSP-O-REPS3. Notice that πf is
the optimal policy w.r.t the constant cost function c(s, a) =

1, and its expected cost is Tπ
f

(s0). Thus, to compute D̃
we run an algorithm for regret minimization in regular SSPs
for L episodes with this cost function, and set D̃ to be the
average cost per episode times a constant, 10 for example.

By the regret bound of Cohen et al. (2020), we can set
L = Θ̃

(
max{|S|

√
|A|K/cmin, |S|2|A|/c2min}

)
without suf-

fering additional regret. In Appendix I, we show that this
yields the two properties we desire, with high probability,
for large enough K. First, qP,π

? ∈ ∆̃e(D̃/cmin), i.e., D̃ is
an upper bound on Tπ

f

(s0). Second, D̃ is not too large, i.e.,
D̃ ≤ O(D). Therefore, we get the same regret bound as in
Theorem 5.1. WhenK is not large enough, we show that the
regret is bounded by the constant factor Õ(D4|S|2|A|/c2min).

Zero costs. Similarly to Tarbouriech et al. (2019); Cohen
et al. (2020), we can eliminate Assumption 2 by applying a
perturbation to the instantaneous costs. That is, instead of
ck we use the cost function c̃k(s, a) = max{ck(s, a), ε}
for some ε > 0. Thus, Assumption 2 holds with cmin = ε,
but we introduced additional bias into the model. Choosing
ε = Θ(K−1/4) ensures that all our algorithms obtain regret
bounds of Õ(K3/4) for the general case (see in Appendix I).

7 Conclusions and future work
In this paper we present the first algorithms to achieve
sub-linear regret for stochastic shortest path with arbitrar-
ily changing costs. We show efficient algorithms with high
probability regret bounds of Õ(

√
K) when costs are strictly

positive and Õ(K3/4) in the general case. We hope this pa-
per paves the way to achieve tight regret bounds with prac-
tical algorithms in this important setting of adversarial SSP.

Closing the gap from the lower bound is the natural open
problem that arises from this paper. The second direction
that should be studied is bandit feedback. In this work we as-
sumed that the entire cost function is revealed to the learner
in the end of the episode, i.e., full information feedback.
However, in many natural applications, the learner only ob-
serves the costs associated with the actions it took – this
is called bandit feedback. Extending our results to bandit
feedback is not trivial, even when the transition function is
known, and is left for future work. Finally, it is of great im-
portance to see if policy optimization methods can also ob-
tain regret bounds in adversarial SSPs as done in adversarial
MDPs recently (Cai et al. 2019; Efroni et al. 2020), since
they are widely used in practice.
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