Learned Belief Search:
Efficiently Improving Policies in Partially Observable Settings

Hengyuan Hu *, Adam Lerer *, Noam Brown, Jakob Foerster

Facebook AI Research
hengyuan @fb.com, alerer @fb.com, noambrown @fb.com, jnf@fb.com

Abstract

Search is an important tool for computing effective policies
in single- and multi-agent environments, and has been cru-
cial for achieving superhuman performance in several bench-
mark fully and partially observable games. However, one ma-
jor limitation of prior search approaches for partially ob-
servable environments is that the computational cost scales
poorly with the amount of hidden information. In this paper
we present Learned Belief Search (LBS), a computationally
efficient search procedure for partially observable environ-
ments. Rather than maintaining an exact belief distribution,
LBS uses an approximate auto-regressive counterfactual be-
lief that is learned as a supervised task. In multi-agent set-
tings, LBS uses a novel public-private model architecture for
underlying policies in order to efficiently evaluate these poli-
cies during rollouts. In the benchmark domain of Hanabi,
LBS obtains more than 60% of the benefit of exact search
while reducing compute requirements by 35x, allowing it
to scale to larger settings that were inaccessible to previous
search methods.

Introduction

Search has been a vital component for achieving su-
perhuman performance in a number of hard bench-
mark problems in Al, including Go (Silver et al,|2016|
2017, 2018)), Chess (Campbell, Hoane Jr, and Hsu/[2002),
Poker (Moravcik et al.|2017; Brown and Sandholm|[2017,
2019), and, more recently, self-play Hanabi (Lerer et al.
2020). Beyond achieving impressive results, the work on
Hanabi and Poker are some of the few examples of search
being applied in large partially observable settings. In con-
trast, the work on belief-space planning typically assumes a
small belief space, since these methods scale poorly with the
size of the belief space.

Inspired by the recent success of the SPARTA search tech-
nique in Hanabi (Lerer et al.|2020), we propose Learned Be-
lief Search (LBS) a simpler and more scalable approach for
policy improvement in partially observable settings, applica-
ble whenever a model of the environment and the policies of
any other agents is available at test time. Like SPARTA, the
key idea is to obtain Monte Carlo estimates of the expected

“equal contribution
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

return for every possible action in a given action-observation
history (AOH) by sampling from a belief distribution over
possible states of the environment. However, LBS addresses
one of the key limitations of SPARTA. Rather than requiring
a sufficiently small belief space, in which we can compute
and sample from an exact belief distribution, LBS samples
from a learned, auto-regressive belief model which is trained
via supervised learning (SL). The auto-regressive parameter-
ization of the probabilities allows LBS to be scaled to high-
dimensional state spaces, whenever these are composed as a
sequence of features.

Another efficiency improvement over SPARTA is replac-
ing the full rollouts with partial rollouts that bootstrap from
a value function after a specific number of steps. While in
general this value function can be trained via SL in a sepa-
rate training process, this is not necessary when the blueprint
(BP) was trained via RL. In these cases the RL training typi-
cally produces both a policy and an approximate value func-
tion (either for variance reduction or for value-based learn-
ing). In particular, it is common practice to train centralized
value functions, which capture the required dependency on
the sampled state even when this state cannot be observed
by the agent during test time.

While LBS is a very general search method for Par-
tially Observable Markov Decision Processes (POMDPs),
our application is focused on single-agent policy improve-
ment in Decentralized POMDPs (Dec-POMDPs) (in our
specific case, Hanabi). One additional challenge of single-
agent policy improvement in Dec-POMDPs is that, unlike
standard POMDPs, the Markov state s of the environment is
no longer sufficient for estimating the future expected return
for a given AOH of the searching player. Instead, since the
other players’ policies also depend on their entire action-
observation histories, e.g., via Recurrent-Neural Networks
(RNNS5), only the union of Markov state s and all AOHs is
sufficient.

This in general makes it challenging to apply LBS, since
it would require sampling entire AOHs, rather than states.
However, in many Dec-POMDPs, including Hanabi, infor-
mation can be split between the common-knowledge (CK)
trajectory and private observations. Furthermore, commonly
information is ‘revealing’, such that there is a mapping from
the most recent private observation and the CK trajectory to
the AOH for each given player. In these settings it is suffi-

cient to track a belief over the union of private observations,
rather than over trajectories, which was also exploited in
SPARTA. We adapt LBS to this setting with a novel public-
RNN architecture which makes replaying games from the
beginning, as was done in SPARTA, unnecessary.

When applied to the benchmark problem of two player
Hanabi self-play, LBS obtains around 60% of the perfor-
mance improvement of exact search, while reducing com-
pute requirements by up to 35x. We also successfully apply
LBS to a six card version of Hanabi, where calculating the
exact belief distribution would be prohibitively expensive.

Related Work
Belief Modeling & Planning in POMDPs

Deep RL on POMDPs typically circumvents explicit belief
modeling by using a policy architecture such as an LSTM
that can condition its action on its history, allowing it to
implicitly operate on belief states (Hausknecht and Stone
2015). ‘Blueprint’ policies used in this (and prior) work take
that approach, but this approach does not permit search since
search requires explicitly sampling from beliefs in order to
perform rollouts.

There has been extensive prior work on learning and
planning in POMDPs. Since solving for optimal policies in
POMDPs is intractable for all but the smallest problems,
most work focuses on approximate solutions, including of-
fline methods to compute approximate policies as well as
approximate search algorithms, although these are still typi-
cally restricted to small grid-world environments (Ross et al.
2008).

One closely related approach is the Rollout algorithm
(Bertsekas and Castanon|[1999), which given an initial pol-
icy, computes MC rollouts of the belief-space MDP assum-
ing that this policy is played going forward, and plays the
action with the highest expected value. In the POMDP set-
ting, rollouts occur in the MDP induced by the belief stateq']

There has been some prior work on search in large
POMDPs. [Silver and Veness| (2010) propose a method for
performing Monte Carlo Tree Search in large POMDPs
like Battleship and partially-observable PacMan. Instead of
maintaining exact beliefs, they approximate beliefs using a
particle filter with Monte Carlo updates. [Roy, Gordon, and
Thrun/ (2005) attempt to scale to large belief spaces by learn-
ing a compressed representation of the beliefs and then per-
forming Bayesian updates in this space.

Most recently MuZero combines RL and MCTS with a
learned implicit model of the environment (Schrittwieser
et al.2019). Since recurrent models can implicitly operate on
belief states in partially-observed environments, MuZero in
effect performs search with implicit learned beliefs as well
as a learned environment model.

Games & Hanabi

Search has been responsible for many breakthroughs on
benchmark games. Most of these successes were achieved

'SPARTA’s single agent search uses a similar strategy in the
DEC-POMDP setting, but samples states from the beliefs rather
than doing rollouts directly in belief space.

in fully observable games such as Backgammon (Tesauro
1994), Chess (Campbell, Hoane Jr, and Hsu/[2002) and Go
(Silver et al.|2016} 2017} 2018]). More recently, belief-based
search techniques have been scaled to large games, leading
to breakthroughs in poker (Moravcik et al.|2017; Brown and
Sandholm| 2017, 2019) and the cooperative game Hanabi
(Lerer et al.|2020), as well as large improvements in Bridge
(Tian, Gong, and Jiang|2020).

There has been a growing body of work developing agents
in the card game Hanabi. While early hobbyist agents codi-
fied human conventions with some search (O’Dwyer|2019;
Wu| 2018), more recent work has focused on Hanabi as
a challenge problem for learning in cooperative partially-
observed games (Bard et al.[2020). In the self-play setting
(two copies of the agent playing together), the Bayesian Ac-
tion Decoder (BAD) was the first learning agent (Foerster
et al. 2019), which was improved upon by the Simplified
Action Decoder (SAD) (Hu and Foerster||2020). The state-
of-the-art in Hanabi self-play is achieved by the SPARTA
Monte Carlo search algorithm applied to the SAD blueprint
policy (Lerer et al.|2020).

There has been recent work on ad-hoc team play and zero-
shot coordination, in which agents are paired with unknown
partners (Canaan et al.[2019; Walton-Rivers et al.|2017; |[Hu
et al.|[2020).

Setting and Background

In this paper we consider a Dec-POMDP, in which N
agents each take actions a! at each timestep, after which
the state s; updates to s;+; based on the conditional proba-
bility P(s¢+1|st,a;) and the agents receive a (joint) reward
r(s¢, at), where a; is the joint action of all agents.

Since the environment is partially observed each agent
only obtains the observation 0! = Z(s;,i) from a determin-
istic observation function Z. We denote the environment tra-
jectory as 7 = {sg, ag, ...s,a;} and the action-observation
history (AOH) of agent i as 7/ = {0}, aj,...,0l,at}. The
total forward looking return from time ¢ for a trajectory 7
is R(T) = Y5, 7" ' (st,as), where 7 is an optional dis-
count factor. Each agent chooses a policy 7 () conditioned
on its AOHs, with the goal that the joint policy 7 = {7’}
maximises the total expected return J = E - p (7| R(T).

Starting from a CK blueprint, in order to perform search
in a partially observable setting, agents will need to maintain
beliefs about the state of the world given their observations.
We define beliefs B'(1;) = P((s¢, {7} })|7}), which is the
probability distribution over states and AOHs, given player
1’s private trajectory. Note that in Dec-POMDPs the beliefs
must model other agents’ AOHs as well as the current state,
since in general the policies of other players condition on
these AOHs.

In general, the domain of B (the range) is extremely
large, but in Dec-POMDPs with a limited amount of hidden
information there is often a more compact representation.
For example, in card games like Hanabi, the range consists
of the unobserved cards in players’ hands. SPARTA (Lerer
et al.|2020) assumed that the domain was small enough to
be explicitly enumerated. In our case, we assume that the

beliefs are over private features f* that can be encoded as a
sequence of tokens from some vocabulary: f* = [] j f;f ev.
Furthermore, it simplifies the algorithm if, as is typically the
case, we can factor out these private features from 7 to pro-
duce a public trajectory 7P“?; then each 7% can be specified
by the pair (7P%?, f*) and 7 by (770, f1, ..., V).

LBS is applicable to general POMDPs, which are a natu-
ral corner case of the Dec-POMDP formalism when we set
the number of players to 1.

Method

The starting point for our method is the single-agent search
version of SPARTA (Lerer et al. [2020): Given a set of BP
policies, 7!, we estimate expected returns, Q(a‘|7?), by sam-
pling possible trajectories 7 from a belief conditioned on 7°:

Q(ai"ri) = ETNP(T‘Ti)Q(aqT) (D

Here Q(a’|7) is the expected return for playing action a’
given the history 7:

Q(ai|7—) = ET/NP(T’\T,a’)Rt(T/)a (2)

where R*(7') is the Monte Carlo return without discounting.

Whenever the argmax of Q(a’|7") exceeds the expected
return of the BP Q(app|7*) by more than a threshold d, the
search-player deviates from the BP and plays the argmax
instead. For more details, please see Figure[I|(LHS) and the
original paper.

Even though this is single-agent search, in SPARTA this
process is costly: First of all, the belief P(7|7?) is an exact
counterfactual belief, which requires evaluating the BP at
every timestep for every possible 7 to identify which of these
are consistent with the actions taken by the other agents.
Secondly, to estimate R'(7’) SPARTA plays full episodes
(rollouts) until the end of the game.

Lastly, since in Dec-POMDPs policies condition on full
AOHs (typically implemented via RNNs) the games have to
be replayed from the beginning for each of the sampled 7
to obtain the correct hidden state, h(7¢(7)), for all players 4,
for each of the sampled trajectories, 7.

Learned Belief Search addresses all of these issues: First
of all, rather than using costly exact beliefs, we use super-
vised learning (SL) to train an auto-regressive belief model
which predicts P(7|7"). As described in Background sec-
tion, in our setting this reduces to predicting the private ob-
servations, f—, for all other players, since the public tra-
jectory is known. For scalability, as illustrated in Figure [2]
(RHS), we use an auto-regressive belief model parameter-
ized by neural network weights ¢:

Pegact(f7H7Y) — Py(f 7% = HP(f{ilfgjmi) 3)

Secondly, to avoid having to unroll episodes until the end
of the game we use a learned value function to bootstrap
the expected return after a predefined number, IV, of steps.
While this value function in general needs to be trained via
SL, this is not necessary in our setting: Since our BPs are
recurrent DQN agents that learn an approximate expected

return via value-decomposition networks (VDN), we can di-
rectly use the BP to estimate the expected return, as illus-
trated in Figure[T](B) :

t'=t+N
i (i | i ub
R'(7") ~ Z Ty + ZQBP(“BP|ft+Nthp+N)|7'/ “4)

t'=t

This is a fairly general insight, since RL training in
POMDPs commonly involves centralized value functions
that correctly capture the dependency of the expected return
on the central state.

Lastly, we address a challenge that is specific to Dec-
POMDPs: To avoid having to re-unroll the policies for the
other agents from the beginning of the game for each of
the sampled 7, LBS uses a specific RNN architecture. In-
spired by other public-private methods (Foerster et al.|2019;
Kovarik et al.|[2019), we exploit that the public trajectory
in combination with the current private observation contains
the same information as the entire private trajectory and only
feed the public information 77“* into the RNN. The public

hidden state h(7/"") is then combined with the private ob-
servation f; through a feedforward neural network, as illus-
trated in Figure[2] (LHS).

w(r}) = 7 (h(r}*"), f7) (5)

We note that whenever it is possible to factor out the pub-
lic trajectory, this architecture can be used. If not, LBS can
still be used, but instead for each sampled f? we would need
to reconstruct the entire game from scratch to obtain the cor-
rect model state.

We also point out that in this paper we only consider sin-
gle player search where all others act according to the BP.
Carrying out search for more than one player would not be
theoretically sound because the trained belief model would
no longer be accurate. Further details, including specific ar-
chitectures, of our three innovations are included in Experi-
ments section.

Experimental Setup

We evaluate our methods in Hanabi, a partially observable
fully cooperative multi-step game. In Hanabi, there are 5
different colors and 5 different ranks. Each card may have
one or more copies in the deck. All players are of the same
team trying to finish 5 stacks of cards, one for each color.
They need to play the cards in order from 1 to 5 as in Soli-
taire. The main challenge in Hanabi is that each player can
only see other players’ cards, not their own. Players have to
use a limited number of hint tokens to reveal information for
their partners and form conventions or use theory of mind
reasoning to convey information more efficiently. For sim-
plicity we focus on 2-player Hanabi for all our experiments
and note that it is straightforward to extend our method to
any number of players.

Blueprint Training

As explained in Background section the public and pri-
vate observations in Hanabi can be factorized into public

SPARTA

P1 private
observation history

Sampled
P2 hand & history

QSRR 333%\—ﬁ1

1
hll]riv hg?%
)

T

Final Scores: 24 22

Play Card 1 | Discard Card 1| Hint Red

Full io]]out Full rf]]out Full iﬂ]]ﬂut

25

LBS

P1 private Belief

observation history — | Model

pub Sampled
h 3 P2 hand

L J
Y

Play Card 1 | Discard Card 1| Hint Red

N-stcyi rollout| N-stcplra/]out N-ste}i rollout

max Q(s,a): 23.8 22.4 24.6

Figure 1: Comparison of SPARTA (Lerer et al.2020) and LBS (ours). SPARTA maintains an explicit belief distribution with an accompanying

AOH hg”” for each belief state. LBS uses an auto-regressive belief model to sample states from the belief distribution, given the AOH. AOHs
do not need to be maintained for each belief state in LBS since the model only relies on the public trajectory. Additionally, LBS uses an N-step

rollout followed by a bootstrap value estimate.

and private features. We modify the open-source Hanabi
Learning Environment (HLE) (Bard et al.|2020) to imple-
ment this. Here, the only private observation is the partner’s
hand, while all other information is public. There are many
different options for implementing the public-RNN concept.
We end up with the design shown in Figure [2] (A). Specif-
ically, the LSTM only takes public features as input while
an additional MLP takes in the concatenation of private and
public features. The outputs of the two streams are fused
through element-wise multiplication before feeding into the
dueling architecture (Wang et al.|2016) to produce Q values.
We have also experimented with other designs such as using
concatenation in place of the element-wise multiplication,
or feeding only private observation to the MLP. Empirically
we find that the design chosen performs the best, achieving
the highest score in self-play.

To train our BP with reinforcement learning, we base our
implementation on the open-source code of Other-Play (Hu
et al.|2020), which includes several recent advancements for
RL in Hanabi. We follow most of their practices such as
value decomposition network, color shuffling and auxiliary
tasks. We also leave their hyper-parameters unchanged.

Belief Learning

The belief model is trained to predict the player’s own hand
given their action observation history. An overview of the
architecture is shown in the right panel of Fig[2] An encoder
LSTM converts the sequence of observations to a context
vector. The model then predicts its own hand in an auto-
regressive fashion from oldest card to newest. The input at
each step is the concatenation of the context vector and the

embedding of the last predicted card. The model is trained
end-to-end with maximum likelihood:

n
L(cin|T) = — Zlogp(ci\r, Cli-1), (6)
i=1
where n is the number of cards in hand and ¢; is the ¢-th
card.

We use a setup similar to that of reinforcement learning
to train the belief model instead of a more traditional way of
creating a fixed train, test and validation set. We use a trained
policy and a large number of parallel Hanabi simulators to
continuously collect trajectories and write them into a replay
buffer. In parallel we sample from the replay buffer to train
the belief model using a supervised loss. This helps us easily
avoid over-fitting without manually tuning hyper-parameters
and regularization. The RL policy used to generate data is
fixed during the entire process.

LBS Implementation Details

Learned Belief Search is straightforward once we have
trained a BP and a belief model. The search player sam-
ples hands from the belief model and filters out the ones that
are inconsistent with current game status based on their pri-
vate observation. In the extremely rare case where the belief
model fails to produce a sufficient number of legal hands, it
reverts back to the BP. To understand the impact of various
design parameters, we experimented with both playing out
all trajectories until the end of the game, LBS-inf, as well
as rolling out for a fixed number of steps, LBS-k and using
a bootstrapped value estimate at the final state. Similar to
SPARTA, the search actor only deviates from the BP if the

Policy Model

(A) (trained by RL)
Action Q Values
Play Card 1 | Discard Card 1| Hint Red
24.0 22.1 18.3
[Dueling Net]

(B) Auto-Regressive Belief Model
(trained by SL on final agents)

Sampled Hidden Info
(Player Hand)

Auto-Regressive Decoder
sample card sample card sample card

ht{ LSTM }' hesr [MLP

I |

Public Observations
(board cards, discards,
common knowledge VO

beliefs)

Private Observations
(Partner’s hand)

Decoder Decoder Decoder
LSTM LSTM LSTM
} Xt
(history encoding)
hE Encoder LSTM —>hE

Player’s Public &
Private Observations

Figure 2: (A): Illustration of the public-LSTM network used for the BP policy. (B): The auto-regressive network for modeling beliefs .

expected value of the action chosen by search is § = 0.05
higher than that of the BP and a UCB-like pruning method
is used to reduce the number of samples required.

Results

—— Grounded Belief
Learned Belief
Exact Belief

3.0

2.5

Per Card Cross Entropy

0.5

0.0
0 10 20 30 40 50 60 70

Game Step

Figure 3: Per-card cross entropy with the true hand for different
beliefs in games played by BP.

Belief Quality

We first examine the quality of the learned belief model by
looking at its cross entropy loss for predicting hidden card
values. We compare against two benchmarks: the exact be-
liefs marginalized over each card, and an auto-regressive be-
lief based only on grounded information. The grounded be-
lief predicts a distribution over card values proportional to

remaining card counts, for all card values consistent with
past hints, which can be formalized as
p(ci _ Cj‘clzi—l) —]}(szcj) f(C]|Cl.zfl))
> =1 Lei, C5) - f(Cjleriioa)
We generate 1000 games with our trained RL policy and
compute the two benchmarks together with the loss of the
learned belief (Eq.[6)) from a fully trained belief model. Fig-
ure [3] shows how these 3 values change over the course of
games. We see that our learned belief model performs con-
siderably better than the grounded belief. There is still a
gap between learned belief and exact belief, especially in
the later stage of the game. More powerful models such as
transformers (Vaswani et al.[2017) may further improve the
belief learning but we leave it for future work.

)

Performance

The main results of LBS are shown in Table[Il We train the
BP with RL for 40 hours in total and use 4 snapshots which
have been trained for 5, 10, 20, and 40 hours to showcase the
performance of our method given different BPs of different
strength. The belief models are trained to convergence for
each BP. For comparison, we rerun SPARTA on our mod-
els which can be seen as a expensive upper bound for LBS.
All search methods run 10K rollouts per step. The best per-
forming LBS variant is LBS-16, delivering 85% to 91% of
the improvement comparing to the exact search while be-
ing 4.6 x faster. Even the cheapest method, LBS-1, returns a
decent improvement of 45% on average and 35.8 x speedup.

We note that the more expensive LBS-inf is not the
best performing one, it consistently under-performs some of
the LBS-k versions by a small, in many cases significant,
amount. We hypothesis that under LBS-inf it is more likely

Method Time RL-5H

RL-10H

RL-20H RL-40H

Blueprint <lIs 2299+£0.03 2370£0.01 24.08+0.01 24.29+0.01
SPARTA 2155 24.16+0.02 2439+0.01 24.52+0.01 24.58+0.01

LBS-inf 12]s 23.95+£0.02 2429+ 0.01

2442 +0.01 24.52 £0.01

LBS-32 84s 24.01 £0.02 24.31+£0.01 2445+0.01 24.53+0.01
LBS-16 47s 24.04+£0.02 2429£0.02 2448 £0.01 24.54+0.01
LBS-8 25s 24.03+£0.02 2428 £0.02 2443 +£0.01 24.49+0.01
LBS-1 6s 23.95+£0.02 2426+0.02 24.41+0.01 24.45+0.01

Table 1: Average scores in 2-player Hanabi with different search variants. Time column shows the average wall-clock time of each method to
play a game. Columns of RL-kH show performance of different methods applied on blueprint policies trained for different amounts of time.
Each cell contains the mean and standard error of mean (s.e. m.) over over 5000 games. LBS variants achieve a substantial fraction of the
policy improvements of SPARTA over the blueprint at a lower computational cost.

Blueprint SPARTA LBS-32 LBS-16
Performance 24.57 +0.01 24.82 +0.01 2476 £0.01 24.76 + 0.01
75.94% 87.80% 84.12% 84.06%
Run Time <ls 74s 42s

Table 2: Result on 6-card Hanabi variant. Each cell contains the mean and standard error of mean over 5000 games in the first row and

percentage of perfect games (25 points) in the second row.

for the agents to reach a state that is under-explored during
training. Therefore the approximate belief will be less accu-
rate and the estimate Q-value be wrong. The LBS-k method
where the Q-value after k steps is as a bootstrap may natu-
rally avoid those situations since the BP may also have low
Q values for under-explored states. One piece of evidence
for this theory is that in LBS-inf, 0.1% of the games end up
with a completely failed belief prediction and have to revert
back to BP while the same only happens to 0.0083% of the
games for LBS-k.

Clearly, this is a potential problem: part of the reason
search works well is that it can discover moves that were un-
derestimated and, consequently, under-explored by the BP.
The brittleness of the learned belief, in combination with the
difference in overall belief quality (Fig3)), help explain the
difference in performance between LBS and exact methods
like SPARTA.

Fixed Budget Training & Testing

Since one of the motivations for LBS is speed, it would be
interesting to know how we could allocate resources at train-
ing and test time to maximize performance given a fixed
computational budget. For fixed training budget, we train the
BP for [hours and then train belief model for 24 — [hours.
We evaluate these combinations with LBS-inf as well as BPs
themselves. As shown in Figure[d with longer RL training,
the BP improves monotonically, but the final performance
suffers due to a poor belief model. The best combination is
~18 hours for RL and ~6 hours for belief learning.

We then take the models from the best combination to

N} o) [N} N
w w > & &
> =3 =) [N} =

Average Score

N
w
'S

23.2
—— Blueprint

LBS-inf

23.0
123 3121 519 7]17 915 11|13 13]11 159 17|7 195 213 231
[RL | Belief] Training Time (Hours)

Figure 4: Result of fixed budget (24 Hours) at training time. The
ticks “a|b”on x-axis means a hours to train BP and b hours to train
belief model.

study how to allocate compute between the number of roll-
outs and rollout depth. We start with LBS-1 and 128K search
per step, and then halve the number of searches as we dou-
ble the search depth. The result is shown in Figure [3] If we
compare the results here with those from Table |1} we see
that although LBS-16 still has the best performance, the rel-
ative strength between LBS-32 and LBS-8 flips, indicating
that the trade-off may still matter in some cases.

LBS-inf
- Blueprint
24.4
243
g
o
o
wv
242
it
g
=4
24.1
24.0

inf|2K 32|4K 16/8K 8|16K 4|32K 264K 1]128K
[SearchDepth | NumSearchPerStep] Training Time (Hours)

Figure 5: Result of fixed budget at test time. The ticks “a|b” on
x-axis means run search for a steps before bootstrapping with Q
function and run b search per move. Each data point on both figures
is evaluated on 5000 games and the shaded area is the standard
error of mean.

Extension to 6-card Hanabi

To further demonstrate the scalability of LBS compared to
SPARTA, we test them on a modified version of Hanabi
where each player holds 6 cards instead of 5. This is not
an official variant of Hanabi and it is easier to achieve a high
score than the standard form due to more choices at each
turn and shorter episode length. We train the BP and belief
model with the same method. The results are shown in Ta-
ble 2l The SPARTA method runs 8 x slower than it does on
standard Hanabi while LBS runs faster due to shorter games,
delivering 76% of the improvement with 42 less time.

Conclusion

We presented Learned Belief Search, a novel search algo-
rithms for POMDPs that can be used to improve upon the
performance of a blueprint policy at test time whenever a
simulator of the environment is available. We also presented
extensions of LBS that make it applicable to fully coopera-
tive, partially observable multi-agent settings. At the heart of
LBS is an autoregressive model that can be used to generate
samples from an approximate belief for any given AOH.

While LBS achieves strong performance on the bench-
mark problem Hanabi, our work also clearly points to a num-
ber of future directions. For a start, the search process can
bring the belief model to under-explored regions of the state
space. This could e.g. be addressed by retraining the belief
model on the data generated from LBS.

Another interesting direction for future work is to amor-
tize the search process, e.g. by integrating it into the training
process, and to extend LBS to multiplayer and multi-step
search. To enable these directions, and many others, we plan
to open-source all of the code for LBS.

References

Bard, N.; Foerster, J. N.; Chandar, S.; Burch, N.; Lanctot,
M.; Song, H. F; Parisotto, E.; Dumoulin, V.; Moitra, S.;
Hughes, E.; Dunning, I.; Mourad, S.; Larochelle, H.; Belle-
mare, M. G.; and Bowling, M. 2020. The Hanabi challenge:
A new frontier for Al research. Artificial Intelligence 280:
103216. ISSN 0004-3702.

Bertsekas, D. P.; and Castanon, D. A. 1999. Rollout algo-
rithms for stochastic scheduling problems. Journal of Heuris-
tics 5(1): 89-108.

Brown, N.; and Sandholm, T. 2017. Superhuman AI for
heads-up no-limit poker: Libratus beats top professionals.
Science eaaol733.

Brown, N.; and Sandholm, T. 2019. Superhuman Al for mul-
tiplayer poker. Science eaay2400.

Campbell, M.; Hoane Jr, A. J.; and Hsu, E-h. 2002. Deep
Blue. Artificial intelligence 134(1-2): 57-83.

Canaan, R.; Togelius, J.; Nealen, A.; and Menzel, S. 2019.
Diverse agents for Ad-Hoc cooperation in Hanabi. In /EEE
Conference on Games 2019, CoG 2019, IEEE Conference on
Computatonal Intelligence and Games, CIG. IEEE Computer
Society. doi:10.1109/CIG.2019.8847944. 2019 IEEE Con-
ference on Games, CoG 2019 ; Conference date: 20-08-2019
Through 23-08-2019.

Foerster, J.; Song, F.; Hughes, E.; Burch, N.; Dunning,
I.; Whiteson, S.; Botvinick, M.; and Bowling, M. 2019.
Bayesian Action Decoder for Deep Multi-Agent Reinforce-
ment Learning. In International Conference on Machine
Learning, 1942—-1951.

Hausknecht, M.; and Stone, P. 2015. Deep recurrent g-
learning for partially observable mdps. In 2015 AAAI Fall
Symposium Series.

Hu, H.; and Foerster, J. N. 2020. Simplified Action De-
coder for Deep Multi-Agent Reinforcement Learning. In In-
ternational Conference on Learning Representations. URL
https://openreview.net/forum?1d=B1xm3RVtwB,

Hu, H.; Peysakhovich, A.; Lerer, A.; and Foerster, J. 2020.
“Other-Play”for Zero-Shot Coordination. In Proceedings of
Machine Learning and Systems 2020, 9396-9407.

Kovarik, V.; Schmid, M.; Burch, N.; Bowling, M.; and
Lisy, V. 2019. Rethinking Formal Models of Partially
Observable Multiagent Decision Making. arXiv preprint
arXiv:1906.11110 .

Lerer, A.; Hu, H.; Foerster, J. N.; and Brown, N. 2020. Im-
proving Policies via Search in Cooperative Partially Observ-
able Games. In AAAI 7187-7194.

Morav¢ik, M.; Schmid, M.; Burch, N.; Lisy, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science 356(6337): 508-513.

O’Dwyer, A. 2019. Hanabi. https://github.com/Quuxplusone/
Hanabi.

Ross, S.; Pineau, J.; Paquet, S.; and Chaib-Draa, B. 2008. On-
line planning algorithms for POMDPs. Journal of Artificial
Intelligence Research 32: 663-704.

Roy, N.; Gordon, G.; and Thrun, S. 2005. Finding approxi-
mate POMDP solutions through belief compression. Journal
of artificial intelligence research 23: 1-40.

https://openreview.net/forum?id=B1xm3RVtwB
https://github.com/Quuxplusone/Hanabi
https://github.com/Quuxplusone/Hanabi

Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2019. Mastering atari, go, chess and
shogi by planning with a learned model. arXiv preprint
arXiv:1911.08265 .

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-
neershelvam, V.; Lanctot, M.; et al. 2016. Mastering the game
of Go with deep neural networks and tree search. Nature
529(7587): 484.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science
362(6419): 1140-1144.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, L;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676): 354.

Silver, D.; and Veness, J. 2010. Monte-Carlo planning in large
POMDPs. In Advances in neural information processing sys-
tems, 2164-2172.

Tesauro, G. 1994. TD-Gammon, a self-teaching backgam-
mon program, achieves master-level play. Neural computa-
tion 6(2): 215-219.

Tian, Y.; Gong, Q.; and Jiang, T. 2020. Joint Policy Search for
Multi-agent Collaboration with Imperfect Information. arXiv
preprint arXiv:2008.06495 .

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, 1. 2017.
Attention is All you Need. In Guyon, I.; Luxburg, U. V,;
Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and
Garnett, R., eds., Advances in Neural Information Processing
Systems 30, 5998-6008. Curran Associates, Inc. URL http:
/Ipapers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Walton-Rivers, J.; Williams, P. R.; Bartle, R.; Perez-Liebana,
D.; and Lucas, S. M. 2017. Evaluating and modelling hanabi-
playing agents. In IEEE Congress on Evolutionary Compu-
tation (CEC), 1382-1389.

Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.;
and Freitas, N. 2016. Dueling Network Architectures for
Deep Reinforcement Learning. volume 48 of Proceedings
of Machine Learning Research, 1995-2003. New York, New
York, USA: PMLR. URL http://proceedings.mlr.press/v48/
wangf16.html.

Wu, D. 2018. A rewrite of hanabi-bot in Scala. https://github.
com/lightvector/fireflower,

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://proceedings.mlr.press/v48/wangf16.html
http://proceedings.mlr.press/v48/wangf16.html
https://github.com/lightvector/fireflower
https://github.com/lightvector/fireflower

	Introduction
	Related Work
	Belief Modeling & Planning in POMDPs
	Games & Hanabi

	Setting and Background
	Method
	Experimental Setup
	Blueprint Training
	Belief Learning
	LBS Implementation Details

	Results
	Belief Quality
	Performance
	Fixed Budget Training & Testing
	Extension to 6-card Hanabi

	Conclusion

