Combining Deep Reinforcement Learning and Search
for Imperfect-Information Games

Noam Brown® Anton Bakhtin® Adam Lerer Qucheng Gong

Facebook Al Research
{noambrown, yolo,alerer, qucheng}@fb .com

Abstract

The combination of deep reinforcement learning and search
at both training and test time is a powerful paradigm that
has led to a number of successes in single-agent settings and
perfect-information games, best exemplified by AlphaZero.
However, prior algorithms of this form cannot cope with
imperfect-information games. This paper presents ReBeL, a
general framework for self-play reinforcement learning and
search that provably converges to a Nash equilibrium in any
two-player zero-sum game. In the simpler setting of perfect-
information games, ReBeL reduces to an algorithm similar
to AlphaZero. Results in two different imperfect-information
games show ReBeL converges to an approximate Nash equi-
librium. We also show ReBeL achieves superhuman perfor-
mance in heads-up no-limit Texas hold’em poker, while using
far less domain knowledge than any prior poker Al

Introduction

Combining reinforcement learning with search at both train-
ing and test time (RL+Search) has led to a number of ma-
jor successes in Al in recent years. For example, the Alp-
haZero algorithm achieves state-of-the-art performance in
the perfect-information games of Go, chess, and shogi (Sil-
ver et al. 2018).

However, prior RL+Search algorithms do not work in
imperfect-information games because they make a number
of assumptions that no longer hold in these settings. An ex-
ample of this is illustrated in Figure 1, which shows a mod-
ified form of Rock-Paper-Scissors in which the winner re-
ceives two points (and the loser loses two points) when ei-
ther player chooses Scissors (Brown, Sandholm, and Amos
2018). The figure shows the game in a sequential form in
which player 2 acts after player 1 but does not observe
player 1’s action.

The optimal policy for both players in this modified ver-
sion of the game is to choose Rock and Paper with 40%
probability, and Scissors with 20%. In that case, each ac-
tion results in an expected value of zero. However, as shown
in Figure 2, if player 1 were to conduct one-ply lookahead
search as is done in perfect-information games (in which the
equilibrium value of a state is substituted at a leaf node),

“Equal contribution
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

o
&
0,0
Figure 1: Variant of Rock-Paper-Scissors in which the opti-
mal player 1 policy is (R=0.4, P=0.4, S=0.2). Terminal val-

ues are color-coded. The dotted lines mean player 2 does not
know which node they are in.

Figure 2: The player 1 subgame when using perfect-
information one-ply search. Leaf values are determined by
the full-game equilibrium. There is insufficient information
for finding (R=0.4, P=0.4, S=0.2).

then there would not be enough information for player 1 to
arrive at this optimal policy.

This illustrates a critical challenge of imperfect-
information games: unlike perfect-information games and
single-agent settings, the value of an action may depend on
the probability it is chosen. Thus, a state defined only by
the sequence of actions and observations does not have a
unique value and therefore existing RL+Search algorithms
such as AlphaZero are not sound in imperfect-information
games. Recent Al breakthroughs in imperfect-information
games have highlighted the importance of search at test
time (Moravcik et al. 2017; Brown and Sandholm 2017b,
2019b; Lerer et al. 2020), but combining RL and search
during training in imperfect-information games has been an
open problem.

This paper introduces ReBeL (Recursive Belief-based
Learning), a general RL+Search framework that converges
to a Nash equilibrium in two-player zero-sum games. ReBeLL
builds on prior work in which the notion of “state” is ex-
panded to include the probabilistic belief distribution of all

agents about what state they may be in, based on common
knowledge observations and policies for all agents. Our al-
gorithm trains a value network and a policy network for
these expanded states through self-play reinforcement learn-
ing. Additionally, the algorithm uses the value and policy
network for search during self play.

ReBeL provably converges to a Nash equilibrium in all
two-player zero-sum games. In perfect-information games,
ReBeL simplifies to an algorithm similar to AlphaZero, with
the major difference being in the type of search algorithm
used. Experimental results show that ReBeL is effective in
large-scale games and defeats a top human professional with
statistical significance in the benchmark game of heads-up
no-limit Texas hold’em poker while using far less expert do-
main knowledge than any previous poker Al. We also show
that ReBeL approximates a Nash equilibrium in Liar’s Dice,
another benchmark imperfect-information game, and open
source our implementation of it.!

Related Work

At a high level, ReBeL resembles past RL+Search algo-
rithms used in perfect-information games (Tesauro 1994;
Silver et al. 2017; Anthony, Tian, and Barber 2017; Silver
et al. 2018; Schrittwieser et al. 2019). These algorithms train
a value network through self play. During training, a search
algorithm is used in which the values of leaf nodes are deter-
mined via the value function. Additionally, a policy network
may be used to guide search. These forms of RL+Search
have been critical to achieving superhuman performance in
benchmark perfect-information games. For example, so far
no AI agent has achieved superhuman performance in Go
without using search at both training and test time. However,
these RL+Search algorithms are not theoretically sound in
imperfect-information games and have not been shown to
be successful in such settings.

A critical element of our imperfect-information
RL+Search framework is to use an expanded notion
of “state”, which we refer to as a public belief state (PBS).
PBSs are defined by a common-knowledge belief distri-
bution over states, determined by the public observations
shared by all agents and the policies of all agents. PBSs can
be viewed as a multi-agent generalization of belief states
used in partially observable Markov decision processes
(POMDPs) (Kaelbling, Littman, and Cassandra 1998).
The concept of PBSs originated in work on decentralized
multi-agent POMDPs (Nayyar, Mahajan, and Teneketzis
2013; Oliehoek 2013; Dibangoye et al. 2016) and has been
widely used since then in imperfect-information games
more broadly (Moravcik et al. 2017; Foerster et al. 2019;
Serrino et al. 2019; Hordk and BoSansky 2019).

ReBeL builds upon the idea of using a PBS value function
during search, which was previously used in the poker Al
DeepStack (Moravcik et al. 2017). However, DeepStack’s
value function was trained not through self-play RL, but
rather by generating random PBSs, including random proba-
bility distributions, and estimating their values using search.

"https://github.com/facebookresearch/rebel

This would be like learning a value function for Go by ran-
domly placing stones on the board. This is not an efficient
way of learning a value function because the vast majority
of randomly generated situations would not be relevant in
actual play. DeepStack coped with this by using handcrafted
features to reduce the dimensionality of the public belief
state space, by sampling PBSs from a distribution based on
expert domain knowledge, and by using domain-specific ab-
stractions to circumvent the need for a value network when
close to the end of the game.

An alternative approach for depth-limited search in
imperfect-information games that does not use a value func-
tion for PBSs was used in the Pluribus poker Al to defeat
elite humans in multiplayer poker (Brown, Sandholm, and
Amos 2018; Brown and Sandholm 2019b). This approach
trains a population of “blueprint” policies without using
search. At test time, the approach conducts depth-limited
search by allowing each agent to choose a blueprint pol-
icy from the population at leaf nodes. The value of the leaf
node is the expected value of each agent playing their chosen
blueprint policy against all the other agents’ choice for the
rest of the game. While this approach has been successful in
poker, it does not use search during training and therefore
requires strong blueprint policies to be computed without
search. Also, the computational cost of the search algorithm
grows linearly with the number of blueprint policies.

Notation and Background

‘We assume that the rules of the game and the agents’ policies
(including search algorithms) are common knowledge (Au-
mann 1976).2 That is, they are known by all agents, all
agents know they are known by all agents, etc. However,
the outcome of stochastic algorithms (i.e., the random seeds)
are not known. We later show how to remove the assumption
that we know another player’s policy.

Our notation is based on that of factored observation
games (Kovaiik et al. 2019) which is a modification of
partially observable stochastic games (Hansen, Bernstein,
and Zilberstein 2004) that distinguishes between private
and public observations. We consider a game with A/ =
{1,2,..., N} agents.

A world state w € W is a state in the game. A = A; x
As x... X Ap is the space of joint actions. A; (w) denotes the
legal actions for agent ¢ at w and a = (aq, a9, ...,an) € A
denotes a joint action. After a joint action a is chosen, a tran-
sition function 7 determines the next world state w’ drawn
from the probability distribution 7 (w, a) € AW. After joint
action a, agent i receives a reward R;(w, a).

Upon transition from world state w to w’ via joint action
a, agent i receives a private observation from a function
Opriv(i) (w, a,w"). Additionally, all agents receive a public
observation from a function Opy,(w, a, w’). Public obser-
vations may include observations of publicly taken actions
by agents. For example, in many recreational games, includ-
ing poker, all betting actions are public.

*This is a common assumption in game theory. One argument
for it is that in repeated play an adversary would eventually deter-
mine an agent’s policy.

A history (also called a trajectory) is a finite se-
quence of legal actions and world states, denoted
h = (wa®whal,..,w'). An infostate (also
called an action-observation history (AOH)) for
agent ¢ is a sequence of an agent’s observations

and actions s; = (0Y,a),0} al,...,0!) where
ko k=1 k=1 .k k=1 k=1 .k
oF = (Opriv(i)(w ,a” " w), Opup (W ™, a"H w))

The unique infostate corresponding to a history h for agent ¢
is denoted s;(h). The set of histories that correspond to s; is
denoted H(s;).

A public state is a sequence spuy = (Opyps Opus -+ Opup)
of public observations. The unique public state correspond-
ing to a history / and an infostate s; is denoted sy (h) and
Spub (i), respectively. The set of histories that match the se-
quence of public observation of sy is denoted H (Spub).

For example, consider a game where two players roll two
six-sided dice each. One die of each player is publicly visi-
ble; the other die is only observed by the player who rolled
it. Suppose player 1 rolls a 3 and a 4 (with 3 being the hidden
die), and player 2 rolls a 5 and a 6 (with 5 being the hidden
die). The history (and world state) is b = ((3,4), (5,6)).
The set of histories corresponding to player 2’s infostate
is H(sz) = {((=,4),(5,6)) | = € {1,2,3,4,5,6}}, so

|H(s2)| = 6. The set of histories corresponding to spyp is
H(spun) = {((,4), (,6)) | 2,y € {1,2,3,4,5,6}}, so
|H (spun)| = 36 .

Public states provide an easy way to reason about com-
mon knowledge in a game. All agents observe the same
public sequence sy, and therefore it is common knowledge
among all agents that the true history is some h € H(spup).>

An agent’s policy 7; is a function mapping from an infos-
tate to a probability distribution over actions. A policy pro-
file 7 is a tuple of policies (71,72, ..., 7n). The expected
sum of future rewards (also called the expected value (EV))
for agent ¢ in history A when all agents play policy profile
7 is denoted v} (k). The EV for the entire game is denoted
v; (7). A Nash equilibrium is a policy profile such that no
agent can achieve a higher EV by switching to a different
policy (Nash 1951). Formally, 7* is a Nash equilibrium if
for every agent 4, v;(7*) = max,, v;(m;, 7*;) where T_;
denotes the policy of all agents other than i. A Nash equi-
librium policy is a policy 7 that is part of some Nash equi-
librium 7*.

A subgame is defined by a root history A in a perfect-
information game and all histories that can be reached going
forward. In other words, it is identical to the original game
except it starts at h. A depth-limited subgame is a subgame
that extends only for a limited number of actions into the fu-
ture. Histories at the bottom of a depth-limited subgame (i.e.,
histories that have no legal actions in the depth-limited sub-
game) but that have at least one legal action in the full game
are called leaf nodes. In this paper, we assume for simplicity
that search is performed over fixed-size depth-limited sub-
game (as opposed to Monte Carlo Tree Search, which grows

3As explained in (Kovaiik et al. 2019), it may be possible for
agents to infer common knowledge beyond just public observa-
tions. However, doing this additional reasoning is inefficient both
theoretically and practically.

the subgame over time (Gelly and Silver 2007)).

A game is two-player zero-sum (2p0s) if there are ex-
actly two players and Ri(w,a) = —Ra(w,a) for every
world state w and action a. In 2p0s perfect-information
games, there always exists a Nash equilibrium that depends
only on the current world state w rather than the entire his-
tory h. Thus, in 2p0s perfect-information games a policy can
be defined for world states and a subgame can be defined
as rooted at a world state. Additionally, in 2p0Os perfect-
information games every world state w has a unique value
v;(w) for each agent i, where vi(w) = —vy(w), defined
by both agents playing a Nash equilibrium in any subgame
rooted at that world state. Our theoretical and empirical re-
sults are limited to 2p0s games, though related techniques
have been empirically successful in some settings with more
players (Brown and Sandholm 2019b). A typical goal for RL
in 2p0s perfect-information games is to learn v;. With that
value function, an agent can compute its optimal next move
by solving a depth-limited subgame that is rooted at its cur-
rent world state and where the value of every leaf node z is
set to v;(2z) (Shannon 1950; Samuel 1959).

From World States to Public Belief States

In this section we describe a mechanism for converting any
imperfect-information game into a continuous state (and ac-
tion) space perfect-information game where the state de-
scription contains the probabilistic belief distribution of all
agents. In this way, techniques that have been applied to
perfect-information games can also be applied to imperfect-
information games (with some modifications).

For intuition, consider a game in which one of 52 cards is
privately dealt to each player. On each turn, a player chooses
between three actions: fold, call, and raise. Eventually the
game ends and players receive a reward. Now consider a
modification of this game in which the players cannot see
their private cards; instead, their cards are seen by a “ref-
eree”’. On a player’s turn, they announce the probability they
would take each action with each possible private card. The
referee then samples an action on the player’s behalf from
the announced probability distribution for the player’s true
private card. When this game starts, each player’s belief dis-
tribution about their private card is uniform random. How-
ever, after each action by the referee, players can update their
belief distribution about which card they are holding via
Bayes’ Rule. Likewise, players can update their belief dis-
tribution about the opponent’s private card through the same
operation. Thus, the probability that each player is holding
each private card is common knowledge among all players
at all times in this game.

A critical insight is that these two games are strategi-
cally identical, but the latter contains no private information
and is instead a continuous state (and action) space perfect-
information game. While players do not announce their ac-
tion probabilities for each possible card in the first game, we
assume (as stated earlier) that all players’ policies are com-
mon knowledge, and therefore the probability that a player
would choose each action for each possible card is indeed
known by all players. Of course, at test time (e.g., when our

agent actually plays against a human opponent) the oppo-
nent does not actually announce their entire policy and there-
fore our agent does not know the true probability distribution
over opponent cards. We later address this problem.

We refer to the first game as the discrete representation
and the second game as the belief representation. In the ex-
ample above, a history in the belief representation, which we
refer to as a public belief state (PBS), is described by the
sequence of public observations and 104 probabilities (the
probability that each player holds each of the 52 possible
private card); an “action” is described by 156 probabilities
(one per discrete action per private card). In general terms, a
PBS is described by a joint probability distribution over the
agents’ possible infostates (Nayyar, Mahajan, and Teneket-
zis 2013; Oliehoek 2013; Dibangoye et al. 2016).4 Formally,
let S;(spub) be the set of infostates that player + may be in
given a public state spy, and let AS; (spup) denote a proba-
bility distribution over the elements of S; (spu). Then PBS
B = (ASi(Spub),---s ASN(Spub)). In perfect-information
games, the discrete representation and belief representation
are identical.

Since a PBS is a history of the perfect-information belief-
representation game, a subgame can be rooted at a PBS.’
The discrete-representation interpretation of such a sub-
game is that at the start of the subgame a history is sam-
pled from the joint probability distribution of the PBS, and
then the game proceeds as it would in the original game.
The value for agent i of PBS /3 when all players play pol-
icy profile 7 is V;"(8) = Zheﬂ(spub(ﬁ)) (p(h|B)v] (R)).
Just as world states have unique values in 2p0Os perfect-
information games, in 2p0s games (both perfect-information
and imperfect-information) every PBS 3 has a unique value
Vi(B) for each agent i, where Vi(8) = —V5(), defined
by both players playing a Nash equilibrium in the subgame
rooted at the PBS.

Since any imperfect-information game can be viewed as
a perfect-information game consisting of PBSs (i.e., the
belief representation), in theory we could approximate a
solution of any 2p0Os imperfect-information game by run-
ning a perfect-information RL+Search algorithm on a dis-
cretization of the belief representation. However, as shown
in the example above, belief representations can be very
high-dimensional continuous spaces, so conducting search
(i.e., approximating the optimal policy in a depth-limited
subgame) as is done in perfect-information games would
be intractable. Fortunately, in 2p0Os games, these high-
dimensional belief representations are convex optimization

*One could alternatively define a PBS as a probability distri-
bution over histories in H(spub) for public state spp. However, it
is proven that any PBS that can arise in play can always be de-
scribed by a joint probability distribution over the agents’ possible
infostates (Olichoek 2013; Seitz et al. 2019), so we use this latter
definition for simplicity.

Past work defines a subgame to be rooted at a public
state (Burch, Johanson, and Bowling 2014; Brown and Sandholm
2015; Moravcik et al. 2016; Moravcik et al. 2017; Brown and
Sandholm 2017a; Kovatik and Lisy 2019; Sustr, Kovafik, and Lisy
2019; Seitz et al. 2019). However, imperfect-information subgames
rooted at a public state do not have well-defined values.

problems. ReBeL leverages this fact by conducting search
via an iterative gradient-ascent-like algorithm.

ReBeL’s search algorithm operates on supergradients
(subgradients but for concave functions) of the PBS value
function at leaf nodes, rather than on PBS values directly.
Specifically, the search algorithms require the values of in-
fostates for PBSs (Burch, Johanson, and Bowling 2014;
Morav¢ik et al. 2017). In a 2pOsum game, the value of in-
fostate s; in 5 assuming all other players play Nash equilib-
rium 7* is the maximum value that player ¢ could obtain for
s; through any policy in the subgame rooted at 3. Formally,

of (sil8) =max " p(hlsi, Ao, () (1)

heH(s;)

where p(h|s;, S—;) is the probability of being in history h
assuming s; is reached and the joint probability distribution
over infostates for players other than i is S_;. Theorem 1
proves that infostate values can be interpreted as a supergra-
dient of the PBS value function in 2p0s games.

Theorem 1. For any PBS 3 = (51, B2) (for the beliefs over
player 1 and 2 infostates respectively) and any policy m* that
is a Nash equilibrium of the subgame rooted at (3,

oT (s118) = Vi(B) + 5 - &)

where § is a supergradient of an extension of V1 () to un-
normalized belief distributions and §1 is the unit vector in
direction s1.

Since ReBeL’s search algorithm uses infostate values, so
rather than learn a PBS value function ReBeL instead learns
an infostate-value function & : B — RIS1I+152l that di-
rectly approximates for each s; the average of the sampled
v (s4|/3) values produced by ReBeL at 3.°

7

RL+Search for Public Belief States

In this section we describe ReBeL and prove that it approx-
imates a Nash equilibrium in 2p0Os games. At the start of the
game, a depth-limited subgame rooted at the initial PBS /3,
is generated. This subgame is solved (i.e., a Nash equilib-
rium is approximated) by running 7' iterations of an iterative
equilibrium-finding algorithm in the discrete representation
of the game, but using the learned value network ¢ to ap-
proximate leaf values on every iteration. During training, the
infostate values at 3, computed during search are added as
training examples for 0 and (optionally) the subgame poli-
cies are added as training examples for the policy network.
Next, a leaf node z is sampled and the process repeats with
the PBS at z being the new subgame root.

Search in a depth-limited subgame

In this section we describe the search algorithm ReBeL uses
to solve depth-limited subgames. We assume for simplicity

SUnlike the PBS value V;(/3), the infostate values may not be
unique and may depend on which Nash equilibrium is played in the
subgame. Nevertheless, any linear combination of supergradients is
itself a supergradient since the set of all supergradients is a convex
set (Rockafellar 1970).

Algorithm 1 ReBeL

function SELFPLAY(S3,,6",0™, DV, D™)
while !ISTERMINAL(,) do
G + CONSTRUCTSUBGAME(f3,)
7, whvam ¢ INITIALIZEPOLICY(G, 6™)
G < SETLEAFVALUES(G, &, whvm 9v)
v(f3,) + COMPUTEEV(G, rrtvam)
tsample ~ unif{twarm + 17 T}
for t = (twarm + 1)..7 do
if £ = t54mple then
.. <+ SAMPLELEAF(G, 7t~ 1)

nt <~ UPDATEPOLICY(G, *~1)
— t = 1 t
T T + T
G < SETLEAFVALUES(G, 7, 7t, 0Y)

v(Br) + 75v(Br) + 75 GETEV(G,)
Add {Bra 'U(Br)} to DY
for 5 € G do

Add {8, 7(8)} to D™
By

that the depth of the subgame is pre-determined and fixed.
The subgame is solved in the discrete representation and the
solution is then converted to the belief representation. There
exist a number of iterative algorithms for solving imperfect-
information games (Brown 1951; Zinkevich et al. 2008;
Hoda et al. 2010; Kroer et al. 2018; Kroer, Farina, and Sand-
holm 2018). We describe ReBeL assuming the counterfac-
tual regret minimization - decomposition (CFR-D) algo-
rithm is used (Zinkevich et al. 2008; Burch, Johanson, and
Bowling 2014; Morav¢ik et al. 2017). CFR is the most popu-
lar equilibrium-finding algorithm for imperfect-information
games, and CFR-D is an algorithm that solves depth-limited
subgames via CFR. However, ReBeL is flexible with respect
to the choice of search algorithm and we also show experi-
mental results for fictitious play (FP) (Brown 1951).

On each iteration ¢, CFR-D determines a policy profile
m! in the subgame. Next, the value of every discrete repre-
sentation leaf node z is set to d(s;(z)|37"), where 87 de-
notes the PBS at z when agents play according to 7*. This
means that the value of a leaf node during search is condi-
tional on 7t. Thus, the leaf node values change every iter-
ation. Given 7r* and the leaf node values, each infostate in
By has a well-defined value. This vector of values, denoted
o™ (Br), is stored. Next, CFR-D chooses a new policy pro-
file 7¢*1, and the process repeats for 7 iterations.

When using CFR-D, the average policy profile 77 con-
verges to a Nash equilibrium as 7' — oo, rather than the
policy on the final iteration. Therefore, after running CFR-D
for T iterations in the subgame rooted at PBS f3,., the value
vector (Zthl v™ (8,))/T is added to the training data for
0(Br).

Self-play reinforcement learning

We now explain how ReBeL trains a PBS value network
through self play. After solving a subgame rooted at PBS /3,
via search, the value vector for the root infostates is added to

the training dataset for 9. Next, a leaf PBS .. is sampled and
a new subgame rooted at (3. is solved. This process repeats
until the game ends.

Since the subgames are solved using an iterative algo-
rithm, we want ¢ to be accurate for leaf PBSs on every it-
eration. Therefore, a leaf node z is sampled according to 7
on a random iteration ¢t ~ unif{0,7 — 1}, where T is the
number of iterations of the search algorithm.” To ensure suf-
ficient exploration, one agent samples random actions with
probabilility ¢ > 0.8 In CFR-D 3. = gt, while in CFR-
AVG and FP 8. = 7',

Theorem 2 states that, with perfect function approxima-
tion, running Algorithm 1 will produce a value network
whose error is bounded by O(%) for any PBS that could

be encountered during play, where T is the number of CFR
iterations being run in subgames.

Theorem 2. Consider an idealized value approximator that
returns the most recent sample of the value for sampled
PBSs, and 0 otherwise. Running Algorithm 1 with T itera-
tions of CFR in each subgame will produce a value approx-
imator that has error of at most % for any PBS that could

be encountered during play, where C' is a game-dependent
constant.

ReBeL as described so far trains the value network
through bootstrapping. One could alternatively train the
value network using rewards actually received over the
course of the game when the agents do not go off-policy.
There is a trade-off between bias and variance between these
two approaches (Schulman et al. 2016).

Adding a policy network

Algorithm 1 will result in © converging correctly even if a
policy network is not used. However, initializing the sub-
game policy via a policy network may reduce the number of
iterations needed to closely approximate a Nash equilibrium.
Additionally, it may improve the accuracy of the value net-
work by allowing the value network to focus on predicting
PBS values over a more narrow domain. .

Algorithm 1 can train a policy network II : g —
(AA)I511+15:1 by adding 77 (3) for each PBS 3 in the sub-
game to a training dataset each time a subgame is solved
(i.e., T iterations of CFR have been run in the subgame).
Using techniques based on (Brown and Sandholm 2016b), it
is possible to warm start equilibrium finding given the initial
policy from the policy network.

Playing an Equilibrium at Test Time

This section proves that running Algorithm 1 at test time
with an accurately trained PBS value network will result in
playing a Nash equilibrium policy in expectation even if we
do not know the opponent’s policy. During self play training

"For FP, we pick a random agent i and sample according to
(mf, 7t,) to reflect the search operation.

8The algorithm is correct if all agents sample random actions
with probability e, but that is inefficient because the value of a leaf

node that is not reached by either agent’s policy is irrelevant.

we assumed that both players’ policies are common knowl-
edge. This allows us to exactly compute the PBS we are in.
However, at test time we do not know our opponent’s en-
tire policy, and therefore we do not know the PBS. This is
a problem for conducting search, because search is always
rooted at a PBS. For example, consider again the game of
modified Rock-Paper-Scissors illustrated in Figure 1. For
simplicity, assume that ¥ is perfect. Suppose that we are
player 2 and player 1 has just acted. In order to now con-
duct search as player 2, our algorithm requires a root PBS.
What should this PBS be?

An intuitive choice, referred to as unsafe search (Gilpin
and Sandholm 2006; Ganzfried and Sandholm 2015), is to
first run CFR for T iterations for player 1’s first move (for
some large 7"), which results in a player 1 policy such as
(R = 0.4001, P = 0.3999, S = 0.2). Unsafe search passes
down the beliefs resulting from that policy, and then com-
putes our optimal policy as player 2. This would result in a
policy of (R = 0,P = 1,5 = 0) for player 2. Clearly, this
is not a Nash equilibrium. Moreover, if our opponent knew
we would end up playing this policy (which we assume they
would know since we assume they know the algorithm we
run to generate the policy), then they could exploit us by
playing (R=0,P =0,5=1).

This problem demonstrates the need for safe search,
which is a search algorithm that ensures we play a Nash
equilibrium policy in expectation. Importantly, it is not nec-
essary for the policy that the algorithm outputs to always
be a Nash equilibrium. It is only necessary that the algo-
rithm outputs a Nash equilibrium policy in expectation. For
example, in modified Rock-Paper-Scissors it is fine for an
algorithm to output a policy of 100% Rock, so long as the
probability it outputs that policy is 40%.

All past safe search approaches introduce constraints to
the search algorithm (Burch, Johanson, and Bowling 2014;
Moravcik et al. 2016; Brown and Sandholm 2017a; §ustr,
Kovatik, and Lisy 2019). Those constraints hurt perfor-
mance in practice compared to unsafe search (Burch, Jo-
hanson, and Bowling 2014; Brown and Sandholm 2017a)
and greatly complicate search, so they were never fully used
in any competitive agent. Instead, all previous search-based
imperfect-information game agents used unsafe search ei-
ther partially or entirely (Moravcik et al. 2017; Brown
and Sandholm 2017b; Brown, Sandholm, and Amos 2018;
Brown and Sandholm 2019b; Serrino et al. 2019). Moreover,
using prior safe search techniques at test time may result in
the agent encountering PBSs that were not encountered dur-
ing self-play training and therefore may result in poor ap-
proximations from the value and policy network.

We now prove that safe search can be achieved without
any additional constraints by simply running the same al-
gorithm at test time that we described for training. This re-
sult applies regardless of how the value network was trained
and so can be applied to prior algorithms that use PBS value
functions (Moravcik et al. 2017; Serrino et al. 2019). Specif-
ically, when conducting search at test time we pick a random
iteration and assume all players’ policies match the policies
on that iteration. Theorem 3 states that once a value network
is trained according to Theorem 2, using Algorithm 1 at

test time (without off-policy exploration) will approximate
a Nash equilibrium.

Theorem 3. If Algorithm 1 is run at test time with no off-
policy exploration, a value network with error at most § for
any leaf PBS that was trained to convergence as described in
Theorem 2, and with T iterations of CFR being used to solve

subgames, then the algorithm plays a (6Cy + ‘E/C%)-Nash

equilibrium, where C1, Cy are game-specific constants.

Since a random iteration is selected, we may select an
early iteration in which the policy is poor. We can mitigate
this by using modern equilibrium-finding algorithms, such
as Linear CFR (Brown and Sandholm 2019a), that assign
little or no weight to early iterations.

Experimental Setup

We measure exploitability of a policy #*, which is
> ien maxy vi(m,7* ;) /IN|. All CFR experiments use
alternating-updates Linear CFR (Brown and Sandholm
2019a). All FP experiments use alternating-updates Linear
Optimistic FP.

We evaluate on the benchmark imperfect-information
games of heads-up no-limit Texas hold’em poker (HUNL)
and Liar’s Dice. We also evaluate our techniques on
turn endgame hold’em (TEH), a variant of no-limit Texas
hold’em in which both players automatically check/call for
the first two of the four betting rounds in the game.

In HUNL and TEH, we reduce the action space to at most
nine actions using domain knowledge of typical bet sizes.
However, our agent responds to any “off-tree” action at test
time by adding the action to the subgame (Brown, Sand-
holm, and Amos 2018; Brown and Sandholm 2019b). The
bet sizes and stack sizes are randomized during training. For
TEH we train on the full game and measure exploitability
on the case of both players having $20,000, unperturbed bet
sizes, and the first four board cards being 38 70T K. For
HUNL, our agent uses far less domain knowledge than any
prior competitive Al agent.

We approximate the value and policy functions using
artificial neural networks. Both networks are MLPs with
GeLU (Hendrycks and Gimpel 2016) activation functions
and LayerNorm (Ba, Kiros, and Hinton 2016). Both net-
works are trained with Adam (Kingma and Ba 2014). We
use pointwise Huber loss as the criterion for the value func-
tion and mean squared error (MSE) over probabilities for
the policy. In preliminary experiments we found MSE for
the value net and cross entropy for the policy net did worse.

We use PyTorch (Paszke et al. 2019) to train the networks.
We found data generation to be the bottleneck due to the se-
quential nature of the FP and CFR algorithms and the eval-
uation of all leaf nodes on each iteration. For this reason we
use a single machine for training and up to 128 machines
with 8 GPUs each for data generation.

Experimental Results

Figure 3 shows ReBeL reaches a level of exploitability in
TEH equivalent to running about 125 iterations of full-game
tabular CFR. For context, top poker agents typically use be-
tween 100 and 1,000 tabular CFR iterations (Bowling et al.

5 0o O~ @ - -8 ——--@---—-T- === . -®- Self-Play Value Net (250 Search Iterations)
& L -®- Random Beliefs Value Net
o5 1070 .\ Full Game E
E% \ -®- Perfect Value Net e
e = o -@- Self-Play Value Net \
s o 10724 \.‘ -®- Self-Play Value/Policy Net 4 o
29 8 % %ege
o > S e-_Tlvg e v e080000¢_soeesceee
® ..“.“o——-‘.-:: ------ bd «*
& 1073 e 4
[-
T===-0
0 50 100 150 200 250 O 50 100 150 200 250 300

Search Iterations

Training Epochs

Figure 3: Convergence of different techniques in TEH. All subgames are solved using CFR-AVG. Perfect Value Net uses an oracle function
to return the exact value of leaf nodes on each iteration. Self-Play Value Net uses a value function trained through self play. Self-Play
Value/Policy Net additionally uses a policy network to warm start CFR. Random Beliefs trains the value net by sampling PBSs at random.

Bot Name \ Slumbot BabyTartanian8 LBR Top Humans
DeepStack \ - - 383+ 112 -
Libratus \ - 63 + 14 - 147 £+ 39
Modicum | 11£5 6+3 - -
ReBeL (Ours) | 45+5 9+4 881 + 94 165 + 69

Table 1: Head-to-head results of our agent against benchmark bots BabyTartanian8 and Slumbot, as well as top human expert Dong Kim,
measured in thousandths of a big blind per game. We also show performance against LBR (Lisy and Bowling 2017) where the LBR agent
must call for the first two betting rounds, and can either fold, call, bet 1 x pot, or bet all-in on the last two rounds. The & shows one standard
deviation. For Libratus, we list the score against all top humans in aggregate; Libratus beat Dong Kim by 29 with an estimated =+ of 78.

2015; Moravcik et al. 2017; Brown and Sandholm 2017b;
Brown, Sandholm, and Amos 2018; Brown and Sandholm
2019b). Our self-play algorithm is key to this success; Fig-
ure 3 shows a value network trained on random PBSs fails
to learn anything valuable.

Table 1 shows results for ReBeL. in HUNL. We compare
ReBeL to BabyTartanian8 (Brown and Sandholm 2016a)
and Slumbot, prior champions of the Computer Poker Com-
petition, and to the local best response (LBR) (Lisy and
Bowling 2017) algorithm. We also present results against
Dong Kim, a top human HUNL expert that did best among
the four top humans that played against Libratus. Kim
played 7,500 hands. Variance was reduced by using Al-
VAT (Burch et al. 2018). ReBeL played faster than 2 seconds
per hand and never needed more than 5 seconds for a deci-
sion. We compare this performance to DeepStack (Moravcik
et al. 2017), Libratus (Brown and Sandholm 2017b), and
Modicum (Brown, Sandholm, and Amos 2018).

Beyond just poker, Table 2 shows ReBeL also converges
to an approximate Nash in several versions of Liar’s Dice.
Of course, tabular CFR does better than ReBeLL when using
the same number of CFR iterations, but tabular CFR quickly
becomes intractable to run as the game grows in size.

Conclusions
We present ReBel, an algorithm that generalizes the
paradigm of self-play reinforcement learning and search to
imperfect-information games. We prove that ReBeL com-
putes an approximate Nash equilibrium in two-player zero-
sum games, demonstrate convergence in Liar’s Dice, and

Algorithm | 1x4f Ix5f Ix6f 2x3f
Full-game FP 0.012 0.024 0.039 0.057
Full-game CFR | 0.001 0.001 0.002 0.002
ReBeL FP 0.041 0.020 0.040 0.020
ReBeL CFR-D | 0.017 0.015 0.024 0.017

Table 2: Exploitability on 4 variants of Liar’s Dice: 1 die with 4,
5, or 6 faces and 2 dice with 3 faces. The top two rows represent
baseline numbers when a tabular version of the algorithms is run
on the entire game for 1,024 iterations. The bottom two rows show
the performance of ReBeL operating on subgames of depth 2 with
1,024 search iterations. For exploitability computation of the bot-
tom two rows, we averaged the policies of 1,024 playthroughs and
thus the numbers are upper bounds on exploitability.

demonstrate that it produces superhuman performance in the
benchmark game of heads-up no-limit Texas hold’em.

ReBeL has limitations that present avenues for future re-
search. Most prominently, the input to its value and policy
functions currently grows linearly with the number of infos-
tates in a public state. This is intractable in games such as
Recon Chess (Newman et al. 2016) that have strategic depth
but little common knowledge. ReBeL’s theoretical guaran-
tees are also limited only to two-player zero-sum games.

Nevertheless, ReBeL. achieves low exploitability in
benchmark games and superhuman performance in heads-
up no-limit Texas hold’em while leveraging far less expert
knowledge than any prior bot. We view this as a major step
toward developing universal techniques for games.

References

Anthony, T.; Tian, Z.; and Barber, D. 2017. Thinking fast
and slow with deep learning and tree search. In Advances in
Neural Information Processing Systems, 5360-5370.

Aumann, R. J. 1976. Agreeing to disagree. The annals of
statistics 1236-1239.

Ba, J. L.; Kiros, J. R.; and Hinton, G. E. 2016. Layer nor-
malization. arXiv preprint arXiv:1607.06450 .

Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.
2015. Heads-up limit hold’em poker is solved. Science
347(6218): 145-149.

Brown, G. W. 1951. Iterative solution of games by fictitious
play. Activity analysis of production and allocation 13(1):
374-376.

Brown, N.; and Sandholm, T. 2015. Simultaneous abstrac-
tion and equilibrium finding in games. In Twenty-Fourth
International Joint Conference on Artificial Intelligence.

Brown, N.; and Sandholm, T. 2016a. Baby Tartanian8: Win-
ning Agent from the 2016 Annual Computer Poker Compe-
tition. In IJCAI, 4238-4239.

Brown, N.; and Sandholm, T. 2016b. Strategy-based warm
starting for regret minimization in games. In Thirtieth AAAI
Conference on Artificial Intelligence.

Brown, N.; and Sandholm, T. 2017a. Safe and nested sub-
game solving for imperfect-information games. In Advances
in neural information processing systems, 689-699.

Brown, N.; and Sandholm, T. 2017b. Superhuman Al for
heads-up no-limit poker: Libratus beats top professionals.
Science eaaol733.

Brown, N.; and Sandholm, T. 2019a. Solving imperfect-
information games via discounted regret minimization. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, 1829-1836.

Brown, N.; and Sandholm, T. 2019b. Superhuman Al for
multiplayer poker. Science eaay2400.

Brown, N.; Sandholm, T.; and Amos, B. 2018. Depth-
limited solving for imperfect-information games. In Ad-

vances in Neural Information Processing Systems, 7663—
7674.

Burch, N.; Johanson, M.; and Bowling, M. 2014. Solv-
ing imperfect information games using decomposition. In
Twenty-Eighth AAAI Conference on Artificial Intelligence.

Burch, N.; Schmid, M.; Moravcik, M.; Morill, D.; and Bowl-
ing, M. 2018. Aivat: A new variance reduction technique for
agent evaluation in imperfect information games. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Dibangoye, J. S.; Amato, C.; Buffet, O.; and Charpillet, F.
2016. Optimally solving Dec-POMDPs as continuous-state
MDPs. Journal of Artificial Intelligence Research 55: 443—
497.

Foerster, J.; Song, F.; Hughes, E.; Burch, N.; Dunning,
I.; Whiteson, S.; Botvinick, M.; and Bowling, M. 2019.

Bayesian Action Decoder for Deep Multi-Agent Reinforce-
ment Learning. In International Conference on Machine
Learning, 1942-1951.

Ganzfried, S.; and Sandholm, T. 2015. Endgame solving
in large imperfect-information games. In Proceedings of
the 2015 International Conference on Autonomous Agents
and Multiagent Systems, 37-45. International Foundation
for Autonomous Agents and Multiagent Systems.

Gelly, S.; and Silver, D. 2007. Combining online and offline
knowledge in UCT. In Proceedings of the 24th international
conference on Machine learning, 273-280.

Gilpin, A.; and Sandholm, T. 2006. A competitive Texas
Hold’em poker player via automated abstraction and real-
time equilibrium computation. In Proceedings of the Na-
tional Conference on Artificial Intelligence, volume 21,
1007. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999.

Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic programming for partially observable stochastic
games. In AAAI volume 4, 709-715.

Hendrycks, D.; and Gimpel, K. 2016. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415 .

Hoda, S.; Gilpin, A.; Pena, J.; and Sandholm, T. 2010.
Smoothing techniques for computing Nash equilibria of se-
quential games. Mathematics of Operations Research 35(2):
494-512.

Horék, K.; and BoSansky, B. 2019. Solving partially ob-
servable stochastic games with public observations. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 33, 2029-2036.

Kaelbling, L. P;; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial intelligence 101(1-2): 99-134.

Kingma, D. P;; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980 .

Kovaiik, V.; and Lisy, V. 2019. Problems with the EFG
formalism: a solution attempt using observations. arXiv
preprint arXiv:1906.06291 .

Kovaiik, V.; Schmid, M.; Burch, N.; Bowling, M.; and
Lisy, V. 2019. Rethinking Formal Models of Partially
Observable Multiagent Decision Making. arXiv preprint
arXiv:1906.11110 .

Kroer, C.; Farina, G.; and Sandholm, T. 2018. Solving large
sequential games with the excessive gap technique. In Ad-
vances in Neural Information Processing Systems, 864—874.

Kroer, C.; Waugh, K.; Kilin¢g-Karzan, F.; and Sandholm, T.
2018. Faster algorithms for extensive-form game solving via
improved smoothing functions. Mathematical Programming
1-33.

Lerer, A.; Hu, H.; Foerster, J.; and Brown, N. 2020. Improv-
ing Policies via Search in Cooperative Partially Observable
Games. In AAAI Conference on Artificial Intelligence.

Lisy, V.; and Bowling, M. 2017. Eqilibrium approximation
quality of current no-limit poker bots. In Workshops at the
Thirty-First AAAI Conference on Artificial Intelligence.

Morav¢ik, M.; Schmid, M.; Burch, N.; Lisy, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science 356(6337): 508-513.

Moravcik, M.; Schmid, M.; Ha, K.; Hladik, M.; and
Gaukrodger, S. J. 2016. Refining subgames in large imper-
fect information games. In Thirtieth AAAI Conference on
Artificial Intelligence.

Nash, J. 1951. Non-cooperative games. Annals of mathe-
matics 286-295.

Nayyar, A.; Mahajan, A.; and Teneketzis, D. 2013. De-
centralized stochastic control with partial history sharing: A
common information approach. IEEE Transactions on Au-
tomatic Control 58(7): 1644—1658.

Newman, A. J.; Richardson, C. L.; Kain, S. M.; Stankiewicz,
P. G.; Guseman, P. R.; Schreurs, B. A.; and Dunne, J. A.
2016. Reconnaissance blind multi-chess: an experimenta-
tion platform for ISR sensor fusion and resource manage-
ment. In Signal Processing, Sensor/Information Fusion,
and Target Recognition XXV, volume 9842, 984209. Inter-
national Society for Optics and Photonics.

Oliehoek, F. A. 2013. Sufficient plan-time statistics for de-
centralized POMDPs. In Twenty-Third International Joint
Conference on Artificial Intelligence.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. In Advances in neural information
processing systems, 8026—-8037.

Rockafellar, R. T. 1970. Convex analysis. 28. Princeton
university press.

Samuel, A. L. 1959. Some studies in machine learning using
the game of checkers. IBM Journal of research and devel-
opment 3(3): 210-229.

Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2019. Mastering atari, go, chess and
shogi by planning with a learned model. arXiv preprint
arXiv:1911.08265 .

Schulman, J.; Moritz, P.; Levine, S.; Jordan, M. 1.; and
Abbeel, P. 2016. High-Dimensional Continuous Control
Using Generalized Advantage Estimation. In International
Conference on Learning Representations (ICLR). URL http:
//arxiv.org/abs/1506.02438.

Seitz, D.; Kovarik, V.; Lisy, V.; Rudolf, J.; Sun, S.; and Ha,
K. 2019. Value Functions for Depth-Limited Solving in
Imperfect-Information Games beyond Poker. arXiv preprint
arXiv:1906.06412 .

Serrino, J.; Kleiman-Weiner, M.; Parkes, D. C.; and Tenen-
baum, J. 2019. Finding Friend and Foe in Multi-Agent
Games. In Advances in Neural Information Processing Sys-
tems, 1249-1259.

Shannon, C. E. 1950. Programming a computer for playing
chess. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 41(314): 256-275.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, L.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science
362(6419): 1140-1144.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676): 354.

§ustr, M.; Kovartik, V.; and Lisy, V. 2019. Monte carlo con-
tinual resolving for online strategy computation in imperfect
information games. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems,
224-232. International Foundation for Autonomous Agents
and Multiagent Systems.

Tesauro, G. 1994. TD-Gammon, a self-teaching backgam-
mon program, achieves master-level play. Neural computa-
tion 6(2): 215-219.

Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione,
C. 2008. Regret minimization in games with incomplete
information. In Advances in neural information processing
systems, 1729-1736.

