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Abstract

Prior Al breakthroughs in complex games have focused on
either the purely adversarial or purely cooperative settings.
In contrast, Diplomacy is a game of shifting alliances that
involves both cooperation and competition. For this reason,
Diplomacy has proven to be a formidable research challenge.
In this paper we describe an agent for the no-press variant
of Diplomacy that combines supervised learning on human
data with one-step lookahead search via external regret mini-
mization. External regret minimization techniques have been
behind previous Al successes in adversarial games, most no-
tably poker, but have not previously been shown to be suc-
cessful in large-scale games involving cooperation. We show
that our agent greatly exceeds the performance of past no-
press Diplomacy bots, is unexploitable by expert humans, and
achieves a rank of 23 out of 1,128 human players when play-
ing anonymous games on a popular Diplomacy website.

Introduction

A primary goal for Al research is to develop agents that
can act optimally in real-world multi-agent interactions (i.e.,
games). In recent years, Al agents have achieved expert-
level or even superhuman performance in benchmark games
such as backgammon (Tesauro| |1994)), chess (Campbell,
Hoane Jr, and Hsu 2002)), Go (Silver et al. 2016} 2017,
2018)), poker (Moravcik et al.[2017; [Brown and Sandholm!
2017, 2019b), and real-time strategy games (Berner et al.
2019; |Vinyals et al.|[2019). However, previous large-scale
game Al results have focused on either purely competitive
or purely cooperative settings. In contrast, real-world games,
such as business negotiations, politics, and traffic navigation,
involve a far more complex mixture of cooperation and com-
petition. In such settings, the theoretical grounding for the
techniques used in previous Al breakthroughs falls apart.

In this paper we augment neural policies trained through
imitation learning with regret minimization search tech-
niques, and evaluate on the benchmark game of no-press
Diplomacy. Diplomacy is a longstanding benchmark for
research that features a rich mixture of cooperation and
competition. Like previous researchers, we evaluate on the
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widely played no-press variant of Diplomacy, in which com-
munication can only occur through the actions in the game
(i.e., no cheap talk is allowed).

Specifically, we begin with a blueprint policy that ap-
proximates human play in a dataset of Diplomacy games.
We then improve upon the blueprint during play by approx-
imating an equilibrium for the current phase of the game,
assuming all players (including our agent) play the blueprint
for the remainder of the game. Our agent then plays its part
of the computed equilibrium. The equilibrium is computed
via regret matching (RM) (Blackwell et al.|| 1956} Hart and
Mas-Colell|2000).

Search via RM has led to remarkable success in poker.
However, RM only converges to a Nash equilibrium in two-
player zero-sum games and other special cases, and RM
was never previously shown to produce strong policies in
a mixed cooperative/competitive game as complex as no-
press Diplomacy. Nevertheless, we show that our agent ex-
ceeds the performance of prior agents and for the first time
convincingly achieves human-level performance in no-press
Diplomacy. Specifically, we show that our agent soundly de-
feats previous agents, that our agent is far less exploitable
than previous agents, that an expert human cannot exploit
our agent even in repeated play, and, most importantly, that
our agent achieves a score of 25.6% when playing anony-
mously with humans on a popular Diplomacy website, com-
pared to an average human score of 14.3%.

Background and Related Work

Search has previously been used in almost every major game
Al breakthrough, including backgammon (Tesauro||1994),
chess (Campbell, Hoane Jr, and Hsu|2002)), Go (Silver et al.
2016} 2017, 2018)), poker (Moravcik et al.|2017; [Brown and
Sandholm|2017, 2019b)), and Hanabi (Lerer et al.|2020). A
major exception is real-time strategy games (Vinyals et al.
2019; [Berner et al|[2019). Similar to SPARTA as used
in Hanabi (Lerer et al.|[2020), our agent conducts one-ply
lookahead search (i.e., changes the policy just for the current
game turn) and thereafter assumes all players play according
to the blueprint. Similar to the Pluribus poker agent (Brown
and Sandholm| |2019b), our search technique uses regret
matching to compute an approximate equilibrium. In a man-
ner similar to the sampled best response algorithm of (An-
thony et al.|2020), we sample a limited number of actions



from the blueprint policy rather than search over all possible
actions, which would be intractable.

Learning effective policies in games involving coopera-
tion and competition has been studied extensively in the field
of multi-agent reinforcement learning (MARL) (Shoham,
Powers, and Grenager||2003). Nash-Q and CE-Q applied Q
learning for general sum games by using Q values derived
by computing Nash (or correlated) equilibrium values at the
target states (Hu and Wellman|[2003}; |Greenwald, Hall, and
Serrano|2003). Friend-or-foe Q learning treats other agents
as either cooperative or adversarial, where the Nash Q val-
ues are well defined (Littman|[2001). The recent focus on
"Deep" MARL has led to learning rules from game theory
such as fictitious play and regret minimization being adapted
to Deep reinforcement learning (Heinrich and Silver|2016j
Brown et al.[2019)), as well as work on game-theoretic chal-
lenges of mixed cooperative/competitive settings such as so-
cial dilemmas and multiple equilibria in the MARL setting
(Leibo et al.|2017; |Lerer and Peysakhovich[2017, 2019).

Diplomacy in particular has served for decades as a
benchmark for multi-agent Al research (Kraus and Lehmann
1988; [Kraus, Ephrati, and Lehmann| [1994; Kraus and
Lehmann! 1995} Johansson and Haard| 20053}, [Ferreira, Car-
doso, and Reis|[2015)). Recently, [Paquette et al.| (2019) ap-
plied imitation learning (IL) via deep neural networks on a
dataset of more than 150,000 Diplomacy games. This work
greatly improved the state of the art for no-press Diplo-
macy, which was previously a handcrafted agent (van Hal
2013). Paquette et al.[(2019) also tested reinforcement learn-
ing (RL) in no-press Diplomacy via Advantage Actor-Critic
(A2C) (Mnih et al.|2016). (Anthony et al.|2020) introduced
sampled best response policy iteration, a self-play technique,
which further improved upon the performance of (Paquette
et al.|2019).

Description of Diplomacy

The rules of no-press Diplomacy are complex; a full descrip-
tion is provided by |[Paquette et al.| (2019). No-press Diplo-
macy is a seven-player zero-sum board game in which a map
of Europe is divided into 75 provinces. 34 of these provinces
contain supply centers (SCs), and the goal of the game is for
a player to control a majority (18) of the SCs. Each players
begins the game controlling three or four SCs and an equal
number of units.

The game consists of three types of phases: movement
phases in which each player assigns an order to each unit
they control, retreat phases in which defeated units retreat
to a neighboring province, and adjustment phases in which
new units are built or existing units are destroyed.

During a movement phase, a player assigns an order to
each unit they control. A unit’s order may be to hold (de-
fend its province), move to a neighboring province, convoy
a unit over water, or support a neighboring unit’s hold or
move order. Support may be provided to units of any player.
We refer to a tuple of orders, one order for each of a player’s
units, as an action. That is, each player chooses one action
each turn. There are an average of 26 valid orders for each
unit (Paquette et al.|2019), so the game’s branching factor

is massive and on some turns enumerating all actions is in-
tractable.

Importantly, all actions occur simultaneously. In live
games, players write down their orders and then reveal
them at the same time. This makes the game an imperfect-
information game in which an optimal policy may need to
be stochastic in order to prevent predictability.

Diplomacy is designed in such a way that cooperation
with other players is almost essential in order to achieve vic-
tory, even though only one player can ultimately win.

A game may end in a draw on any turn if all remaining
players agree. Draws are a common outcome among experi-
enced players because players will often coordinate to pre-
vent any individual from reaching 18 centers. The two most
common scoring systems for draws are draw-size scoring
(DSS), in which all surviving players equally split a win,
and sum-of-squares scoring (SoS), in which player ¢ re-
ceives a score of Zcifcz’ where C; is the number of SCs
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that player ¢ controls (Fogel/|2020). Throughout this paper
we use SoS scoring except in anonymous games against hu-
mans where the human host chooses a scoring system.

Regret Matching

Regret Matching (RM) (Blackwell et al.|[1956; [Hart and
Mas-Colell[2000) is an iterative algorithm that converges to
a Nash equilibrium (NE) (Nash|[1951)) in two-player zero-
sum games and other special cases, and converges to a
coarse correlated equilibrium (CCE) (Hannan/[1957) in gen-
eral.

We consider a game with N players where each player ¢
chooses an action a; from a set of actions A4;. We denote
the joint action as ¢ = (a1, as,...,an), the actions of all
players other than 7 as a_;, and the set of joint actions as .A.
After all players simultaneously choose an action, player ¢
receives a reward of v;(a) (which can also be represented
as v;(a;,a_;)). Players may also choose a probability dis-
tribution over actions, where the probability of action a; is
denoted 7;(a;) and the vector of probabilities is denoted ;.

Normally, each iteration of RM has a computational com-
plexity of IL;cn|A;|. In a seven-player game, this is typi-
cally intractable. We therefore use a sampled form of RM
in which each iteration has a computational complexity of
> ien |Ail. We now describe this sampled form of RM.

Each agent 7 maintains an external regret value for each
action a; € A;, which we refer to simply as regret. The
regret on iteration ¢ is denoted R!(a;). Initially, all regrets
are zero. On each iteration ¢ of RM, 7 (a;) is set according
to
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where Rf(a;); = max{0, Rt(a;)}. Next, each player

samples an action a; from A; according to 7! and all regrets
are updated such that

R (@) = Ri(a) +vilas,a™y) = Y wi(a))via;a”y)
ﬂ;G.Aq‘,
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This sampled form of RM guarantees that Rf(a;) € O(v/1)
with high probability (Lanctot et al.[2009). If R!(a;) grows
sublinearly for all players’ actions, as in RM, then the aver-
age policy over all iterations converges to a NE in two-player
zero-sum games and in general the empirical distribution of
players’ joint policies converges to a CCE as ¢t — oo.

In order to improve empirical performance, we use linear
RM (Brown and Sandholm|[2019a), which weighs updates
on iteration ¢ by tE] We also use optimism (Syrgkanis et al.
2015), in which the most recent iteration is counted twice
when computing regret. Additionally, the action our agent
ultimately plays is sampled from the final iteration’s pol-
icy, rather than the average policy over all iterations. This
reduces the risk of sampling a non-equilibrium action due
to insufficient convergence. In theory sampling from the fi-
nal iteration may increase exploitability, but this technique
has been used successfully in past poker agents (Brown and
Sandholm|2019b).

Agent Description

Our agent is composed of two major components. The first
is a blueprint policy and state-value function trained via im-
itation learning on human data. The second is a search algo-
rithm that utilizes the blueprint. This algorithm is executed
on every turn, and approximates an equilibrium policy (for
all players, not just the agent) for the current turn via RM,
assuming that the blueprint is played by all players for the
remaining game beyond the current turn.

Supervised Learning

We construct a blueprint policy via imitation learning on
a corpus of 46,148 Diplomacy games collected from on-
line play, building on the methodology and model archi-
tecture described by [Paquette et al.| (2019) and /Anthony
et al.|(2020). A blueprint policy and value function estimated
from human play is ideal for performing search in a general-
sum game, because it is likely to realistically approximate
state values and other players’ actions when playing with hu-
mans. Our blueprint supervised model is based on the Dip-
Net agent from (Paquette et al.[2019)), but we make a number
of modifications to the architecture and training.

We trained the blueprint policy using only a subset of the
data used by [Paquette et al.| (2019)), specifically those games
obtained from webdiplomacy.net. For this subset of the data,
we obtained metadata about the press variant (full-press
vs. no-press) which we add as a feature to the model, and
anonymized player IDs for the participants in each game.
Using the IDs, we computed ratings s; for each player ¢ and
only trained the policy on actions from players with above-
average ratings.

To compute player ratings, we used a regularized logistic
outcome model. Specifically, we optimized the loss

L(s|D) = Eg; jyep [o(si — 55)] + Als|2

'In practice, rather than weigh iteration ¢’s updates by ¢ we in-

stead discount prior iterations by t-%l in order to reduce numerical

instability. The two options are mathematically equivalent.

across all pairs of players (i,j) € D where player
¢ achieved a "better" outcome than player j in a game.
We found this approach led to more plausible scores than
Elo (Elo|[1978) or TrueSkill (Herbrich, Minka, and Graepel
2007) ratings.

Paquette et al.| (2019) took an orthogonal approach to fil-
ter poor players from the training data: they only trained on
"winning" powers, i.e. those who ended the game with at
least 7 SCs. This filtering is sensible for training a policy for
play, but is problematic for training policies for search. In
a general-sum game, it is crucial for the agent to be able to
predict the empirical distribution of actions even for other
agents who are destined to lose.

Our model closely follows the architecture of |[Paquette
et al.| (2019), with additional dropout of 0.4 between GNN
encoder layers. We model sets of build orders as single to-
kens because there are a small number of build order combi-
nations and it is tricky to predict sets auto-regressively with
teacher forcing. We adopt the encoder changes of |Anthony
et al.|(2020), but do not adopt their relational order decoder
because it is more expensive to compute and leads to only
marginal accuracy improvements after tuning dropout.

We make a small modification to the encoder GNN ar-
chitecture that improves modeling. In addition to the stan-
dard residual that skips the entire GNN layer, we replace
the graph convolution| with the sum of a graph convolution
and a linear layer. This allows the model to learn a hierarchy
of features for each graph node (through the linear layer)
without requiring a concomitant increase in graph smooth-
ing (the GraphConv (GrCv)). The resulting GNN layer com-
putes (modification in bold)

xi4+1 = Dropout(ReLU (BN (GrCv(z;)+Ax;))) + x;
3)
where A is a learned linear transformation.

Finally, we achieve a substantial improvement in order
prediction accuracy using a featurized order decoder. Diplo-
macy has over 13,000 possible orders, many of which will
be observed infrequently in the training data. Therefore, by
featurizing the orders by the order type, and encodings of
the source, destination, and support locations, we observe
improved prediction accuracy.

Specifically, in a standard decoder each order o has a
learned representation e,, and for some board encoding x
and learned order embedding e,, P(0) = softmaz(x - e,).
With order featurization, we use €, = e,+ A f,, where f, are
static order features and A is a learned linear transformation.
The order featurization we use is the concatenation of the
one-hot order type with the board encodings for the source,
destination, and support locations. We found that represent-
ing order location features by their location encodings works
better than one-hot locations, presumably because the model
can learn more state-contextual features%]

2As noted by |Anthony et al.| (2020), DipNet uses a variant of a
GNN that learns a separate weight matrix at each graph location.

3We note the likelihood that a transformer with token-based
decoding should capture a similar featurization, although [Paque-
tte et al.| (2019) report worse performance for both a transformer
and token-based decoding.
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We add an additional value head to the model immediately
after the dipnet encoder, that is trained to estimate the final
SoS scores given a board situation. We use this value esti-
mate during equilibrium search (Sec. ) to estimate the value
of a Monte Carlo rollout after a fixed number of steps. The
value head is an MLP with one hidden layer that takes as in-
put the concatenated vector of all board position encodings.
A softmax over powers’ SoS scores is applied at the end to
enforce that all players’ SoS scores sum to 1.

Equilibrium Search

The policy that is actually played results from a search al-
gorithm which utilizes the blueprint policy. Let s be the cur-
rent state of the game. On each turn, the search algorithm
computes an equilibrium for a subgame and our agent plays
according to its part of the equilibrium solution for its next
action.

Conceptually, the subgame is a well-defined game that be-
gins at state s. The set of actions available to each player is
a subset of the possible actions in state s in the full game,
and are referred to as the subgame actions. Each player ¢
chooses a subgame action a;, resulting in joint subgame ac-
tion a. After a is taken, the players make no further decisions
in the subgame. Instead, the players receive a reward corre-
sponding to the players sampling actions according to the
blueprint policy 7* for the remaining game.

The subgame actions for player i are the M, highest-
probability actions according to the blueprint model. M; is
a hyperparameter that is proportional to the number of units
controlled by player i. The effect of different choices for M;
is plotted in Figure [T] (left).

Rolling out 7 to the end of the game is very expensive,
so in practice we instead roll out 7° for a small number of
turns (usually 2 or 3 movement phases in our experiments)
until state s’ is reached, and then use the value for s’ from
the blueprint’s value network as the reward vector. Figure ]|
(right) shows the performance of our search agent using dif-
ferent rollout lengths. We do not observe improved perfor-
mance for rolling out farther than 3 or 4 movement phases.

We compute a policy for each agent by running the sam-
pled regret matching algorithm described in Equation (1)
and . The search algorithm used 256 — 4,096 iterations of
RM and typically required between 2 minutes and 20 min-
utes per turn using a single Volta GPU and 8 CPU cores,
depending on the hyperparameters used for the game..

Results

Using the techniques described in the previous section, we
developed an agent we call SearchBot. Our experiments fo-
cus on two formats. The first evaluates SearchBot playing
head-to-head against other bots and against the population
of human players on a popular Diplomacy website. The sec-
ond measures the exploitability of SearchBot.

*This is slightly different than reported in (Paquette et al.|2019)
because we compute token-accuracy treating a full set of build or-
ders as a single token.

3Policy accuracy for these model are not comparable to above
because training data was modified.
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Figure 1: Left: Score of SearchBot using different numbers of
sampled subgame actions M;, against 6 DipNet agents ((Paquette
et al.|2019) at temperature 0.1). A score of 14.3% would be a tie.
Even when sampling only two actions, SearchBot dramatically out-
performs our blueprint, which achieves a score of 20.2%. Right:
The effect of different rollout lengths on SearchBot performance.

Table [2] compares our search agent (SearchBot) with the
supervised and RL DipNet agents. Following prior work,
we compute average scores in ‘lv6’ games containing a
single agent of type A and six agents of type B. The av-
erage SoS score of an identical agent should therefore be
1/7 ~ 14.3%. The SearchBot agent achieves its highest 1v6
SoS score when matched against its own blueprint, since it
is most accurately able to approximate the behavior of that
agent. It outperforms all three agents by a large margin, and
none of the three baselines is able to achieve more than 1%
SoS score against our search agent.

Performance against a population of human
players

The ultimate test of an Al system is how well it performs in
the real world with humans. To measure this, we had Search-
Bot anonymously play no-press Diplomacy games on the
popular Diplomacy website webdiplomacy.net. Since there
are 7 players in each game, average human performance is
a score of 14.3%. In contrast, SearchBot scored 25.6% +
4.8%E] If the bot’s performance for each of the 7 powers is
weighed equally, this score increases to 27.0% =+ 5.3%. The

®Most games used draw-size scoring in the case of draws, while
our agent was trained based on sum-of-squares scoring. If all games
are scored using sum-of-squares, our agent achieves a score of
30.2% =+ 5.3%.
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Model

Policy Accuracy SoS v. DipNet

temp=0.5  temp=0.1

DipNet ((Paquette et al[2019)) 60.5% 0.143

+ combined build orders & encoder dropout 62.0%

+ encoder changes from (Anthony et al.2020) 62.4% 0.150 0.198
switch to webdiplomacy training data only 61.3% 0.175 0.206
+ output featurization 62.0% 0.184 0.188
+ improved GNN layer 62.4% 0.183 0.205
+ merged GNN trunk 62.9% 0.199 0.202

Table 1: Effect of model and training data changes on supervised model quality. We measure policy accuracy as well as average SoS score
achieved by each agent against 6 of the original DipNet model. We measure the SoS scores in two settings: with all 7 agents sampling orders

at a temperature of either 0.5 or 0.1.

Agent A (Ix) | Agent B (6x) | Average Score | Games

SearchBot SL DipNet 54.5% £+ 2% 670
SearchBot RL DipNet 35.6% + 2% 699
SearchBot Blueprint 60.8% + 2% 699
SL DipNet SearchBot 0.2% £+ 0.2% 138
RL DipNet SearchBot 0.7% £ 0.3% 140
Blueprint SearchBot 0.6% £ 0.3% 140

Table 2: Comparison of average sum-of-squares scores for our
agent (SearchBot) in 1v6 games with DipNet agents from [Paquette
et al[(2019), as well as our own blueprint imitation learning agent.
All agents other than SearchBot use a temperature of 0.1.

agent’s performance is shown in Table

In addition to raw score, we measured SearchBot’s per-
formance using the Ghost-Rating system (Anthony|[2020),
which is a Diplomacy rating system inspired by the Elo sys-
tem that accounts for the relative strength of opponents and
that is used to semi-officially rank players on webdiplomacy.
net. Among no-press Diplomacy players on the site, our
agent ranked 23 out of 1,128 players with a Ghost-Rating
of 176.0 as of September 30th, 2020/]

Most games on webdiplomacy.net were played with 24-
hour turns, though the agent also played in some “live”
games with 5-minute turns. Different hyperparameters were
used for live games versus non-live games. In non-live
games, we typically ran RM for 2,048 iterations with a roll-
out length of 3 movement phases, and set M; equal to 5
times the number of units a player controls. This typically
required about 20 minutes to compute. In live games, includ-
ing games in which one human played against six bots, we
typically ran RM for 256 iterations with a rollout length of
2 movement phases, and set M; equal to 3.5 times the num-
ber of units a player controls. This typically required about
2 minutes to compute. In all cases, the temperature for the
blueprint in rollouts was set to 0.75.

The experiments on webdiplomacy.net| occurred over a
three-month timespan, with games commonly taking one to

"Our agent played games under different accounts; we report
the Ghost-Rating for these accounts merged.

two months to complete (players are typically given 24 hours
to act). Freezing research and development over such a pe-
riod would have been impractical, so our agent was not fixed
for the entire time period. Instead, serious bugs were fixed,
improvements to the algorithm were made, and the model
was updated.

Exploitability

While performance of an agent within a population of hu-
man players is the most important metric, that metric alone
does not capture how the population of players might adapt
to the agent’s presence. For example, if our agent is ex-
tremely strong then over time other players might adopt the
bot’s playstyle. As the percentage of players playing like the
bot increases, other players might adopt a policy that seeks
to exploit this playstyle. Thus, if the bot’s policy is highly
exploitable then it might eventually do poorly even if it ini-
tially performs well against the population of human players.

This can partly be interpreted through an evolutionary
lens using the notion of an evolutionarily stable strategy
(ESS) (Taylor and Jonker|1978}; |Smith| 1982), which is a re-
finement of Nash equilibrium (Nash||1951). If our agent’s
policy is an ESS, then a population of players all playing the
agent’s policy could not be “invaded” by a different policy.
That is, no other policy could do better than tie against the
population’s policy.

Motivated by this, we measure the exploitability of
our agent. Exploitability of a policy profile 7 (denoted
e(m)) measures worst-case performance when all but one
agents follows m. Formally, the exploitability of 7 is
defined as e(m) = ) ;.\ maxy, vi(m,7_;)/N, where
m_; denotes the policies of all players other than i.
Agent i’s best response to 7m_; is defined as BR(w_;) =
argmax, v (7, m_;).

We estimate our agent’s full-game exploitability in two
ways: by training an RL agent to best respond to the bot, and
by having expert humans repeatedly play against six copies
of the bot. We also measure the ‘local’ exploitability in the
search subgame and show that it converges to an approxi-
mate Nash equilibrium.

Performance against a best-responding agent When the
policies of all players but one are fixed, the game becomes
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Power | BotScore | HumanMean | Games Wins Draws Losses
All Games 25.6% + 4.8% 14.3% 50 7 16 27
Normalized By Power | 27.0% =+ 5.3% 14.3% 50 7 16 27

Table 3: Performance of our agent in anonymous games against humans on|webdiplomacy.net. Average human performance is 14.3%. Score
in the case of draws was determined by the rules of the joined game. The & shows one standard error.

a Markov Decision Process (MDP) (Howard|/1960) for the
non-fixed player because the actions of the fixed players
can be viewed as stochastic transitions in the “environ-
ment”. Thus, we can estimate the exploitability of 7 by first
training a best response policy BR(w_;) for each agent ¢
using any single-agent RL algorithm, and then computing
Y ien Vi(BR(m_;),m_;)/N. Since the best response RL
policy will not be an exact best response (which is in-
tractable to compute in a game as complex as no-press
Diplomacy) this only gives us a lower-bound estimate of the
exploitability.

Following other work on environments with huge action
spaces (Vinyals et al.|2019; Berner et al.|2019), we use a dis-
tributed asynchronous actor-critic RL approach to optimize
the exploiter policy (Espeholt et al.[2018)). We use the same
architecture for the exploiter agent as for the fixed model.
Moreover, to simplify the training we initialize the exploiter
agent from the fixed model.

We found that training becomes unstable when the pol-
icy entropy gets too low. The standard remedy is to use an
entropy regularization term. However, due to the immense
action space, an exact computation of the entropy term,
E,log ps(a), is infeasible. Instead, we optimize a surrogate
loss that gives an unbiased estimate of the gradient of the en-
tropy loss (see the extended version of this paper for details).
We found this to be critical for the stability of the training.

Training an RL agent to exploit SearchBot is prohibitively
expensive. Even when choosing hyperparameters that would
result in the agent playing as fast as possible, SearchBot typ-
ically requires at least a full minute in order to act each turn.
Instead, we collect a dataset of self-play games of Search-
Bot and train a supervised agent on this dataset. The result-
ing agent, which we refer to as SearchBot-clone, is weaker
than SearchBot but requires only a single pass through the
neural network in order to act on a turn. By training an agent
to exploit SearchBot-clone, we can obtain a (likely) upper
bound on what the performance would be if a similar RL
agent were trained against SearchBot. We report the reward
of the exploiter agents against the blueprint and SearchBot-
clone agents in Figure 2]

Performance Against Expert Human Exploiters In ad-
dition to training a best-responding agent, we also invited
the 1st and 2nd place finishers in the 2017 World Diplomacy
Convention (widely considered the world championship for
full-press Diplomacy) to play games against six copies of
our agent. The purpose was to determine whether the human
experts could discover exploitable weaknesses in the bot.
The humans played games against three types of bots:
DipNet (Paquette et al.|2019) (with temperature set to 0.5),
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Figure 2: Score of the exploiting agent against the blueprint and
SearchBot-clone as a function of training time. We report the av-
erage of six runs. The shaded area corresponds to three stan-
dard errors. We use temperature 0.5 for both agents as it min-
imizes exploitability for the blueprint. Since SearchBot-clone is
trained through imitation learning of SearchBot, the exploitability
of SearchBot is almost certainly lower than SearchBot-clone.

our blueprint agent (with temperature set to 0.5), and Search-
Bot. In total, the participants played 35 games against each
bot; each of the seven powers was controlled by a human
player five times, while the other six powers were controlled
by identical copies of the bot. The performance of the hu-
mans is shown in Table[d] While the sample size is relatively
small, the results suggest that our agent is less exploitable
than prior bots.

Exploitability in Local Subgame We first investigate the
exploitability of our agent in the local subgame defined by
a given board state, sampled actions, and assumed blueprint
policy for the rest of the game. We simulate 7 games be-
tween a search agent and 6 DipNet agents, and plot the to-
tal exploitability of the average strategy of the search pro-
cedure as a function of the number of RM iterations, as
well as the exploitability of the blueprint policies. Utili-
ties u; are computed using Monte Carlo rollouts with the
same (blueprint) rollout policy used during RM, and total
exploitability for a joint policy 7 is computed as e(w) =
>, MaxXg, A, U;i(a;, m—;) —u; (7). The exploitability curves
aggregated over all phases are shown in Figure [3] (left).

In Figure [3| (right), we verify that the average of policies
from multiple independent executions of RM also converges
to an approximate Nash. For example, it is possible that if
each agent independently running RM converged to a dif-
ferent incompatible equilibrium and played their part of it,
then the joint policy of all the agents would not be an ESS.
However we observe that the exploitibility of the average of
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Power

| 1 Human vs. 6 DipNet 1 Human vs. 6 Blueprint 1 Human vs. 6 SearchBot

All Games | 39.1%

22.5% 5.7%

Table 4: Performance of one expert human playing against six bots under repeated play. A score less than 14.3% means the human is unable
to exploit the bot. Five games were played for each power for each agent, for a total of 35 games per agent. For each power, the human first
played all games against DipNet, then the blueprint model, and then finally SearchBot.

policies closely matches the exploitability of the individual
policies.
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Figure 3: Left: Distance of the RM average strategy from equi-
librium as a function of the RM iteration, computed as the sum of
all agents’ exploitability in the matrix game in which RM is em-
ployed. RM reduces exploitability, while the blueprint policy has
only slightly lower exploitability than the uniform distribution over
the 50 sampled actions used in RM (i.e. RM iteration 1). Right:
Comparison of convergence of individual strategies to the average
of two independently computed strategies. The similarity of these
curves suggests that independent RM computations lead to com-
patible equilibria. Note: In both figures, exploitability is averaged
over all phases in 7 simulated games.

Conclusions

No-press Diplomacy is a complex game involving both
cooperation and competition that poses major theoretical
and practical challenges for past Al techniques. Neverthe-
less, our Al agent achieves human-level performance in this
game with a combination of supervised learning on human
data and one-ply search using external regret minimization.
The massive improvement in performance from conducting
search just one action deep matches a larger trend seen in

other games, such as chess, Go, poker, and Hanabi, in which
search dramatically improves performance. While external
regret minimization has been behind previous Al break-
throughs in purely competitive games, it was never previ-
ously shown to be successful in a complex game involving
cooperation. The success of RM in no-press Diplomacy sug-
gests that its use is not limited to purely adversarial games.

Our work points to several avenues for future research.
SearchBot conducts search only for the current turn. In prin-
ciple, this search could extend deeper into the game tree
using counterfactual regret minimization (CFR) (Zinkevich
et al.|2008). However, the size of the subgame grows expo-
nentially with the depth of the subgame. Developing search
techniques that scale more effectively with the depth of the
game tree may lead to substantial improvements in per-
formance. Another direction is combining our search tech-
nique with reinforcement learning. Combining search with
reinforcement learning has led to tremendous success in
perfect-information games (Silver et al.|2018) and more re-
cently in two-player zero-sum imperfect-information games
as well (Brown et al.|[2020). Finally, it remains to be seen
whether similar search techniques can be developed for
variants of Diplomacy that allow for coordination between
agents.
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