Learning Probably Approximately Correct Maximin Strategies in Games with
Infinite Strategy Spaces *

Alberto Marchesi !, Francesco Trovo !, Nicola Gatti !

! Politecnico di Milano
alberto.marchesi @polimi.it, francescol.trovo @polimi.it, nicola.gatti @polimi.it

Abstract

We tackle the problem of learning equilibria in simulation-
based games. In such games, the players’ utility functions
cannot be described analytically, as they are given through a
black-box simulator that can be queried to obtain noisy es-
timates of the utilities. This is the case in many real-world
games in which a complete description of the elements in-
volved is not available upfront, such as complex military set-
tings and online auctions. In these situations, one usually
needs to run costly simulation processes to get an accurate es-
timate of the game outcome. As a result, solving these games
begets the challenge of designing learning algorithms that can
find (approximate) equilibria with high confidence, using as
few simulator queries as possible. We focus on two-player
zero-sum games with infinite strategy spaces. Drawing from
the best arm identification literature, we design two algo-
rithms with theoretical guarantees to learn maximin strategies
in these games. The first one works in the fixed-confidence
setting, guaranteeing the desired confidence level while min-
imizing the number of queries. Instead, the second algorithm
fits the fixed-budget setting, maximizing the confidence with-
out exceeding the given maximum number of queries. First,
we formally prove §-PAC theoretical guarantees for our algo-
rithms under some regularity assumptions, which are encoded
by letting the utility functions be drawn from a Gaussian pro-
cess. Then, we experimentally evaluate our techniques on a
testbed made of randomly generated games and instances rep-
resenting simple real-world security settings.

Introduction

Over the last two decades, game-theoretic models have re-
ceived a growing interest from the Al community, as they
allow to design artificial agents endowed with the ability
of reasoning strategically in complex multi-agent settings.
This surge of interest was driven by many successful appli-
cations of game theory to challenging real-world problems,
such as building robust protection strategies in security do-
mains (Tambe 2011), designing truthful auctions for web
advertising (Gatti et al. 2015), and solving large zero-sum

*An extended version of this paper has been accepted at AA-
MAS 2020 (Marchesi, Trovo, and Gatti 2020).
Copyright (© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

recreational games, e.g., Go (Silver et al. 2016), different
variants of Poker (Brown and Sandholm 2018, 2019), and
Bridge (Rong, Qin, and An 2019).

Most of the game-theoretic studies in Al focus on models
where a complete description of the game is available, i.e.,
the players’ utilities can be expressed analytically. This is
the case of recreational games, which are commonly used as
benchmarks for evaluating algorithms to compute equilibria
in games (Brown and Sandholm 2017). However, in many
real-world problems, the players’ utilities may not be read-
ily available, as they are the outcome of a complex process
governed by unknown parameters. This is the case, e.g., in
complex military settings where a comprehensive descrip-
tion of the environment and the units involved is not avail-
able, and online auctions in which the platform owner does
not have complete knowledge of the parties involved. These
scenarios can be addressed with simulation-based games
(SBGs) (Vorobeychik and Wellman 2009), where the play-
ers’ utilities are expressed by means of a black-box simu-
lator that, given some players’ strategies, can be queried to
obtain a noisy estimate of the utilities obtained when play-
ing such strategies. These models beget new challenges in
the design of algorithms to solve games: (i) they have to
learn (approximate) equilibria by using only noisy observa-
tions of the utilities, and (7i) they should use as few queries
as possible, since running the simulator is usually a costly
operation. Additionally, using the simulator while playing
the game is unfeasible, since the simulation process might
be prohibitively time consuming, as it is the case, e.g., in
military settings where the units have to take prompt deci-
sions when on the battlefield. Thus, the algorithms must first
perform a pure exploration learning phase and, then, use the
(approximate) equilibrium learned to play the game.

Despite the modeling power of SBGs, recent works study-
ing such games are only sporadic, addressing specific set-
tings such as, e.g., symmetric games with a large num-
ber of players (Wiedenbeck, Yang, and Wellman 2018;
Sokota, Ho, and Wiedenbeck 2019), empirical mechanism
design (Viqueira et al. 2019), and two-player zero-sum finite
games (Garivier, Kaufmann, and Koolen 2016). To the best
of our knowledge, the majority of these works focus on the
case in which each player has a finite number of strategies

available. However, in most of the game settings in which
simulations are involved, the players have an infinite number
of choices available, e.g., physical quantities, such as angle
of movement and velocity of units on a military field, bids
in auctions, and trajectories in robot planning. Dealing with
infinite strategies leads to further challenges in the design
of learning algorithms, since, being a complete exploration
of the strategy space unfeasible, providing strong theoretical
guarantees is, in general, a non-trivial task.

Original Contributions We study the problem of learning
equilibria in two-player zero-sum SBGs with infinite strat-
egy spaces, providing theoretical guarantees. Specifically,
we focus on maximin strategies for the first player, i.e., those
maximizing her utility under the assumption that the sec-
ond player acts so as to minimize it, after observing the
first player’s course of play. For instance, this is the case
in security games where a terrestrial counter-air defensive
unit has to shoot an heat-seeking missile to a moving tar-
get that represents an approaching enemy airplane, which,
after the attack has started, can respond to it by deploying
an obfuscating flare with the intent of deflecting the missile
trajectory. When dealing with infinite strategy spaces, some
regularity assumptions on the players’ utilities are in order,
since, otherwise, one cannot design learning algorithms with
provable theoretical guarantees. In this work, we encode our
regularity assumptions on the utility function by modeling
it as a sample from a Gaussian process (GP) (Williams and
Rasmussen 2006). We design two algorithms able to learn
(approximate) maximin strategies in two-player zero-sum
SBGs with infinite strategy spaces, drawing from techniques
used in the best arm identification literature. The first al-
gorithm we propose, called M-GP-LUCSB, is for the fixed-
confidence setting, where the objective is to find an (approx-
imate) maximin strategy with a given (high) confidence, us-
ing as few simulator queries as possible. Instead, the second
algorithm, called SE-GP, is for the fixed-budget setting, in
which a maximum number of queries is given in advance,
and the task is to return an (approximate) maximin strategy
with confidence as high as possible. First, we prove 6-PAC
(i.e., probably approximately correct) theoretical guarantees
for our algorithms in the easiest setting in which the strategy
spaces are finite. Then, we show how these results can be
generalized to SBGs with infinite strategy spaces by lever-
aging the GP assumption. Finally, we experimentally even-
tuate our algorithms on a testbed made of randomly gener-
ated games and instances based on the missile-airplane se-
curity game described above. For SBGs with finite strategy
spaces, we also compare our algorithms with the M-LUCB
algorithm introduced by (Garivier, Kaufmann, and Koolen
2016) (the current state-of-the-art method for learning max-
imin strategies in two-player zero-sum finite games), show-
ing that our methods dramatically outperform it.

Preliminaries

A two-player zero-sum game with infinite strategy spaces is
atuple ' = (X,),u), where ¥ C R% and Y C R? are
compact and convex sets of strategies available to the first

and the second player, respectively, while u : X x Y — R
is a function defining the utility for the first player. ' Since
the game is zero-sum, the second player’s utility is given by
—u. A two-player zero-sum game with finite strategy spaces
is defined analogously, with X and) being finite sets, i.e.,
X={2',. . ,z"}andY = {y},...,y™}, withn > 1and
m > 1 denoting the finite numbers of strategies available to
the first and the second player, respectively. For the ease of
notation, letting IT := X’ x), we denote with 7w := (z,y) €
IT a strategy profile, i.e., a tuple specifying a strategy = € X
for the first player and a strategy y €) for the second player.
In this work, we are concerned with the computation
of maximin strategies, adopting the perspective of the first
player. In words, we seek for a first player’s strategy that
maximizes her utility, assuming a worst-case opponent that
acts so as to minimize it. Since the game is zero sum, we
can assume that the second player decides how to play after
observing the first player’s move, and, thus, playing a max-
imin strategy is the best choice for the first player. > For-
mally, given a first player’s strategy x € X, we denote with
y*(z) € arg minycy u(z, y) a second player’s best response
to z. Then, z* € X is a maximin strategy for the first player
if 2* € argmaxgex u(x,y*(x)), with #* = (z*, y*(z*))
denoting its corresponding maximin strategy profile.

Simulation-Based Games In SBGs, the utility function u
is not readily available, but it is rather specified by an exoge-
nous simulator that provides noisy point estimates of it. As
a result, in SBGs, one cannot explicitly compute a maximin
strategy, and, thus, the problem is to learn one by sequen-
tially querying the simulator. At each round ¢, the simulator
is given a strategy profile 7; € II and returns an estimated
utility @z = u(7ws) + er, where e; ~ N(0, A) is i.i.d. Gaus-
sian noise. The goal is to find a good approximation (see
Equation (1)) of a maximin strategy z* € X’ as rapidly as
possible, i.e., limiting the number of queries to the simu-
lator. To achieve this, we follow the approach of Garivier,
Kaufmann, and Koolen (2016) and propose some dynamic
querying algorithms (see Algorithm 1, where SIM(7r) is a
simulator query for 7 € II), which are characterized by:

e a querying rule that indicates which strategy profile 7; €

I1 is sent as input to the simulator at each round ¢;

e a stopping rule that determines the round 7" after which
the algorithm terminates its execution;

e a final guess ™ = (Z,y) € II for the (true) maximin
strategy profile 7* of the game.

Given a desired approximation € > 0, the objective of the
algorithm is to find an e-maximin strategy with high accu-
racy, using as few queries as possible to the simulator. For-
mally, given § € (0, 1), our goal is to design algorithms that
are 9-PAC, i.e., they satisfy:

Vu]P’((") — u(z, y* (7)) < e) >1-46 (1)

"For the ease of presentation, in the following we focus on the
case in which X C [0,1] and Y C [0, 1] are closed intervals.

*This assumption is in line with the classical Stackelberg model
in which the second player (follower) gets to play after observing
the strategy of the first one (leader) (von Stackelberg 1934).

Algorithm 1 Dynamic Querying Algorithm

I:t+1

2: do

3: Select a strategy profile 7w, € II according
to the querying rule

4 Get estimated utility @; < SIM(7ry)

5 Update the algorithm parameters using

6: t—t+1

7

8

: while stopping condition is not met
: return final guess 7 = (Z, §) for the maximin profile

while keeping the number of rounds 7" as small as possi-
ble. This is known as the fixed-confidence setting. An alter-
native is to consider the fixed-budget case, where the max-
imum number of rounds 7" is given in advance, and the
goal is to minimize the probability § that T is not an e-
maximin strategy. Notice that, for SBGs with finite strategy
spaces, the -PAC property in Equation (1) can only require
u(m*) — u(Z, y*(z)) < ¢, since u(w*) > u(z, y*(T)).

Gaussian Processes To design §-PAC algorithms working
with SBGs having infinite strategy spaces, we first need to
introduce some regularity assumptions on the utility func-
tions u. In this work, we model the utility as a sample from
a GP, which is a collection of dependent random variables,
one for each action profile w € II, every finite subset of
which is multivariate Gaussian distributed (Williams and
Rasmussen 2006). A GP(u(m), k(m, =")) is fully specified
by its mean function p : II — R, with p(7) = Elu(rw)],
and its covariance (or kernel) function k : IT x IT — R, with
k(m,w') = E[(u(r) — p(m))(u(n’) — p(x'))]. Wlo.g.,
we assume that ;4 = 0 and the variance is bounded, i.e.,
k(mw,m) == 0% < 1 for every w € IL Note that the GP
assumption guarantees that the utility function u has a cer-
tain degree of smoothness, without relying on rigid para-
metric assumptions, such as linearity. Intuitively, the ker-
nel function & determines the correlation of the utility val-
ues across the space of strategy profiles 11, thus encoding
the smoothness properties of the utility functions » sampled
from GP(u(7), (7, ")) (for some examples of commonly
used kernels, see Section).

We also need GPs in our algorithms, as they use
GP(0, k(7, 7)) as prior distribution over u. The major ad-
vantage of working with GPs is that they admit simple an-
alytical formulas for the mean and covariance of the pos-
terior distribution. These relations can be easily expressed
using matrix notation, as follows. Let @; = [@iy, ...,]
be the vector of utility values observed up to round ¢, ob-
tained by querying the simulator on the strategy profiles
Ty, ..., ¢ Then, the posterior distribution over u is still
a GP, with mean y(7), covariance ki (7, '), and variance
o?(m), which are defined as follows:

pe(m) = ke (m) T (K + A) 7 g,)
ke(m,7') = k(m, ') — k() (K + M) " k() (3)
of(m) = ky(m,), 4

where k;(m) = [k(m,m1),...,k(m, 7)]" and K, is the
positive definite ¢ x ¢ kernel matrix, whose (i, j)-th entry
is k(m;, ;). The posterior parameters update formulas can
also be expressed recursively, thus avoiding costly matrix in-
versions, as shown in (Chowdhury and Gopalan 2017). Let-
ting 7r; and u; be, respectively, the queried strategy profile
and the observed utility at round ¢, we can write:
ki y(m,my)
——————< (T — pp—1(m)), (5
)\+U,52_1(7Tt)(¢ — pe—1(m¢)), (5)
ke a(m, o) ke 1 (e, ')
Ao i (m)
_ klt2—1(7r77rt) (7
At of(m)
At the beginning of the algorithms, estimates are initialized
using the GP prior GP(0, k(7, 7’)), i.e., formally, po () ==
0, ko(m,n') = k(w, '), and 03(m) := k(mw,) = o2

pu () 4= pya () +

ky(m,m’) « ky(m,7') —

(0

o7 (m) = o7y ()

Fixed-Confidence Setting

In this section and the following one, we present our learning
algorithms for the easiest setting of SBGs with finite strat-
egy spaces. For the fixed-confidence setting, we propose a d-
PAC dynamic querying algorithm (called M-GP-LUCB, see
Algorithm 2) based on the M-LUCB approach introduced
by Garivier, Kaufmann, and Koolen (2016) and provide a
bound on the number of rounds 75 it requires, as a func-
tion of the confidence level §. While our algorithm shares
the same structure as M-LUCB, it uses confidence bounds
relying on the GP assumption, and, thus, different proofs are
needed to show its J-PAC properties. Our algorithm and its
theoretical guarantees have the crucial advantage of being
easily generalizable to SBGs with infinite strategy spaces.

For every strategy profile w € II, the algorithm keeps
track of a confidence interval [L;(7), Us(7)] on u(7r) built
using the utility values u; observed from the simulator up to
round ¢. Using GP(0, k(7r, 7")) as prior distribution over the
utility function u, the lower bounds of the intervals are de-
fined as Ly () == p¢(w) — v/byoy () and the upper bounds
as Uy(m) == pi(m) + /broy(m), where y; and o? are the
mean and the variance of the posterior distribution com-
puted with observations up to round ¢ (see Equations (2)—
(4)), while b, is an exploration term that depends from the
context (see Theorem 1).

At the end of every even round ¢, the algorithm selects the
strategy profiles to give as inputs to the simulator during the
next two rounds ¢ 4+ 1 and ¢ + 2. For every x € &, let

¢ (x) == argmin Ly (z,y)
yey
be the second player’s best response to z computed using
the lower bounds L;. Moreover, let
Ty = argmax min g (x, y)
zex Y€y

be the maximin strategy computed using the posterior mean
(¢ Then, in the following two rounds, the algorithm selects
the strategy profiles 741 and 7,42, defined as follows:
T = (Te, 7e(Te)) ®)
argmax Uy(m). 9
we{(z,7:()) }oza,

T2 =

Algorithm 2 M-GP-LUCB(g, 6)

Algorithm 3 GP-SE(T)

1: Initialize t < 0, po(w) < 0, ko(m, 7w') < k(mw,7’)

2: do

3: Select w4 and 7,49 using Eqgs. (8)—(9)

4 ﬂtJrl — SIM(7Tt+1), ’L~Lt+2 — SIM(?Tt+2)

5 Compute fi442(7) and kiyo (7, ') using

observations ;4 1, Us+2 and Eqgs. (5)—(7)

t—1t+2

while L; (71 41) < Up(miq2) — €

: return ™ = (T, v (Tt)

PR D

This choice is made so as to advance the algorithm towards
its termination. In particular, the M-GP-LUCB algorithm
stops when, according to the confidence intervals, the strat-
egy I, is probably approximately better than all the oth-
ers, i.e., when it holds Li(mws11) > Ui(miq2) — €. Intu-
itively, 7,11 represents the best candidate for being a max-
imin strategy profile, while ;¢ is the second-best candi-
date. Thus, the algorithm stops if 744 is better than ;42
with sufficiently high confidence, i.e., whenever the lower
bound for the former is larger than the upper bound for the
latter (up to an approximation of €). The final strategy profile
recommended by the algorithm is 7 := (Z, v (Z¢))-

The following theorem shows that M-GP-LUCB is §-PAC
and provides an upper bound on the number of rounds T it
requires. The analysis is performed for € = 0, i.e., when 7
is evaluated with respect to an exact maximin profile. 3 Note
that the upper bound for 7 depends on the utility-dependent
term H*(u) == > pc(m), where, for m = (z,y) € I,
¢(mr) is defined as follows:

1
max {(A*)Q, (u(z*,y* (I*))+;(1** yE@E*F*F)) u(z, y* (w))) 2}

where, for the ease of writing, we let A* = wu(w) —
u(z,y*(z)) and z™* € argmax, ¢\ (5} (7, y"(2)), i.e.,
z** is a first player’s maximin strategy when x* is removed
from the available ones. This term has the same role as
Hi = Yco.) ﬁ used by Audibert, Bubeck, and

c(m)=

Munos (2010) in the best arm identification setting, where
7t is the i-th strategy profile in II, which is ordered in
such a way that, letting A(;) = |u(7*) — u(a")], it holds
A(l) < A(g) <...< A(‘HD Intuitively, H*(u) and H;
characterize the hardness of the problem instances by deter-
mining the amount of rounds required to identify the max-
imin profile and the best arm, respectively.

Theorem 1. Using a generic nondecreasing exploration
term by > 0, the M-GP-LUCB algorithm stops its execution
after at most Ty rounds, where:

Ts ginf{t EN i SH (u) by A— 2™

5 < t} . (10)

Specifically, letting b, := 2log ("mggZ tz), the algorithm

3 Assuming € = 0 also requires the additional w.l.o.g. assump-
tion that the utility value of an exact maximin strategy and that one
of a second-best maximin strategy are different.

1: Initialize IT; « II, po(w) < O

2: forp=1,2,...,P—1do

3: For each 7 € II,,, query SiM(7r) for
T, — Tp—1 rounds

4 Compute 1, (7) using observations

5 Select 7, according to Egs. (12)—(13)

6: Hp+1 — Hp \ {7Tp}

7: return the unique element 7 of I1p

returns a maximin profile with confidence at least 1—46, and:

Ts <64 H"(u) A (log <64H*(u))\7r\/%) +
+21og <10g (64H*(u)mr,/’;—?>)> .

where we require that 64 A /*cst > 4.85.

Intuitively, from the result in Theorem 1, we can infer that
the most influential terms on the number of rounds required
to get a specific confidence level ¢ are H*(u) and the noise
variance A, which impact as multiplicative constants on 7.
On the other hand, 75 scales only logarithmically with the
number of strategy profiles |II| = n m, thus allowing the ex-
ecution of the M-GP-LUCB algorithm also in settings where
the players have a large number of strategies available.

Fixed-Budget Setting

In the fixed-budget setting, the goal is to design §-PAC algo-
rithms that, given the maximum number of available rounds
T (i.e., the budget), find an e-maximin strategy with con-
fidence 1 — Jp as large as possible. We propose a succes-
sive elimination algorithm (called GP-SE, see Algorithm 3),
which is based on an analogous method proposed by Au-
dibert, Bubeck, and Munos (2010) for the best arm identi-
fication problem. The fundamental idea behind our GP-SE
algorithm is a novel elimination rule, which is suitably de-
fined for the problem of identifying maximin strategies.

The algorithm works by splitting the number of available
rounds 7" into P — 1 phases, where, for the ease of notation,
we let P := |II| = nm be the number of players’ strategy
profiles. At the end of each phase, the algorithm excludes
from the set of candidate solutions the strategy profile that
has the lowest chance of being maximin. Specifically, letting
I1,, be the set of the remaining strategy profiles during phase
p, at the end of p, the algorithm dismisses the strategy profile
7, = (Tp, Yp) € II,, defined as follows:

(xp,) = argmin p, (), (12)
well,
Yp = argmax Mp(xpa y)7 (13)

yEYV:(wp,y)Ell,

where 11, represents the mean of the posterior distribution
computed at the end of phase p (see Equations (2)-(4)). In-
tuitively, the algorithm selects the first player’s strategy x,,
that is less likely to be a maximin one, together with the sec-
ond player’s strategy y,, that is the worst for her given z,,.
At the end of the last phase, the (unique) remaining strategy
profile ™ = (Z, 3) is recommended by the algorithm.

Following (Audibert, Bubeck, and Munos 2010), the
length of the phases have been carefully chosen so as to ob-
tain an optimal (up to a logarithmic factor) convergence rate.
Specifically, letting log(P) = 1 + 222 1, let us define
Ty == 0 and, for every phase p € {1,..., P — 1}, let:
{ T-P

log(P)(P + 1 —p)
Then, during each phase p, the algorithm selects every re-
maining strategy profile in II,, for exactly 7}, — T}, rounds.
Let us remark that the algorithm is guaranteed to do not ex-
ceed the number of available rounds 7'. Indeed, each m,, is
selected for 7}, rounds, while 7t is chosen T'p_; times, and
S T, + Tp—y < T holds by definition.

The following theorem provides an upper bound on the
probability d7 that the strategy profile T recommended by
the GP-SE algorithm is not e-maximin, as a function of the
number of rounds 7. As for the fixed-confidence setting, our
result holds for € = 0.

T, =

(14)

Theorem 2. Letting T' be the number of available rounds,
the GP-SE algorithm returns a maximin strategy profile

with confidence at least 1 — d7, where:
TP

67 = 2P(n+m — 2)e SNoa(P)Hs | (15)
and Hy == max;cy,... py i A(_l)2

As also argued by Audibert, Bubeck, and Munos (2010),
a successive elimination method provides two main advan-
tages over a simple round robin querying strategy in which
every strategy profile is queried for the same number of
rounds. First, it provides a similar bound on é7 with a bet-
ter dependency on the parameters, and, second, it queries
the maximin strategy profile a larger number of times, thus
returning a better estimate of its expected utility.

SBGs with Infinite Strategy Spaces

We are now ready to provide our main results on SBGs with
infinite strategy spaces. In the first part of the section, we
show how the §-PAC algorithms proposed in the previous
sections for finite SBGs can be adapted to work with infi-
nite strategy spaces while retaining some theoretical guar-
antees on the returned e-maximin profiles. This requires to
work with a (finite) discretized version of the original (infi-
nite) SBGs, where the players’ strategy spaces are approxi-
mated with grids made of equally spaced points. Then, in the
second part of the section, we provide some results for the
situations in which one cannot work with this kind of dis-
cretization, and, instead, only a limited number of points is
sampled from the players’ strategy spaces. This might be the
case when, e.g., the dimensionality d of the players’ strategy
spaces is too high, or there are some constraints on the strat-
egy profiles that can be queried. Clearly, in this setting, we
cannot prove J-PAC results, as the quality of the e-maximin
strategy profiles inevitable depends on how the points are
selected.

Let us remark that our main results rely on our assump-
tion that the utility function w is drawn from a GP, provided
some mild technical requirements are satisfied (see Assump-
tion 1).

6-PAC Results for Evenly-Spaced Grids

The idea is to work with a discretization of the players’ strat-
egy spaces, each made of at least K. equally spaced points,
where € > 0 is the desired approximation level. This induces
a new (restricted) SBGs with finite strategy spaces, where
techniques presented in the previous sections can be applied.
In the following, for the ease of presentation, given an SBG
with infinite strategy spaces I', we denote with I'(K) the fi-
nite SBG obtained when approximating the players’ strategy
spaces with K equally spaced points, i.e., a game in which
the players have n = m = K strategies available and the
utility value of each of the n m strategy profiles is the same
as that one of the corresponding strategy profile in I'. First,
let us introduce the main technical requirement that we need
for our results to hold.

Assumption 1 (Kernel Smoothness). A kernel k(m,w') is

said to be smooth over 11 if, for each L > 0 and for
some constants a,b > 0, the functions w drawn from

GP(0, k(m, w")) satisfy:
aul L) <ae"w. (16

ou

P (e 5e] >) 7 (con o

This assumption is standard when using GPs in online op-
timization settings (Srinivas et al. 2010), and it is satisfied by
many common kernel functions for specific values of a and
b, such as the squared exponential kernel and the Matérn one
with smoothness parameter v > 2 (see Section for details
on the definition of these kernels).

Theorem 3. Assume that u is drawn from a GP(0, k(w, "))
satisfying Assumption 1. Given ¢ > 0 and 6 € (0,2), let
7 = (Z,y) € I be a maximin strategy profile for a finite

game U'(K) where K is at least K, == {%, [log (42) —‘ +1.
Then, the following holds:
P(\u(w*)—u(ﬂge) 21—%. 17)

ou 2

The following two results rely on Theorem 3 to show
that the M-GP-LUCB (Algorithm 2) and the GP-SE (Algo-
rithm 3) algorithms can be employed to find, with high con-
fidence, e-maximin strategy profiles in SBGs with infinite
strategy spaces. Let us remark that, while for SBGs with fi-
nite strategy spaces our theoretical analysis is performed for
e = 0, in the case of infinite strategy spaces it is necessary
to assume a nonzero approximation level e.

Corollary 1. Assume that w is drawn from a
GP(0, k(m,w")) satisfying Assumption 1. Given ¢ > 0
and 6 € (0,1), letting by := 2log (%’ﬁ), the M-GP-
LUCB algorithm applied to T'(K) with K at least K. =

[2%1 /log (%“) _‘ + 1 returns a strategy profile @ = (Z,7)
such that P (Ju(7*) — u(Z,y*(Z))| < €) > 1—4. Moreover,
the algorithm stops its execution after at most:

Tse <64 H"(u) A [Iog <64H*(u))\7rK€1/315> +
¥ 1
+2 log <log (64H (u)AwKey/&s))

\/ 35 > 4.85.

;o (18)

where we require that 64 A K

Corollary 2. Assume that u is drawn from a
GP(0,k(m,n")) satisfying Assumption 1. Given ¢ > 0
and 0 € (0,1), letting T be the number of available rounds,
the GP-SE algorithm applied to T(K) with K ar least

K, = {i, /log (%‘l)-‘ + 1 returns a profile ™ = (Z,7)

such that P (|u(m*) — w(Z, y*(ZT))| > €) < Op,c, where:
T-K? 2

Or,c = 4K (K, — 1)e 8Mes(KDHz 4 9ge” 32(K—DZ | (19)

In the result of Corollary 2, the discretization parameter
K. depends on a confidence level § that has to be chosen in
advance. Another possibility is to try to minimize the over-
all confidence d7 . by appropriately tuning the parameter 4.
Formally, a valid confidence level can be defined as follows:

dopt ==1nf {6 € (0,1) : o7}, (20)
noticing that d7 . depends on ¢ also through the term K..
Unfortunately, this minimization problem does not admit a
closed-form optimal solution. Nevertheless, we can compute
an (approximate) optimal value for § by employing numeri-
cal methods (Nocedal and Wright 2006).

Arbitrary Discretization

Whenever using an equally-spaced grid as a discretization
scheme is unfeasible, the theoretical results based on The-
orem 3 do not hold anymore. Nevertheless, given any finite
sets of players’ strategies, we can bound with high proba-
bility the distance of a maximin profile w* from the strat-
egy profile learned in the resulting (finite) discretized SBG.
Formally, let X, C X be a finite set of n first player’s
strategies and, similarly, let },, C) be a finite set of m
second player’s strategies. Thus, the resulting finite SBG
T := (X, Ym,u) has nm strategy profiles. Let

dy™ = max min |r — z;[,d;"™ = max min [y — y;l,
TeEX T, €Xp YEY Yi€Vm
then, we can show the following result.

Theorem 4. Assume that u is drawn from a GP(0, k(w, 7))
satisfying Assumption 1. Given § € (0,2), let ™ = (Z,y) €
X, X Vm be a maximin strategy profile for a finite game
T = (X, Y,). Then, the following holds:

P <|u(7r*) —u(m@)] < by[log ‘%‘1 max{d;m,d;m}> >1-2

N 9

Let us remark that the result in Theorem 4 can be applied
any time using an equally-spaced grid as a discretization
scheme is unfeasible, as it is the case, e.g., when the dimen-
sionality d of the players’ strategy spaces is too large.

Experimental Results

We experimentally evaluate our algorithms on both finite
and infinite SBGs. As for the finite case, we compare the
performances (with different metrics) of our M-GP-LUCB
and GP-SE algorithms against two baselines. The first one
is the M-LUCB algorithm proposed by Garivier, Kaufmann,
and Koolen (2016), which is the state of the art for learning
maximin strategies in finite SBGs and can be easily adapted
to our setting by using a different exploration term b;. We
introduce a second baseline to empirically evaluate how our
algorithms speed up their convergence by leveraging cor-
relation of the utilities. Specifically, it is a variation of our

M-GP-LUCB algorithm (called M-G-LUCB) where utility
values are assumed drawn from independent Gaussian ran-
dom variables, instead of a GP. * As for SBGs with infinite
strategy spaces, there are no state-of-the-art techniques that
we can use as a baseline for comparison. Thus, we show the
quality (in terms of €) of the strategy profiles returned by our
algorithms using different values of K for the discretized
games. The average ¢ values obtained empirically (called ¢
thereafter) are compared against the theoretical values pre-
scribed by Theorem 3 (for the given K.), so as to evaluate
whether our bounds are strict or not.

Random Game Instances

As for finite SBGs, we test the algorithms on random in-
stances generated by sampling from GP(0, k(7, 7)), us-
ing the following two commonly used kernel functions
(see (Williams and Rasmussen 2006) for more details):

|7 —’||?

1
o squared exponential: k(m, ') = e~ 27 , where [
is a length-scale parameter;
1—v
o Matérn: k(m,w') == é(y) VB, (r), where r := \/127“77_

7'||, v controls the smoothness of the functions, [is
a length-scale parameter, B, is the second-kind Bessel
function, and G is the Gamma function.

We set [€ {0.1,2} and v € {1.5,2.5}, generating 30 in-
stances for each possible combination of kernel function
and parameter values. As for SBGs with infinite strategy
spaces, we test on instances generated from distributions
with I = 0.1 and, with the Matérn kernel, v € {1.5,2.5}.
The infinite strategy spaces are approximated with a dis-
cretization on a grid made of 100 equally-spaced points.

In the fixed-confidence setting, we let 6 = 0.1 and stop
the algorithms after T € {30k, 100k} rounds. Similarly, the
GP-SE algorithm is run with a budget 7' € {30k, 100k}. For
each possible combination of algorithm, game instance, and
round-limit 7', we average the results over 100 runs.

The results on finite SBGs are reported in Table 1, where
Ty is the average number of queries used by the algorithm in
the runs not exceeding the round-limit 7', %end is the per-
centage of runs the algorithm terminates before 7' rounds,
and %opt is the percentage of runs the algorithm is able to
correctly identify the maximin profile w*. Notice that M-
GP-LUCB and M-G-LUCB clearly outperform M-LUCB,
as the latter requires a number of rounds 75 an order of mag-
nitude larger. M-GP-LUCB and M-G-LUCB provide simi-
lar performances in terms of 7, but the former identifies the
maximin profile more frequently than the latter. While al-
ways using the maximum number of rounds 7', GP-SE is the
best algorithm in identifying the maximin profile.

As for infinite SBGs, Figure 1(Left) provides the values
of € and € for an instance generated from a Matérn kernel
with v = 2.5 (see Appendix E in the full version (Marchesi,
Trovo, and Gatti 2019) for more results). In all the instances,
€ is lower than €, empirically proving the correctness of our
guarantees. Moreover, as expected, ¢ decreases as the num-
ber of discretization points K. increases.

“The formulas for updating the mean ; and the variance o7 of
the posterior distribution are changed accordingly.

1
100 - 1 1 -
—B—€] g [L
] —o—é ——¢ F Ud
10° 4 E r Parameter Value
] E o d i hf[s hy 100 m
1 L E E = F 10
1071 4 E 1 L //2 'f m
E E 1 rh g Vg 500 m/s
] 0 o L vg 120 m/s
102 T T T T T 1 T T T T T —" 0 ¢ 15m
0 10 20 30 40 50 0 10 20 30 40 50 60 TN
K. K.

O/'va

Figure 1: (Left) € vs. € for different values of K. (Matérn kernel with v = 2.5). (Center) € vs. € for different values of K. (Hit-
the-Spitfire security game). (Right) Hit-the-Spitfire security game instance and values for its parameters used in the experiments.

Table 1: Experimental results of algorithms M-LUCB, M-G-LUCB, and M-GP-LUCB on SBGs with finite strategy spaces.

M-LUCB M-G-LUCB M-GP-LUCB GP-SE

T Ts %end %opt Ts %end %opt Ts Y%end %opt %opt

l=0.1 30k 10673.86 53.33 87.13 227.23 96.70 86.73 229.19 93.33 86.66 100.00

SQE =20 30k 23788.96 13.73 84.80 2460.19 89.23 77.73 2020.89 76.66 93.36 93.23
100k 42103.86 46.66 88.63 3535.00 91.86 78.56 5656.77 76.77 93.30 96.60

l=0.1 30k 13869.59 56.06 66.66 222.06 100.00 66.83 224.87 100.00 66.66 100.00

Mi 5 =20 30k 18978.75 33.33 76.26 2532.98 91.30 76.90 3775.65 88.03 78.86 98.30
100k 28798.42 50.00 80.70 3662.00 95.36 77.00 4618.27 93.33 79.53 98.76

1=0.1 30k 13335.26 79.80 86.66 168.61 97.90 86.06 171.62 96.66 86.66 99.83

My 5 I=2.0 30k 20404.41 24.66 89.26 1984.55 92.10 86.63 2435.84 88.24 95.27 95.60
100k 49198.82 62.06 92.86 2617.31 93.70 87.13 2626.89 86.66 94.93 96.46

Security Game Instances

We also test on a SBG instance with infinite strategy spaces
inspired by a real-world security game., called Hit-the-
Spitfire. This game models a military scenario in which a ter-
restrial counter-air defensive unit has to fire a heat-seeking
missile to an approaching enemy airplane, which, after the
missile has been launched, can deploy an obfuscating flare
so as to try to deflect it. The model underlying such game
and the parameters used in the experiment are depicted in
Figure 1(Right), where h, is the distance between the air-
plane and the terrestrial unit, h is the distance of the flare
from the plane, v, and v4 are the speed of the missile and the
plane, respectively, while £ is the length of the plane, with
the flare covering half of this space (g). The first player (the
counter-air defensive unit) can determine the angle 6 € [0, 1]
(radians) at which the missile is launched, while the second
player (the airplane) has to decide the position s € [0, Spax]
where to release the flare. If the missile hits the plane, then
it incurs damage d € R™ that depends on the hitting point
(the nearer to the center of the plane, the higher). If the mis-
sile hits the flare, then there is some probability that it is
deflected away from the airplane, otherwise, the missile still
hits the target. The probability of deflection is large when the
distance of the airplane from the deployed flare is larger. 3
We run the M-GP-LUCB with § = 0.1.

Figure 1(Center) reports the results of running the M-GP-
LUCB algorithm with § = 0.1 on the Hit-the-Spitfire game
(performing 100 runs for each K.). Notice that, in most of
the cases, € is lower than the theoretical value e. This is un-
expected, since, in this setting, the assumption that the util-
ity function v is drawn from a GP does not hold. We remark

3See (Marchesi, Trovo, and Gatti 2019) for more details.

that, in all the runs, M-GP-LUCB is able to identify the max-
imin strategy profile over the given grid.

Discussion and Future Works

To the best of our knowledge, we provided the first learn-
ing algorithms for infinite SBGs enjoying §-PAC theoretical
guarantees on the quality of the returned solutions. This sig-
nificantly advances the current state of the art for SBGs, as
dealing with infinite strategies paves the way to the appli-
cation of such models in complex real-world settings. The
fundamental ingredient of our results is the assumption that
the utility functions are drawn from a GP, which allows us
to encode function regularities without relying on specific
parametric assumptions, such as, e.g., linearity.

In future, we will address the case of general (i.e., non-
zero-sum and multi-player) SBGs with finite (or even infi-
nite) strategy spaces, where one seeks for an (approximate)
Nash equilibrium. An interesting question is how to general-
ize our learning algorithms based on best arm identification
techniques to deal with Nash-equilibrium conditions instead
of maximin ones. This would pave the way to the applica-
tion of our techniques to other interesting problems, such
as multi-agent evaluation by means of meta-games (Tuyls
et al. 2018; Rowland et al. 2019). Finally, the use of more so-
phisticated bounds might, e.g., the ones presented by (Nuara
et al. 2020), might improve the M-GP-LUCB algorithm.

Acknowledgments

This work has been partially supported by the Italian MIUR
PRIN 2017 Project ALGADIMAR “Algorithms, Games,
and Digital Market”.

References

Audibert, J.; Bubeck, S.; and Munos, R. 2010. Best Arm
Identification in Multi-Armed Bandits. In Proceedings of
the Conference On Learning Theory (COLT), 41-53.

Brown, N.; and Sandholm, T. 2017. Safe and nested sub-
game solving for imperfect-information games. In Proceed-
ing of the conference on Neural Information Processing Sys-
tems (NeurlPS), 689—-699.

Brown, N.; and Sandholm, T. 2018. Superhuman AI for
heads-up no-limit poker: Libratus beats top professionals.
Science 359(6374): 418-424.

Brown, N.; and Sandholm, T. 2019. Superhuman Al for mul-
tiplayer poker. Science 365(6456): 885-890.

Chowdhury, S.; and Gopalan, A. 2017. On kernelized multi-
armed bandits. In Proceedings of the International Confer-
ence on Machine Learning (ICML), 844-853.

Garivier, A.; Kaufmann, E.; and Koolen, W. 2016. Max-
imin action identification: A new bandit framework for
games. In Proceedings of the Conference On Learning The-
ory (COLT), 1028-1050.

Gatti, N.; Lazaric, L.; Rocco, M.; and Trovo, F. 2015. Truth-
ful learning mechanisms for multi-slot sponsored search
auctions with externalities. Artificial Intelligence 227: 93—
139.

Marchesi, A.; Trovo, F.; and Gatti, N. 2019. Learn-
ing Probably Approximately Correct Maximin Strategies in
Simulation-Based Games with Infinite Strategy Spaces .

Marchesi, A.; Trovo, F.; and Gatti, N. 2020. Learn-
ing Probably Approximately Correct Maximin Strategies in
Simulation-Based Games with Infinite Strategy Spaces. In
Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 834-842.

Nocedal, J.; and Wright, S. 2006. Numerical optimization.
Springer Science & Business Media.

Nuara, A.; Trovo, E.; Crippa, D.; Gatti, N.; and Restelli, M.
2020. Driving exploration by maximum distribution in gaus-
sian process bandits. In Proceedings of the International

Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 948-956.

Rong, J.; Qin, T.; and An, B. 2019. Competitive Bridge Bid-
ding with Deep Neural Networks. In Proceedings of the
International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), 16-24.

Rowland, M.; Omidshafiei, S.; Tuyls, K.; Perolat, J.; Valko,
M.; Piliouras, G.; and Munos, R. 2019. Multiagent Eval-
vation under Incomplete Information. In Proceeding of

the conference on Neural Information Processing Systems
(NeurIPS), 12270-12282.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. Na-
ture 529(7587): 484-489.

Sokota, S.; Ho, C.; and Wiedenbeck, B. 2019. Learning De-
viation Payoffs in Simulation-Based Games. In Proceedings
of the Conference on Artificial Intelligence (AAAI), 1-8.

Srinivas, N.; Krause, A.; Kakade, S.; and Seeger, M. 2010.
Gaussian process optimization in the bandit setting: No re-
gret and experimental design. In Proceedings of the Inter-
national Conference on Machine Learning (ICML), 1015—
1022.

Tambe, M. 2011. Security and game theory: algorithms,
deployed systems, lessons learned. Cambridge university
press.

Tuyls, K.; Perolat, J.; Lanctot, M.; Leibo, J.; and Graepel,
T. 2018. A generalised method for empirical game theoretic
analysis. In Proceedings of the International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), 77—
85.

Viqueira, E.; Cousins, C.; Mohammad, Y.; and A., G. 2019.
Empirical Mechanism Design: Designing Mechanisms from
Data. In Proceedings of the Conference on Uncertainty in

Artificial (UAI), 1-11.

von Stackelberg, H. 1934. Marktform und Gleichgewicht.
Springer, Vienna.

Vorobeychik, Y.; and Wellman, M. 2009. Strategic analysis
with simulation-based games. In Proceedings of the IEEE
Winter Simulation Conference (WSC), 359-372.

Wiedenbeck, B.; Yang, F.; and Wellman, M. 2018. A re-
gression approach for modeling games with many symmet-
ric players. In Proceedings of the Conference on Artificial
Intelligence (AAAI), 1266-1273.

Williams, C.; and Rasmussen, C. 2006. Gaussian processes
for machine learning, volume 2. MIT press Cambridge, MA.

