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Abstract

While competitive games have been studied extensively in
the AI community for benchmarking purposes, there has only
been limited discussion of human interaction with embod-
ied agents under competitive settings. In this work, we aim
to motivate research in competitive human-robot interaction
(competitive-HRI) by discussing how human users can ben-
efit from robot competitors. We then examine the concepts
from game Al that we can adopt for competitive-HRI. Based
on these discussions, we propose a robotic system that is de-
signed to support future competitive-HRI research. A human-
robot fencing game is also proposed to evaluate a robot’s
capability in competitive-HRI scenarios. Finally, we present
the initial experimental results and discuss possible future re-
search directions.

Introduction

Competition is one of the most common forms of human
interaction, yet competitive interaction has rarely been dis-
cussed in the context of Human Robot Interaction (HRI).
There has indeed been a large focus in HRI on coopera-
tive interaction, such as human-aware motion planning, ob-
ject handover actions, and collaborative manipulation. Con-
versely, the absence of studies in competitive robot inter-
action may be due to anxieties concerning the actions of
robots whose interest do not necessarily align with our own.
However, these fears should not prohibit us from consider-
ing positive impacts that competitive-HRI can yield, such
as providing the participants with motivation, inspiring their
potential, and more.

We initiate our research project in competitive-HRI by fo-
cusing on how to create a competitive robotic agent that can
challenge human users in athletic performance and physi-
cal exercise. Physical exercise is essential to our physical
and mental health. We hypothesize that a robot with ad-
versarial behaviors can provide athletic practice or exer-
cise sessions that are more personalized, effective, and en-
joyable. We believe that athletic practice and physical ex-
ercise are scenarios in which nearly anyone can directly
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Figure 1: A robot-based athletic training system based on
a PR2 robot and a VIVE VR system. The human and the
robot are playing a competitive fencing game. Detailed rules
of the game can be found under the System Design & Im-
plementation section. The upper figure shows the gameplay
in the VR environment, where the left sub-window shows
the game from a third-person perspective, and the right sub-
window shows the human’s perspective when wearing the
VR headset. The lower figure shows the game in actuality.
Please refer to this link for example gameplay videos.

benefit from competitive-HRI. In this paper, we first mo-
tivate competitive-HRI by discussing psychological studies
about how competition can influence participants in a posi-


https://www.youtube.com/playlist?list=PLB9RU_gcNw-dU0cLqFyX-4x3EgyEcL-q8

tive manner and how physical exercise is more efficient and
motivating when an appropriate amount of competition is
introduced. We then survey the literature of reinforcement
learning in competitive games, and discuss the challenges in
competitive-HRI and algorithms that addresses these issues.
Next, the design and implementation of our competitive-
HRI robotic system are introduced, along with a competitive
fencing game we designed to evaluate our system. Finally,
we will present initial experimental results and discuss the
insights drawn from the results.

Competition

A number of psychological research studies indicate that
competition can effectively increase participants’ perfor-
mance, motivation, and ability to learn in various scenarios.
Plass et al. (2013) compared how individual, cooperative,
and competitive game modes affect learning, performance,
and motivation in an educational mathematics video game.
They found that players in both competitive and coopera-
tive conditions solve significantly more problems during the
game than those in the individual condition. Furthermore,
competitive players may have developed better arithmetic
skills in the game, such that they were able to complete
more problems than those in other conditions. The qual-
ity of problem-solving strategies was also affected by dif-
ferent game modes, where competitive and individual play-
ers were less likely to employ inefficient problem-solving
strategies. The study also found that competitive and col-
laborative games enhance enjoyment and situational inter-
est. Higher enjoyment refers to a participant having a higher
intrinsic desire and tendency to engage in an event (Salen,
Tekinbag, and Zimmerman 2004). Furthermore, higher situ-
ational interest refers to an event that is able to elicit more
attention and effective reactions from the participants (Hidi
and Renninger 2006).

The effect of competition in physical exercise and ath-
letic training has also been well studied. Feltz et al. (2014)
created a virtual exercise partner that always slightly out-
performs the human participant in cycling or holding a
plank exercise. Without knowing it was a manipulated vir-
tual peer, the participants felt less capable than the peer and
showed performance improvement during the study. Viru
et al. (2010) explored the mechanisms of how exercise per-
formance can be enhanced under competitive conditions.
They found that, in a treadmill running test, the running du-
ration was prolonged by an average of 4.2% in competition,
and was accompanied by a significantly greater peak V O2
(maximum rate of oxygen consumption) response. Inspired
by these studies, this project aims to create a robotic exercise
partner that is able to challenge a human user.

Related Work

There has been very limited human-robot interaction re-
search that explores competitive interactions. Kshirsagar
et al. (2019) studied how a human’s performance was
effected by a robot “co-worker” working in the same
workspace when competing for a real monetary prize. Hu-
man participants were slightly discouraged when compet-

ing against a high performance robot. Another observation
was that people would hold a more positive attitude toward a
robot with lower performance. Mutlu et al. (2006) compared
the perceptions of an ASIMO robot when it was playing a
video game cooperatively or competitively with human par-
ticipants. Their results suggested that male participants were
more engaged by competitive gameplay, but the cooperative
agent was more socially desired. Short et al. (2010) found
that, when a robot cheated in a “rock-paper-scissors” game,
human participants had a greater degree of social engage-
ment and made greater attributions of mental state during
the game.

On the other hand, there have been some attempts to use
robotic systems to assist in physical exercise. Fasola and
Mataric (2010) developed a socially assistive robot to pro-
vide real-time coaching and encouragement for a seated arm
exercise. Most participants did find the robot to be helpful in
their exercise and considered it to be an exercise instructor.
Siissenbach et al. (2014) created an interactive action-based
motivation model for an indoor-cycling activity. In order to
motivate the user throughout the exercise section, the robot
employed communication strategies according to the user’s
physical state and condition. Their system successfully in-
creased users’ workout efficiency and intensity. Sato et al.
(2017) created a robotic system to assist the training of vol-
leyball players. The system has sufficient mechanical capa-
bility to imitate the motion and strategy of top volleyball
blockers.

Each of these studies focused on one or a very small set
of competitive scenarios. In addition, most of these scenar-
ios only require very limited and simple robot motions. In
this work, we examine the concepts from game Al that we
can adopt for competitive-HRI. Furthermore, we design a
robotic system that can potentially play various physically
competitive games against a human player.

Modeling Competitive-HRI As Games

In this section, we first formulate competitive-HRI tasks as
a multi-agent Markov games problem. With such a problem
setting in mind, we then survey the literature on competi-
tive games and discuss the existing frameworks and algo-
rithms that can be applied to competitive-HRI tasks. How-
ever, the game representation doesn’t capture every chal-
lenge in competitive-HRI. Therefore, we will also discuss
the additional challenges introduced by the embodied agent.

Multi-agent Markov Games

In this paper, we only consider 2-player zero-sum game sce-
narios in which one human user is competitively interact-
ing with a single robot. In order to formalize the represen-
tation for the subset of competitive-HRI problems that we
are interested in, we choose to consider them as multi-agent
Markov games(Littman 1994). A Markov game between a
human and a robot is a partially observable Markov deci-
sion process defined by a tuple (S, 0", O™, A" A", T, R).
Here, S is a set of states describing the state of the game.
O, O, A", and A" are the sets of observations and actions
of the human and robot respectively. A transition function



T :8 x A" x A" — S maps the state and actions to a
subsequent state. Assuming 7} and ! are the instantaneous
reward at time ¢ for the robot and human, 7 = —r! in the
zero-sum game setting. The human player will try to maxi-
mize his/her long term reward R for a finite time horizon T,

R = Zzg_l ~ytrh, while the robot will try to minimize it.

RL Algorithms for Markov Games

Under the multi-agent Markov Games setting, we will
discuss the existing solutions and their applicability to
competitive-HRI. Creating a transition model for human
players via actual human demonstration data is hard. Cre-
ating a transition model can be extremely resource consum-
ing, and the resulting models are most likely not transferable
from one task to another. Training the robotic player with
model-based or supervised learning methods is not the most
appropriate approach, because these methods require access
to a comprehensive state-action transition model. Therefore,
we will focus on reviewing reinforcement learning (RL)
methods that do not require massive real-world datasets.

The topic of Multi-agent Markov games is well-explored.
Since games like Chess, Checkers, and Go provide an inter-
active environment with a clear scoring system, researchers
can use these environments to benchmark the ability of al-
gorithms to train an agent to learn, reason, and plan (Scha-
effer et al. 2007; Campbell, Hoane Jr, and Hsu 2002; Sil-
ver et al. 2017). Many algorithms that solve multi-agent
Markov games are designed under a multi-agent reinforce-
ment learning scheme, where agents develop emergent and
complex behavior through interacting with each other and
co-evolving together. Hillis (1990) was an early experiment
with competitive co-evolution. Stanley and Miikkulainen
(2004) experimented with evolutionary strategies in a sim-
ple 2D competitive environment. He et al. (2016) used a
deep Q neural network to model both the transition func-
tion and the opponents’ policy in competitive games. Tam-
puu et al. (2017) applied deep-Q learning to train agents to
play the Pong game in both cooperative and competitive set-
tings. Silver et al. (2018) achieved superhuman performance
in the game of Go, chess, and shogi by reinforcement learn-
ing from competitive self-play. The LOLA (Foerster et al.
2017) and LOLA-DICE (Foerster et al. 2018) algorithms are
policy gradients methods that update the policies by calcu-
lating gradients over the parameter space of both the current
training agent and all other opponents. These two algorithms
can achieve better learning stability in a competitive envi-
ronment. However, they assume the dimension of all agents’
parameter space are identical, and all agents have access to
all the other agents’ parameters, which limit their applica-
bility in many cases.

Although the methods above can achieve great perfor-
mance in certain scenarios, they have only been tested in
board games, video games, 2D particles, or similar envi-
ronments. These environments usually have a much simpler
state transition mechanism compared to the competitive-
HRI problem we are interested in. Because of the kinematic
and dynamic complexity of a robot and the human body,
their transition functions are highly non-linear. Furthermore,
controlling a robot requires a model to learn motor skills

under complex dynamics. The following works have suc-
cessfully extended game RL to learn complex motor skills.
Pinto et al. (2017) proposed an adversarial training method
that can be applied to most existing RL algorithms. Their
algorithm relies on a simple iterative training mechanism,
which makes it very easy to implement. However, this al-
gorithm can suffer from convergence and stability problems
that commonly exist in multi-agent learning problems (Mer-
tikopoulos, Papadimitriou, and Piliouras 2018; Mazumdar,
Jordan, and Sastry 2019). Through the use of PPO and a
very large training batch size, Bansal et al. (2017) created
humanoid and quadrupedal agents that play physically com-
petitive games like soccer, wrestling, and more in simu-
lation. Lowe et al. (2017) proposed a centralized action-
value function that takes the actions of all agents as input
in order to stabilize the DDPG algorithm (Lillicrap et al.
2015) in multi-agent settings. All three approaches use neu-
ral networks to model the complex environment changes,
and they all update their policy according to the actor-critic
framework. In this paper, we will evaluate two of these ap-
proaches and compare their strengths and weaknesses un-
der our competitive-HRI environment. Nevertheless, a tradi-
tional game representation does not capture the challenges
of using embodied agents, which we will discuss in the next
paragraph.

Challenges Outside of Game Frameworks

While reinforcement learning algorithms for games are of-
ten designed for virtual agents acting in simulated environ-
ments, controlling an embodied agent to interact with human
beings can be much more challenging. First, these reinforce-
ment learning methods explore and exploit the policy space
by generating a large number of rollouts in simulation. Yet,
because of the mismatch of model parameters between the
simulation and the real world, a policy that performs well in
simulation may perform poorly in reality. In addition, com-
pared to a virtual environment, the embodied agent will typi-
cally have noisier observations, lower control precision, and
larger uncertainty. Finally, a robot needs to prioritize the hu-
man user’s safety at all times when interacting with them
competitively, an issue that does not arise in pure simulation
settings.

System Design & Implementation

We created a robotic system to explore whether a robot
can effectively improve human athletic training under
competitive conditions. Some of the major challenges of
competitive-HRI problems were raised in the last section. In
this section, we will address these challenges and propose
possible solutions for our system. A preview of the system
pipeline is shown in Fig.3.

Evaluation Environment

A zero-sum fencing game environment was created to train
and evaluate our agents. It is an attack and defense game
where the human is the antagonist and the robot is the
protagonist. A screenshot of the fencing game in the Mu-
joco simulation environment is shown in Fig. 2. Because



Figure 2: The fencing game in Mujoco simulation environ-

ment. The left agent simulates the human antagonist player,
and the right agent simulates the robot protagonist player.

the overall form-factor of a PR2 robot is similar to a hu-
man being, both agents are represented by a PR2 model
in the simulation. The antagonist agent on the left scores
by placing its bat within the orange spherical(target) area
located between the two agents. The antagonist’s score
will increase by 1 for every 0.01 seconds that its bat is
placed within the target area without contacting the oppo-
nent’s bat. However, the antagonist will receive -10 points
of score deduction if its bat is placed within the target
area and makes contact with the protagonist’s bat simul-
taneously. Meanwhile, the protagonist agent on the right’s
goal is to minimize the antagonist’s score in a game. More-
over, the protagonist will lose the game immediately if its
bat is placed within the target area for more than 2 sec-
onds. Each game will last for 20 seconds. The observation
space for both agents is represented by the following tuple:
Oh =0" = (phvpv’vvh,7v7’7t)
Where p; and p, are the Cartesian pose of the bat frame
for the human player and robot player respectively. v;, and
v, describe the velocity humans’ and robots’ bat. ¢ specifies
the game time in seconds.

Hardware Components

The physical system is designed and built based on a PR2
general-purpose robotic research platform. The PR2 robot
has two 7 degrees of freedom(DoF) arms, and its overall
form-factor is similar to a human adult. It is therefore a suit-
able embodied agent for physical interaction with a human.
All joints of the robot support 100Hz real-time control, al-
lowing the robot to quickly respond to human actions. An
HTC VIVE VR headset and two controllers serve two pur-
poses in this system: First, the use of the headset and con-
trollers allows the robot to easily track the pose of the hu-
man’s head and hands. Second, VR technology provides an
immersive experience to users, and it is commonly used in
HRI research that requires a particular interaction scene (Li

et al. 2019; Matsas and Vosniakos 2017). By synchroniz-
ing the actual robot’s location and joint angles to the PR2
model within the VR environment, human users will be able
to see the robot’s behavior in real-time. Consequently, this
system has the advantages of both the real and virtual envi-
ronment, where actual physical contacts, robot motions, and
ambient sound can be perceived by the human user, yet, the
experimental environment can be easily and quickly modi-
fied based on the requirements of different tasks.

Learn to Play Games

We evaluated the performance of two multi-agent actor-
critic algorithms trained in the fencing game environment.
In the first approach, we combined the iterative training
structure from (Pinto et al. 2017) and the classic PPO al-
gorithm(Schulman et al. 2017). The detail of this approach
is presented in Algorithm 1.

Algorithm 1: Iterative Two-Agent Training

Input: Environment &; Stochastic policies x4 and v
Initialize: Parameters 6} for 1 and 6§ for v
fori=1,2,..Njie, do

0 6t |

for j =1,2,.N, do

rollout < roll(€&, o, Vor | Niraj)

6!" < PPO_Update(rollout)

end
0y 67,
for j =1,2,..N, do

rollout < roll(&, pgn, vov, Niraj)
07 < PPO_Update(rollout)

end
end

The protagonist’s parameters 0 will first be trained by
collecting trajectories that result from playing against the
antagonist with a static policy. This continues until the pro-
tagonist’s policy achieves good performance against the an-
tagonist’s current policy. The antagonist will then be trained
against the protagonist with a static policy in order to find
a policy v with parameters 67 that the protagonist’s policy
is not robust to. This training sequence is repeated for N;e,
iterations. Both agents are updated by optimizing the PPO
clipped surrogate objective. Since this method could suffer
from stability problems when N;;., is large, we ran the al-
gorithm with N, = 2, and receive a robot agent that can
play the fencing game sufficiently well.

In the second approach, we directly apply the algorithm
in (Bansal et al. 2017) to our environment. This method also
trains both agents in an iterative scheme. Nevertheless, when
training each of the agents, instead of having such an agent
face against the latest opponent’s policy, this algorithm pro-
posed to randomly load a previous version of the opponent’s
policy from history. When using a very large batch size,
this algorithm demonstrated better stability during a long se-
quence of training.
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Figure 3: A block diagram demonstrating the pipeline of the proposed robotic system

Sim2Real

System identification(systemID) and domain randomization
techniques are typically used to handle the kinematic and dy-
namic mismatch between simulation and actuality. Since do-
main randomization introduces extra variance to our learn-
ing task, it could worsen stability and convergence issues
that already exist in multi-agent environments. Our empiri-
cal study shows that the combination of a Jacobian Trans-
pose end-effector controller and systemID provide a great
Sim2Real solution for our PR2-based system. Instead of
specifying the torque values for each joints, the policy out-
puts an offset or end-effector pose to be executed by the end-
effector controller.

We used the CMA-ES algorithm to optimize the following
objective over the parameter space of both the controller and
the robot model in the simulation. .

(07,,05) = arg min 37 (s}, — )
Om,0c) t=0

Where 6,,, represents the damping, armature, and friction
loss for all joints of the simulated robot. 6. represents the
proportional gains and derivative gains of the end-effector
controller. T} and T are two trajectories sampled from the
real robotic system and simulation that result from the same
control sequence. s'. € T, and s’ € Ty are the robot’s end-
effector pose in reality and simulation at time ¢ respectively.
This systemID process tunes end-effector dynamics of the
simulated robot such that it is similar to the dynamics of a
real PR2 robot. We set an upper bound for the controller’s
torque output to prevent possible human injury. To reduce
the amount of computation, only the protagonist agent that
represents the actual PR2 robot uses the end-effector con-
troller.

Initial Result & Discussion

In this section, we will first discuss the problems that arose
during our development and what we have achieved in this
project so far. While we are still preparing a number of ex-
periments to evaluate our system and gaining further insight
into competitive-HRI, some initial results with the fencing
game environment will be presented. In the end, we will
propose some possible future research direction from both
algorithmic and HRI perspectives.

Antagonist Score During the Training Process
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Figure 4: Antagonist score in the fencing game during the

iterative training in Algorithm 1. The antagonist agent is
trained first, and Njze, = 2.

For the policy training, we were able to create a robotic



agent with reasonable performance by using Algorithm 1.
Fig. 4 shows the antagonist’s score throughout the iterative
training process. The inclining green curves indicate the an-
tagonist learns to score higher while avoiding the penaliza-
tion from contacting the protagonist’s bat. The declining red
curves indicate the protagonist learns to minimize the antag-
onist’s score. Each iteration is stopped when convergence is
detected or a timeout occurs. The algorithm from (Bansal
et al. 2017) provides more stable training in a longer train-
ing sequence, and the resulted policies are seemingly more
sophisticated comparing to those resulted from Algorithm 1.
Due to the time limitation, we will compare and evaluate the
two learning methods in our future works.

Although we are still experimenting and improving the
RL learning process, the other parts of the robotic system are
ready for experiments. We performed an initial experiment
with a policy that has been trained with Algorithm 1. In this
experiment, one human participant was asked to play five
consecutive games with the PR2 robot. Table 1 presents the
participant’s score and average heart rate in each game.

Game | Game | Game | Game | Game
1 2 3 4 5

-541 503 329 830 754

Human
Score
Average
Heart Rate | 124.9 | 129.0 | 144.6 | 150.8 | 144.5
(BPM)

Table 1: Game scores and average heart rate of the human
participant during five consecutive competitive human-robot
fencing games.

The human participant got a negative score in the first
game because he made contact with the robot’s bat fre-
quently. However, the participant was able to quickly make
adjustments and scored increasingly higher in the consecu-
tive games. Meanwhile, the participant’s heart rate also in-
creased when playing the games with the robot. The par-
ticipant has a baseline average heart rate of 83 BPM when
resting and 111 BPM when walking. The participant’s faster
heart rates during the competitive games indicate that he ex-
erted greater physical effort compared to the two baseline
scenarios.

Since this project is still in the development stage, there
are still many interesting questions that need to be explored
and answered. From the RL perspective, finding algorithms
that can stably create more sophisticated control policies for
competitive-HRI problems is essential. On the other hand,
our initial experiment data shows that the human partic-
ipant’s performance was gradually increasing during the
games. Creating a robot agent that can learn from small
amounts of real world data and quickly improve its policy
can help the human’s performance improve faster. Moreover,
it will be useful if the robot can help a participant achieve
certain training goals. From the user experience perspective,
it is important to understand what aspects of competitive-
HRI are enjoyable to human users, and what can possibly
results in negative emotions.
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