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Abstract

Applications of combinatorial auctions (CA) as market mech-
anisms are prevalent in practice, yet their Bayesian Nash
equilibria (BNE) remain poorly understood. Analytical solu-
tions are known only for a handful of specific cases; in the
general case, finding BNE is known to be computationally
hard. Previous work on numerical computation of BNE in
auctions has relied on either solving model equations man-
ually, calculating pointwise best-responses in strategy space,
or iteratively solving restricted subgames. In this study, we
present a generic yet scalable alternative multi-agent rein-
forcement learning method that uses policy networks for
strategy representation and applies modified policy gradi-
ent dynamics in self-play. Most auctions are ex-post non-
differentiable, so gradients may be unavailable or misleading,
and we rely on suitable pseudogradient estimates instead. Al-
though it is well-known that gradient dynamics cannot guar-
antee convergence to Nash equilibria in general, we observe
fast and robust convergence to approximate BNE in a wide
variety of auction games and present a sufficient condition
for convergence.

Introduction

Auctions are widely used in advertising, procurement, or
for spectrum sales (Cramton, Shoham, and Steinberg 2004;
Milgrom 2017; Ashlagi, Monderer, and Tennenholtz 2011).
Auction markets inherently involve incomplete information
about competitors and strategic behavior of market partici-
pants. An important line of research in game theory has long
studied decision making and equilibrium states in such mar-
kets which are typically modeled as Bayesian games.

It is well-known that equilibrium computation is hard:
Finding Nash equilibria is known to be PPAD-complete even
for normal-form games, which assume complete informa-
tion and finite action spaces, and where a Nash equilibrium
is guaranteed to exist (Daskalakis, Goldberg, and Papadim-
itriou 2009). In auction games modeled as Bayesian games,
agents’ values are drawn from some continuous prior value
distribution and their action sets are described by continu-
ous sets. For markets of a single item, the landmark results
by Vickrey (1961) have enabled a deep understanding of
common auction formats. For multi-item auctions and more
specifically combinatorial auctions, in which players bid on
bundles of multiple items simultaneously, there has been

little progress. While the complexity of computing Bayes-
Nash equilibria (BNE) is not well understood, Cai and Pa-
padimitriou (2014) show that BNE computation for a spe-
cific combinatorial auctions is already (at least) PP-hard.
Furthermore, finding an e-approximation to a BNE is still
NP-hard. Explicit solutions exist for very few specific envi-
ronments, but in general, we neither know whether a BNE
exists nor do we have a solution theory. Combinatorial auc-
tions have become a pivotal research problem in algorithmic
game theory (Roughgarden 2016) and they are now widely
used in practice (Bichler and Goeree 2017). Understanding
their equilibria is paramount, and access to scalable numeri-
cal methods for computing or approximating BNE can have
a significant impact.

Learning in games suffers from the nonstationarity prob-
lem: Each player’s objective depends on other agents’ ac-
tions. Prior literature on explicit equilibrium learning has
primarily focussed on complete-information games. In con-
trast, we focus on learning Bayes-Nash equilibria in games
with continuous action space and continuous prior type dis-
tributions. The literature on equilibrium computation for
these games is in its infancy and largely relies on best-
response (BR) computations.

In this paper, we propose Neural Pseudogradient As-
cent (NPGA) as an equilibrium learning method that fol-
lows modified gradient dynamics. While Nash-convergence
of gradient-based learning has been widely studied in
complete-information games, results and methods do not ap-
ply to Bayesian auction games: First, the underlying prob-
lem is equivalent to an infinite-dimensional variational in-
equality, for which we do not know an exact solution
method. Second, the ex-post payoff functions in auction
games are non-differentiable. Finally, multi-agent gradient
dynamics are known to converge to Nash equilibria only in
specific classes of games, even under complete information.

NPGA relies on self-play with neural policy networks,
uses evolutionary strategies to compute gradients, and can
exploit GPU hardware acceleration to massively parallelize
the computations. In contrast to some previous work on
numerical BNE computation, NPGA does not require any
setting-specific information beyond evaluating auction out-
comes themselves, and it can thus be applied to arbitrary
Bayesian games. We discuss a sufficient condition for con-
vergence of NPGA to a unique Bayes-Nash equilibrium and



provide extensive experimental results on single-item and
combinatorial auctions, which pose a benchmark problem
in algorithmic game theory. Interestingly, we observe con-
vergence of NPGA to approximate BNE in a wide range
of small- and medium-sized combinatorial auction environ-
ments and recover the analytical Bayes-Nash equilibrium
whenever it is known.

The remainder of this paper is structured as follows:
First, we formally introduce the model and problem be-
fore discussing related work. Next, we introduce and discuss
NPGA, before applying it to a suite of benchmark combina-
torial auctions. Finally, we summarize our findings and out-
line future research directions.

Problem statement

Bayesian Games and Combinatorial Auctions. A
Bayesian game or incomplete information game is a quin-
tuple G = (Z, A, V, F,u). Z = {1,...,n} describes the set
of agents participating in the game. A = Ay x --- X A, is
the set of possible action profiles, with A; being the set of
actions available to agent i€Z. V = V; X --- x V), is the set
of epistemic type profiles. F':V—[0, 1] defines a joint prior
probability distribution over type profiles that is assumed to
be common knowledge among all agents. For any depen-
dent random variable X, we denote its cumulative distribu-
tion function by F'x and its probability density function by
fx. For example, F,, denotes the marginal distribution of
agent ¢’s type. At the beginning of the game, nature draws
a type profile v ~ F' and each agent 7 is informed of their
own type v; € V; only, thus the type constitutes private in-
formation based on which each agent chooses their action
b; € A;. Each agent’s ex-post utility function is then deter-
mined by u; : AxV; — R, i.e. the agent’s utility depends on
all agents’ actions but only on their own type. Agents aim to
maximize their individual utility or payoff u;.

Here, we consider sealed-bid combinatorial auctions
(CA) on items M = {1,...,m}. Each agent, or bidder, is
allocated a (possibly empty) bundle k; € K = 2 of items.
Each agent’s types v; € V; are given by a vector of pri-
vate valuations over bundles, i.e. v; = (v;(k))gex. Bidders
then submit actions, called bids b;, according to some bid-
language: In the general case, where bidders might be inter-

ested in any combination of items, bids are in A; C Rl’q,
i.e. each player must submit 2 bids. In practice this is pro-
hibitive, and one commonly studies settings where valua-
tions exhibit some structure that allows reducing the dimen-
sionality of both the types and actions. The settings studied
in this paper have type and action spaces R or Ri_.

After observing their own type v;, bidders submit bids
b;=0;(v;) chosen according to some strategy or bid function
Bi : Vi — A, that maps individual valuations to an action.'
We denote by X; C Af the resulting strategy space of bid-
der ¢ and by ¥ = [], X, the space of possible joint strate-
gies. Note that even for deterministic strategies, the spaces
¥3; are infinite-dimensional unless V; are finite. The auction-
eer collects these bids, applies some auction mechanism that

'Mixed strategies that randomize over actions would also be
possible; we restrict ourselves to pure or deterministic strategies.

determines (a) an allocation z € K'™: each bidder ¢ receives
a (possibly empty) bundle x;€/C, s.t. each item m € M is
allocated to at most one bidder, and (b) payments p € R"
that the agents have to pay to the auctioneer. For risk-neutral
bidders, their utility functions are quasi-linear’ and given
by Ui Vz x A — R, ui(vi,bi,b_i) = Ul(l'l) — Di» i.e.
the utility of each player is given by how much she values
her assigned allocation minus the price she has to pay for
it. Throughout this paper, we will differentiate between the
ex-ante state of the game, where players know only the pri-
ors F', the ex-interim state, where players additionally know
their own valuation v; ~ F),,, and the ex-post state, where
all actions have been played and u; (v, b) can be observed.

Equilibria in Bayesian games. In non-cooperative game
theory, Nash equilibria (NE) are the central equilibrium so-
Iution concept. An action profile b* is a pure-strategy NE
of a complete-information game G = (Z, A, u) if no agent
has an incentive to deviate from b* unilaterally. Bayesian-
Nash equilibria (BNE) extend this notion to incomplete-
information games, calculating the expected utility u over
the conditional distribution of opponent valuations v_;. For
valuation v; €V;, action b; € .A; and fixed opponent strategies
B_;€%_;, we denote the ex-interim utility of bidder i by

Ui (v, by, Bi) = By, o, [wi (vi, b3, B—i(v_y))]. (1)
We also denote the ex-interim utility loss of action b; in-
curred by not playing a BR action, given v; and 5_;, by

Ci(bi;vi, B—i) = sup U;(vi, b, B-i) =i (vi, biy ). (2)
béE.Ai
Note that £; can generally not be observed in online-settings
because it requires knowledge of a best-response.

An ex-interim e-Bayes Nash Equilibrium (e-BNE) is a
strategy profile 8* = (B7,...,8) € X such that for every
type v, no agent can improve her own ex-interim expected
utility by more than ¢ > 0 by deviating from the common
strategy profile. Thus, in an e-BNE, we have:

Zi (bz,vl,ﬁfl) <eforalli e I, v; € V;and b; € A;. 3)

A 0-BNE is simply called BNE. While BNE are usually
defined at the ex-interim stage of the game, we also consider
ex-ante Bayesian equilibria as strategy profiles that concur-
rently maximize the players’ ex-ante expected utility u. We

analogously define @ and the ex-ante utility losses £ of a
strategy profile 8 € X by

i (Bis B-i) = Eo,nr,, [Wi(vi, Bi(vi), B—;)] and  (4)
0i(Bi, B—:) = sup (B}, B—i) — w(Bs B-i).  (5)
Biex;

Then, an ex-ante BNE * € 3 can be characterized by the
equations ¢;(55, 5*,) = 0 for all i€Z. Clearly, every ex-
interim BNE also constitutes an ex-ante equilibrium and the
reverse holds almost surely, i.e. any ex-ante equilibrium ful-
fills Equation 3, except possibly on a nullset V. CV, i.e. with
[y dfu(v)=0. To see this, one may consider the equation

0=((8*)=E,, [€(8*,v;)] and that by definition £(83,v;)>0.

20ur method is also applicable to bidders with risk-averse util-
ity functions, e.g. u = /v — p.



Related work

Nash-convergence of gradient dynamics in games has
been studied in evolutionary game theory and multiagent
learning. While earlier work considered mixed strategies
over finite normal-form games (Zinkevich 2003; Bowling
and Veloso 2002; Bowling 2005; Busoniu, Babuska, and
De Schutter 2008), more recently, motivated by the emer-
gence of Generative Adversarial Networks, there has been
a focus on (complete-information) games with continuous
action spaces and smooth utility functions (Mertikopou-
los and Zhou 2019; Letcher et al. 2019; Balduzzi et al.
2018; Schaefer and Anandkumar 2019). A result found
for many of the studied settings and algorithms is that
gradient-based learning rules do not necessarily converge to
Nash equilibria and may exhibit cycling behavior, but often
achieve no-regret properties and thus converge to Coarse
Correlated equilibria (CCE), a solution concept weaker than
Nash equilibria. An analogous result exists for finite-type
Bayesian games, where no-regret learners are guaranteed
to converge to a Bayesian CCE (Hartline, Syrgkanis, and
Tardos 2015). In the present paper, we study equilibrium
learning via gradient dynamics in continuous-type Bayesian
games, specifically auctions, where they have not been
investigated previously to our knowledge.

Earlier approaches to BNE computation in auctions
were usually setting-specific and relied on reformulating
Equation 3 as a system of differential equations (where pos-
sible), then solving this equation analytically or numerically
(Krishna 2009; Ausubel and Baranov 2019). Armantier,
Florens, and Richard (2008) introduced a method that is
expresses the Bayesian game as the limit of a sequence
complete-information games. They show that the sequence
of Nash equilibria in the restricted games converges to a
BNE of the original game. While this result holds for any
Bayesian game, setting-specific information is still required
to generate and solve the restricted games. Rabinovich et al.
(2013) study best-response dynamics on mixed strategies in
auctions with finite action spaces. Most recently, Bosshard
etal. (2017, 2020) proposed a method to find BNE in combi-
natorial auctions via smoothed best-response dynamics. The
method explicitly computes point-wise best-responses in a
fine-grained linearization of the strategy space via sophisti-
cated Monte-Carlo integration. While avoiding reliance on
setting specific knowledge, the best response computation
suffers from the curse of dimensionality in larger games.

Pseudogradient dynamics in auction games

Next, we present our method for equilibrium computation
in auctions, which we call Neural Pseudogradient Ascent
(NPGA). On a high level, we propose following the ex-ante
gradient dynamics of the game via simultaneous gradient
ascent of all bidders. As we will see, however, computing
the gradients themselves is not straightforward in the auc-
tion setting and we will need some modifications to estab-
lished gradient dynamics methods such as (Zinkevich 2003;
Silver et al. 2014). For now, assume that players can observe
a gradient-oracle Vg, 1, (8;, B—;) with respect to the current

strategy profile 5¢ in each iteration. Then the rule proposes
that players perform a projected gradient update:

Bl =Ps, (BI7' + Al) with Al o Vg, @;(8;, 8-:), (6)

where Py, ( - ) is the projection onto the set of feasible strate-
gies for agent 7. Several things must be noted about Equa-
tion 6: First, we consider the gradient dynamics of the ex-
ante utility u, rather than ex-interim or ex-post utilities.
The goal of an individual update step is thus to marginally
improve the expected utility of player ¢ across all possi-
ble joint valuations v ~ F'. This perspective ultimately
considers low-probability events less important than high-
probability events, which is in contrast to some other meth-
ods, which explicitly aim to optimize all ex-interim states
(Bosshard et al. 2017). Second, to compute the gradient or-
acle Vgu in self-play, we rely on access to other players’
strategies, but evaluating each player’s policy relies only on
their own valuation. We thus follow the centralized-training,
decentralized-execution framework common in multi-agent
learning. Third, B; € 3; are functions in an infinite-
dimensional function space, so the gradient Vg, u; is it-
self a functional derivative. In our ex-ante perspective, we
thus consider this to be the Gateaux derivative over the
Hilbert space ¥;, equipped with the inner product (v, 5;) =
Ey~p,, [¢(v;)T B;i(v;)] (which, in turn, defines the projec-
tion in Equation 6 as Py, (8) = arg mingeyx, (0 — 8, 0—5)).

To implement this derivative in practice, we employ pol-
icy networks B;(v;) = m;(v;;0;) specified by a neural
network architecture and a corresponding parameter vec-
tor 0; € R%. Importantly, given a suitable network archi-
tecture, one can ensure that all 6; yield feasible bids, thus
making the projection in the update step obsolete. In the
empirical part of this study, we restrict ourselves to fully-
connected feed-forward neural networks with ReLU activa-
tions in the output layer, which ensure nonnegative bids—
the only feasibility constraint in the auctions we study. In
any case, d; € N is finite and we thus transform the problem
of choosing an infinite-dimensional strategy into choosing a
finite-dimensional parameter vector 6;.

Policy Pseudogradients. The deterministic policy
gradient theorem (Silver et al. 2014) gives an estab-
lished, canonical way to compute the payoff gradient
with respect to the parameters 6: Vg, u;(m;( -;6;), B—;) =
Eonr [Vo,m(vi5 0:) Vi, i (vis iy B—i (Vi) b=, (v5:6)] -
However, the regularity conditions required by the theorem
are commonly violated in combinatorial auctions. In par-
ticular, due to the discrete nature of the allocations x, the
ex-post utilities w;(v;, b;, b_;) are usually discontinuous—
and thus neither differentiable nor subdifferentiable in
b;. While this nondifferentiability does not extend to
u, it nevertheless renders the policy gradient formula
above inapplicable: Although the set of discontinuities
is a v-nullset in practice, one can show that even on the
differentiable intervals of w;(v;, -,b_;), its true gradient
provides systematically misleading signals: Consider a
first-price sealed-bid auction in which winning bidders pay
their bid amount b;. The utility graph is separated into two
sections: Bidding lower than the highest opposing bid leads
to zero payoff and thus no learning feedback, V;, u; = 0;




winning, however, must yield learning feedback to decrease
the winning bid, Vj,u;=—1. Back-propagation will thus
lead to a steady decrease of bids in every iteration, until all
players bid constant zero for any valuation.

To alleviate this, we instead estimate the policy gradient
using a sampling approach based on evolutionary strategies
(ES) (Salimans et al. 2017). To calculate Vgu, we perturb
the parameter vector P times, 0;, = 0;+¢p, using zero-
mean Gaussian noise £,~N(0,0%) for p € {1,..., P},
where P, o are hyperparameters. We then calculate each
perturbation’s fitness, wp=u;(m;(vi; 0i;p), B—;), via Monte-
Carlo integration, and estimate the gradients as the fitness-
weighted perturbation noise V5= 3 ¢pe,. Salimans
et al. motivated their application of this gradient estimate
to reinforcement learning as it’s applicable to paralleliza-
tion across large-scale CPU-clusters, but here we instead ex-
ploit its property that it gives an asymptotically unbiased es-
timator of Vyu even when Vju itself is not well-defined.
To summarize, NPGA “implements” Equation (6) via ES-
pseudogradients and a NN parametrization of strategy func-
tions which renders the projection step unnecessary:

B = m;(-;0%) with 0! = 9?71+Af where A! Vﬁs @)

Vectorizing Auction Evaluations. The only information
about the game G needed in the computation of NPGA is
access to the evaluation of & = E, . [u] for a given strat-
egy profile. Given a vectorized implementation of the joint
ex-post utility function u, estimating u via Monte-Carlo in-
tegration over V is suitable to parallel execution on hard-
ware accelerators such as GPUs. To this end, we built cus-
tom vectorized implementations of common auction mech-
anisms using the PyTorch framework (Paszke et al. 2017),
allowing us to perform this evaluation multiple orders of
magnitude faster compared to previous numerical work on
auctions. For moderately sized auction games, allocations x
can be computed in a vectorized fashion via full enumeration
of feasible allocations. Common payment rules either have
inherently vectorizable closed-form formulation or can be
reformulated as the solution of a constrained quadratic pro-
gram (e.g. the Vickrey-Clarke-Groves (VCG) mechanism or
core-selecting pricing rules (Day and Cramton 2012)). To
solve a large batch of the latter in parallel, we leverage a cus-
tom vectorized implementation of interior-point methods.
(A similar approach was used by Amos and Kolter (2019).)

A convergence criterion. As discussed above, gradi-
ent dynamics do not generally converge to Nash. In dif-
ferentiable, finite-dimensional, complete-information games
(auctions are neither!), Mertikopoulos and Zhou (2019)
show that strict monotonicity of the payoff gradients is
likewise a sufficient condition for almost-sure convergence
of gradient dynamics to a unique Nash equilibrium. Ui
(2016) shows an analogous result for ex-post differentiable
Bayesian games, in which payoff-monotonicity guarantees
the existence of a unique BNE. However, the result likewise
does not directly apply to auctions due to their ex-post non-
differentiability. Instead, we give a slightly less restrictive
criterion based on ex-interim payoff monotonicity that en-
sures convergence of gradient dynamics and whose formu-
lation is compatible with auction games.

Definition 1 (Strict Ex-interim Payoff Monotonicity). Let
G = (Z, A,V, F,u) be a Bayesian game, such that the in-
dividual ex-interim utilities are continuously differentiable
in b; with gradients bounded by a constant Z>0 via
|V, @i (vi, bi, f—i)|| < Z. G is called strictly (ex-interim)
payoff-monotone, if for all i€Z, f_;€X_,, a;,b; € A; and
almost everywhere v;€V); the following holds:

(Va, 1 (vi, a5, B—i) =V, (vi, b, B_i),a;—b;) < 0. (8)

While analytical verification of this criterion is elusive,
except in special settings, it can (approximately) be checked
numerically by sampling pairs of action profiles a, b for all
players and using finite-difference gradient-estimators.

In the following, we provide a convergence result for
NPGA under ex-interim monotonicity. For our convergence
analysis, we will rely on certain properties of “appropriate”
neural network architectures, defined below.

Definition 2 (Regular Convex Policy Network). A Regular
Convex Policy Network is a neural network m; : V; x ©; —
A; with dim ©; = d; and the following properties:

1. ; is a convex neural network in its parameters: For any
convex objective function g : ¥; — R, the map 6; —
g(mi(-,6;)) is convex.

2. m; universally approximates X;: There exists a § > 0, s.t.
for all B; € ¥; there is a parameter vector 0; € ©; with
B, [l18i(vi) — mi(vs, 0;)]] < 6.

3. m; is Lipschitz-continuous in its parameters: AL>0
V@i,e’E@i: ]EW [||7T7(’U7,01) — 7T7;(’Ui7 0;)“] S LH97 — G;H

(2

Neural networks that are employed in practice (and in our
empirical analysis) generally do not comply with this defini-
tion, but such networks have been shown to exist. For a con-
crete architecture, see Bach (2017) who studies wide single-
hidden-layer networks with ReLLU activations, in which only
the output-layer weights are being trained. We’ll state our
main proposition before discussing this difference further:

Proposition 1. Ler G = (Z,A,V,F,u) be a Bayesian
game such that the ex-post utilities exist, and such that the
ex-interim payoff-gradients exist and fulfill strict ex-interim
payoff monotonicity. Then, with an NN architecture as in
Definition 2 and appropriate update step sizes, NPGA con-

verges to an ex-ante e-BNE of G, where ¢ < Z(2Lo\/d+96).

While existence and uniqueness of BNE in infinite-
dimensional games are unknown in the general case, Propo-
sition 1 guarantees efficient computability in a wide range of
settings, some of which we explore in the next section. Still,
it’s important to note that there may be auctions for which
payoff-monotonicity does not hold.

An abridged proof of Proposition 1 is given at the end
of this article. We focus on the instructive parts of the
proof and omit the more tedious derivations for brevity. As
demonstrated in the proof, the use of Regular Convex Pol-
icy Networks transforms the training process into a prob-
lem of finding a Nash Equilibrium in a concave, finite-
dimensional, complete-information game. Crucially, con-
cavity of this game ensures existence of, and convergence
to, a unique global equilibrium. Just as neural networks are
known to find “good” solutions to nonconvex optimization



problems in practice despite a lack of theoretical guaran-
tees, we will see below that we observe convergence to BNE
when using standard neural network architectures that don’t
meet Definition 2: As such, we see Regular Convex Policy
Networks as a helpful tool for theoretical analysis, but their
implementation is generally neither practical nor desirable
while common architectures achieve similar results.

Empirical Results

We evaluate NPGA on three suites of auction theoretic set-
tings: First we validate our method on a suite of the most
commonly studied auctions, i.e. single-item auctions with
symmetric priors, before considering two suites of combi-
natorial auctions, the LLG and LLLLGG environments. In
total, we study 21 different auction settings with different
numbers of players, pricing rules, risk-profiles, and prior
distributions of the valuations. In 18 of these settings, the
(unique) BNE is known analytically, in three settings, no
BNE is known.

Evaluaton Metrics. To evaluate the quality of strategy-
profiles /3 learned by NPGA, we will provide four metrics:
Whenever we have access to the analytical solution BNE 5%,
we can check whether 5 — 3*. We report each agent’s

1. utility loss £ that results from unilaterally deviating from
the BNE strategy profile 5* by playing the learned strat-

egy f3; instead: £ = ¢;(B;, 5*,;), compare Equation 5,
2. distance ||3; — 5] ||x, to the BNE in strategy space.

Both of these can be estimated via Monte-Carlo integration
over the valuations v~F/, i.e. given a batch of size H of val-
uations (vp,;;, vp,—;), we approximate ¢; by the sample mean
of £;(B;(vn;i),B%;(vn,—i)) and || 8; — B} by the RMSE of
Bi(vp;) and B (vp;) in action-space.

However, we are also interested in judging the quality of
8 when no BNE is known. To do so, we also estimate the
potential gains of deviating from the current strategy pro-
file /; ~ 2;(Bi; B—i) as well as an estimator € to the “true”
epsilon of 3 (smallest € s.t. 3 forms an ex-interim e-BNE).
In the absence of analytical solutions, one may periodically
calculate these estimators and use them as a termination cri-
terion once the desired precision is reached. As we will see,
these additional metrics are expensive: To calculate the esti-
mators ¢ and ¢ we introduce a grid of W equidistant points
b, per bidder, covering the action spaces .A;. Now, given
a valuation v; and a bid b;, we approximate the ex-interim
utility loss ¢(v;,b;, 8—;) of b; at v; via its sample-mean

Ai(vs; b, ;) over a batch of H opponent valuations vy, ;.

To evaluate )\; at a single v;, we thus need (W+1)H auction
evaluations. Running another batch H on ¢’s valuation, we
can then estimate the

3. worst-case ex-interim loss: € = maxj, Xi(vh,i; Bi(vni)),
4. and the ex-ante loss: / = % Yo }i(vh,i; Bi(vn.:), Bi)-
Estimations of \ can be shared for both computations, nev-

ertheless we need O(nW H?) auction evaluations to calcu-
late these metrics (in contrast, an iteration of NPGA requires

only O(nPK) evaluations, with P<<W). As the metrics €, £

0.65
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Figure 1: Learning curve of NPGA in 10-player FPSB auc-
tion with Gaussian priors, evaluated in self-play (red, solid)
and against the BNE (blue, dotted). Mean/min/max over 10
repetitions.

Table 1: Performance of strategies learned by NPGA in
single-item FPSB auctions. Results averaged over 10 runs
of 5k (uniform risk-neutral) or 20k (others) iterations each.

: " * 5 . time
valuations n o8 =8l 0 seclit
Uniform 2 0.0000 0.0072 0.0011 0.0059 0.31
4(0, 10) 3 0.0001 0.0104 0.0007 0.0051 0.40

risk-n;u tral 5 0.0001 0.0194 0.0005 0.0053 0.46
10 0.0001 0.0303 0.0003 0.0047 0.73

Uniform 2 0.0003 0.0057 0.00I2 0.0065 0.46
(0, 10) 3 0.0001 0.0069 0.0008 0.0048  0.52
risk-:;verse 5 0.0001 0.0161 0.0006 0.0066 0.63
10 0.0002 0.0383  0.0005 0.0085 0.93

Gaussian 2 0.0079 0.3684 0.0443 0.4394 0.3l
N(15,102) 3 0.0103 0.4478 0.0225 0.9723  0.39
risk-n7eutral 5 0.0172 0.8819 0.0176 1.7324  0.45
10 0.0169 1.8801 0.0118 2.1660 0.68

are expensive to compute on dense grids, we use smaller
batch sizes W and H than in evaluating ¢*, and calculate
these metrics only in every 100th NPGA iteration.

We use common hyperparameters across almost all set-
tings unless noted otherwise: Fully connected NNs with two
hidden layers of 10 nodes each with SeLU (Klambauer et al.
2017) activations. ES-parameters P=64, a:\/—%. Adam op-
timizer steps with default hyperparameters (Kingma and Ba
2017). To avoid degenerate initializations of 6 (e.g. where
one or more bidders bid constant zero due to dead ReLUs
in the output layer), we perform supervised pre-training to
the truthful strategy 3;(v;) = v;. All experiments were per-
formed on a single Nvidia GeForce 2080Ti and Monte-Carlo
batch-sizes were chosen to maximize GPU-RAM utiliza-
tion: A learning batch size of K=2'%; primary evaluation
batch size (for £*, ||3—/3*||) of H=2%2; and secondary eval-

uation batch size H=2'2 and grid size W=20 (for /, ¢).

Single-Item Auctions

First-price sealed-bid (FPSB) auctions on a single item, in
which the highest-bidding player wins the item and pays her
own bid as price, are the best-known auctions and for many
configurations their BNE are known analytically (Krishna



Table 2: Results of NPGA in LLG-settings with independent
and correlated valuations. Values are means of 10 runs of
5,000 iterations. For FPSB, no BNE is known; for correlated
priors, estimating 1 , € is not straightforward. Negative ¢* are
artefacts of the sample variance of I, at available precision.

. . " *_ ¢ - time
priors payment bidder e8I 0 secfit
locals  0.000l _ 0.0050 00002 0.0009
- n-VCG  lobal 00000 00269 0.0000 00001 O34
g wpialocals 00002 00073 00003 00013 o
T - global 00000 00424 00000 00001
g T veralocals 00001 00078 00002 00019 o
2 - global 00000  0.0088 00000 00001
£ Tocals - ~0.00090.003T
FPSB s lobal - ~ 00016 00064 00
Jocals — 0.0001  0.0042 - -
2 n-VCG  oiobal 00000 00305 - _ 080
i - Tocals — 0.0003  0.0064 = =
g nobid o gibal 00000 0.0498 - _ 08
5 Tocals —0.0001 00059 = =
n.-zero _ B 0.81

global 0.0000 0.0072

2009). We apply NPGA to 12 such FPSB settings with vary-
ing number of players, valuation priors and risk attitudes.
The results are given in Table 1.

In all settings, we observe convergence of NPGA to the
analytical BNE in terms of ex-ante payoff, both when eval-
vated in self-play and against opponents playing the BNE.
However, we also see that sometimes there’s no full norm-
convergence in the strategy space: This indicates that NPGA
learns ex-ante BNE as the algorithm is intended, but may
bid suboptimally in “unimportant” regions of the valuation
space, e.g. when there are many players and 7’s valuation
is low (see Gaussian-10p setting). Nevertheless, even when
the strategy-space norm is nonzero, the learned strategy be-
comes indistinguishable from the BNE in terms of ex-ante
utility: Figure 1 shows the learning curve of a run in the
Gaussian-10p setting for which the norm has not converged.
Additionally, we observe that the exploitability-estimate l
while not exactly equal to ¢*, is consistent in order of magni-
tude and may thus serve as a suitable proxy for convergence
in the absence of known BNE. For a complete treatment of
the single-item setting, we also implemented Second Price
auctions, where NPGA robustly found the (truthful) BNE.

Combinatorial Auctions

Local-global combinatorial auctions will serve as our main
benchmark for BNE compuation. In such auctions, there
are two groups of bidders, locals and globals: Globals g
are interested in larger bundles of items while their priors
allow them to draw higher valuations, so local bidders [
need to coordinate to outbid the globals. We consider set-
tings where locals have (possibly correlated) uniform priors
v;~U(0,T;) with 7;=1,7,=2 (for each bundle k € K,).
The 3-player LLG setting is a standard setting in auction
theory and one of the smallest CAs that requires strategic co-
operation between bidders; the larger 6-player LLLLGG set-
ting is the most complex environment in which approximate
BNE have been computed to date (Bosshard et al. 2017).
The LLG setting includes two local bidders and one
global bidder that bid on m=2 items. Local bidders 1=1, 2
are each interested in the bundle {i}, while the global bid-

2.0
global
1.5 «local
-BNE
210
* NPGA
0.5
0.0
0.0 0.5 1.0 1.5 2.0

valuation

Figure 2: Learned (dots) and BNE (lines) strategies in LLG-
setting with nearest-zero core payment rule.

Table 3: Results and runtime of NPGA after 5k (1k) itera-
tions in the LLLLGG first-price (nearest-VCGQG) auction over
10 (2) repititions. Values are mean and (standard deviation).

. 5 . time
payment bidder VA secliter
fi . locals 0.0015 (0.0003) 0.0109 (0.0025) 0.97

rst-price

globals  0.0010 (0.0002)  0.0077 (0.0016)  (0.005)

locals  0.0013 (0.0003) 0.0052 (0.0012)  275.22
globals  0.0011 (0.0006)  0.0098 (0.0059)  (0.670)

near.-VCG

der wants the package {1,2} of both items. The setting ex-
hibits a mix of competition and cooperation and has been
extensively studied in the context of different core-selecting
pricing rules (Day and Cramton 2012). Closed-form solu-
tions of the unique, local-symmetric BNE under three such
rules are known in the LLG setting: the nearest-VCG rule,
the nearest-zero rule, and the nearest-bid rule. The interested
reader is referred to Ausubel and Baranov (2019). In these
equilibria, the global bidder bids truthfully, while the local
bidders’ BNE strategies differ in each payment rule and de-
pending on the correlation between locals’ priors. We eval-
uate NPGA on these core payment rules with independent
and correlated priors (y=0.5) as well as with first-price pay-
ments with independent priors, for which no exact BNE is
known. Numerical results are presented in Table 2. We again
observe that NPGA converges to the BNE in all six settings
where it is known. In fact, after low hundreds of iterations,
we can no longer detect a difference in utility to the true
BNE with available measurement precision, while still ob-
serving slight differences in strategy-space distance: Figure
2 depicts the strategy learned by NPGA after 5,000 itera-
tions in comparison to the analytical BNE strategy for the
nearest-zero payment rule. In the FPSB auction, no BNE is
known, but / &~ 10~3 (vs utilities of 0.426 (global), 0.149
(locals)) indicate that exploitability of 3 is minuscule.

In the LLLLGG setting, four local and two global bid-
ders compete for six items. Each bidder is interested in two
overlapping bundles of size 2 (locals) or 4 (global), with ac-
tions sets A;= Ri. We apply NPGA to LLLLGG with first-
price and nearest-vcg rules, where no BNE are known. In
this larger setting, computing the clearing prices p is compu-
tationally expensive and forms the bottleneck: Nearest-VCG
prices require solving a linear- and a subsequent quadratic



optimization problem for each instance (Day and Cram-
ton 2012). As iterations of NPGA need many thousands
of samples, we rely on a custom interior-point solver that
can solve batches of quadratic optimization problems on the
GPU. Still, we make the following hyperparameter adjust-
ments in the nearest-VCG setting: P=32; K=214 =27
and W=28 on two experiments of 1,000 iterations each. Re-
sults are shown in table 3. Under both pricing rules, NPGA
learns strategy profiles with an estimated ex-ante utility loss

#<0.002 for both local and global bidders. Global (local)
bidders achieve stable average utilities of 0.238 (0.18) in
first-price and 0.181 (0.201) in nearest-vcg, thus the esti-
mated loss indicates that players can be exploited for less
than 1% of their achieved utility.

Conclusion and future work

This paper explores equilibrium learning in Bayesian games,
one of the large unsolved problems in algorithmic game the-
ory. Gradient dynamics are challenging in Bayesian auc-
tion games for several reasons: these games are not differ-
entiable, and the continuous type- and action spaces make
efficient representation difficult or expensive. We propose
Neural Pseudogradient Ascent as a numerical method that
relies on policy pseudogradients. We hope that our approach
will lead to further study of gradient dynamics in game-
theoretical and microeconomic settings where they have pre-
viously been considered inapplicable.

In experiments, we validate our method on standard
single-item auctions and combinatorial auctions, which con-
stitute a pivotal problem in algorithmic game theory with
many practical applications. We find that NPGA converges
to approximate BNE for central benchmark problems in this
field, and we prove a sufficient criterion under which almost
sure convergence to equilibria is guaranteed. In summary,
the method can provide an effective numerical tool to com-
pute approximate BNE not only for combinatorial auctions
but also for other types of Bayesian games without setting-
specific customization, while running on consumer hard-
ware and leveraging GPU-parallelization for performance.

Proof Outline of Proposition 1

Proof. We will proceed as follows: We will approximate the
infinite-dimensional Bayesian-game by a finite-dimensional
(but continuous action), complete-information game. Under
strict monotonicity, the regularity conditions above and with
Regular Convex Policy Networks, we will argue that NPGA
almost surely finds an approximation of the unique NE in
this finite-dimensional game. We then give a bound on the
ex-ante loss in the original game for this strategy profile
found by NPGA, thus certifying an ex-ante e-BNE.
Existence of the ex-interim gradients (Def. 1) implies that
the ex-ante utilities @, (3;, S—;)=E,, [@i(vi, B(v;), ;)] are
Gateaux-diff’ble in the Hilbert spaces X; with Gateaux-
gradients Vg, 1, [ﬁ}(v»zvbiﬂi (vy, by, 571) b= (vi)" Ex-
interim monotonicity then implies (details ommitted)
<Vﬁ7’al [ﬂl, ﬁ,i]—vaiﬂi [Cki, ﬁ,i], 5i—ai>2i <0, i.e. the ex-
ante gradients are strictly monotone operators on .;, thus
the u; are strictly concave (Bauschke and Combettes 2017).

With NNs as in Definition 2, the functions ;(0;) =
a;(m;(-,0;), 8—;) are then also strictly concave in 6; for
any opponent strategies S_;. We can then construct a finite-
dimensional, complete-information Parameter Game é in
which all players approximate their strategies § in G us-
ing policy networks and we interpret the parameters 6 <
R? of the networks as the action of the new game: G =
(Z,0,1). As this game is finite-dimensional and concave,
Mertikopoulos and Zhou (2019) establish that it has a unique
Nash equilibrium 6* and the dual averaging (DA) algorithm
converges almost surely to o given an unbiased and finite-
variance oracle of the gradients Vg, u;(6;;0—;). Next, we

argue that 6* induces an approximate BNE in the original
Bayesian Game G before analyzing how NPGA implements
DA in G with n01sy feedback, thus finding a good approx-
imation of 6*. Let 6* thus be the Nash equ111br1urn of G
Then for any player ¢, 9;“ is a best response (BR) to Hil

mi(+,07) is an ex-ante BR to 7_;(-,0*,) in the Bayesian
Game with the restricted strategy space expressible by the
network. Due to universal approximation properties of 7,
however, any BR 3 in the unrestricted game G must be

close in function space to (-, 0), and the ex-ante util-
ity loss incurred by not playing 5; instead of m;( - 752‘) is
bounded: In fact, with the assumed regularity conditions,
one can prove the following for arbitrary 6_; (details om-
mitted): If 5*691» and 3F€X; are BRs to §_; in G and G,
respectively, then Ei(é*; 0_;) < Z§. In the NE, all é;-* are
BRs, so we have £(6*) < Z4.

Finally, we show that NPGA finds a good approximation
of §*. As deliberated above, we choose the NN architecture
in such a way that © becomes unconstrained, i.e. any pa-
rameter 6, € R% is feasible, where d; is the dimension of the
network for player <. On an unconstrained action set ©, how-
ever, dual averaging (DA) with Euclidean regularization is
equivalent to Online Gradient Ascent on @ (Zinkevich 2003),
thus NPGA implements DA on « with gradient oracle VGE 9,

To use the convergence result cited above of NPGA to
0, it would remain to show that the Neural Pseudogradi-
ents V7 are finite-variance and unbiased estimators of the
true gradients V. This is unfortunately violated for strictly
positive ES-noise variance o2 as used by NPGA. How-
ever, for 0>0 we can set @) =E. (0,021 [ (0; + &,0_;)]
and introduce yet another finite-dimensional game Go =
(Z,0,u%). Now, one can show (details ommitted) that (1)
G° is likewise concave, that (2) the ES-gradients are finite-
variance and unbiased estimators of %7, and (3) that the loss
of any parameter choice 6; in G is bounded by that in G
via 0;(0;,0_;) < 07(0;,0_;) + 2ZL+/d;0. Due to (1), G°
again admits a unique NE 6*, and with (2) and Definition
1, NPGA converges to §* almost surely for appropriate step
sizes via the results in Mertikopoulos and Zhou (2019).

To summarize, we showed that NPGA finds a parameter
profile 6* that forms a NE of G and which retains an-ex
ante loss in G of £;(0*) < Z6 + 2ZL+/d;o. Thus, NPGA
converges almost surely to an ex-ante e-BNE of G. O
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