
m-Stage Epsilon-Greedy Exploration for Reinforcement Learning

Rohan Rao, Karthik Narasimhan
Princeton University, Princeton, NJ

Department of Computer Science, Princeton University, Princeton, NJ
{rohanr, karthikn}@princeton.edu

Abstract

Efficient exploration of the environment is a major challenge
for reinforcement learning agents, especially in sparse reward
settings. This is evident from the fact that simple schemes
such as ε-greedy remain competitive with more complicated
algorithms for exploration. In this paper, we propose a gener-
alization of ε-greedy, called m-stage ε-greedy in which ε in-
creases within each episode but decreases between episodes.
This ensures that by the time an agent gets to explore the later
states within an episode, ε has not decayed too much to do any
meaningful exploration. We provide theoretical results moti-
vating the use of our algorithm in task based environments,
and provide experimental evidence in two types of environ-
ments demonstrating the effectiveness of our method.

Introduction
A central challenge in reinforcement learning is the trade-off
between exploration and exploitation. An agent’s ability to
explore an environment is a key factor in its success, since
it must discover actions that provide desirable rewards. At
the same time, in order to maximize its expected reward,
the agent must exploit its knowledge of ‘good’ actions to
take in different situations. Balancing exploitation with just
the right amount of exploration can ensure sufficient returns
while allowing for the potential of even higher rewards in
the future.

One of the earliest and simplest exploration techniques is
ε-greedy exploration (Sutton and Barto 2018). The idea is
to perform the best possible action according to the learn
policy most of the time, but with a probability of ε choose
an action completely at random. Typically, the ε is chosen
to be a small value (e.g. 0.05) so as to ensure that the ran-
dom exploration does not hinder the expected returns of the
agent. Recently, deep RL techniques often anneal the value
of ε across episodes, starting from a high value (e.g. 1) to
encourage more exploration at the start of the agent’s learn-
ing process. Despite its simplicity, ε-greedy continues to be
competitive with several other more complex schemes that
have been proposed in the literature (Taiga et al. 2019; Dab-
ney, Ostrovski, and Barreto 2020).

While the annealing of ε ensures that the agent explores
sufficiently during the initial episodes, it still falls short in
an important aspect. While the agent will explore the initial
sub-parts of the Markov Decision Process (MDP), the sub-

sequent reduction of ε to a low value will mean that the agent
will not perform sufficient exploration in the later stages of
the MDP. This would result in a policy that can be learned
quickly for the initial parts of an episode, but require expo-
nentially more time to learn for the later parts.

In this paper, we propose m-stage ε-greedy, a gener-
alization of ε-greedy that allows for dynamically varying
the amount of exploration at different points within a sin-
gle episode. Specifically, we anneal epsilon for the earlier
timesteps within an episode before we anneal epsilon for the
later timesteps. This allows the agent to exploit its (well-
learned) policy over the initial parts of the MDP, while still
being able to explore the later parts of the MDP where it
does not yet have a good policy.

We theoretically analyze our proposed scheme when ap-
plied to Q-Learning and show that it is superior to ε-greedy,
resulting in faster learning. We also perform empirical stud-
ies on two different environments – chain MDPs and a
LavaWorld environment with multiple rooms. Our experi-
ments support our theoretical expectations and show that
our method can result in higher rewards and significantly
faster learning. For instance, in the 50-room LavaWorld, our
method achieves almost 5x the return compared to vanilla
ε-greedy.

Related Work
Improvements to ε-greedy exploration have been studied
through a variety of approaches. One such approach to this
involves encouraging exploration through augmenting the
game reward with an intrinsic reward that rewards behav-
iors that explore. Count Based Exploration (Bellemare et al.
2016), (Machado, Bellemare, and Bowling 2018), (Ostro-
vski et al. 2017), (Tang et al. 2017), Random Network Distil-
lation (Burda et al. 2018), Noisy Networks (Fortunato et al.
2017), and Intrinsic Curiosity (Pathak et al. 2017) are all
popular methods to use intrinsic rewards to explore. Each of
these approaches aims to reward actions that take the agent
to new or surprising states of a game. These approaches
have had some success in playing certain games like Mon-
tezuma’s Revenge with deep RL agents, but in many cases
perform worse than ε - greedy in practice. (Taiga et al. 2019).

Another approach to the problem of exploration involves
the use of ”generalized actions” or options (Sutton, Precup,
and Singh 1999). Of approaches that fall into this category,

(Dabney, Ostrovski, and Barreto 2020) is most relevant to
our work. This approach modifies ε - greedy exploration to
explore by randomly choosing an action and a duration, and
repeating the action for that duration. This simple modifica-
tion to ε-greedy exploration helps it escape local optima and
do a better job reaching a diverse set of states.

Finally, in tabular environments, there are theoretically
motivated exploration schemes such as Thompson Sampling
(Thompson 1933) which tries to maximize reward based
on randomly drawn beliefs and Upper Confidence Bound
(UCB) methods. In general, UCB sampling explores actions
which have high potential based on a computed upper confi-
dence bound (Lai and Robbins 1985).

Our algorithm is similar in spirit to UCB as we also try
and encourage exploration in regions of the game where our
agent is not confident about its policy. Unlike UCB, we im-
plement this by making the assumption that an agent should
be more confident in its policy for earlier states than in later
states. Additionally, unlike UCB, our exploration scheme is
stationary - in that it is independent of the training dynam-
ics of our agent’s policy. This property has been hypothe-
sized to lead to successful exploration across a variety of
environments (Dabney, Ostrovski, and Barreto 2020). Also,
similarly to (Dabney, Ostrovski, and Barreto 2020), our al-
gorithm is a simple to implement generalization of ε - greedy
exploration.

Background
A Markov Decision Process (MDP) is a 4-Tuple
(S,A,T,R), where S is a set of states, A is a set of
actions, and for s ∈ S, a ∈ A T(s, a) gives a probability
distribution over the next state. If T is not stochastic, we
call the MDP deterministic. Finally the reward function
R(s, a, s′) assigns a reward for transitioning from s to s′

taking action a. Reinforcement Learning algorithms aim to
learn a policy for an MDP, π : S → A 1 that is optimal in
the sense that

π∗ = argmax
π

E
[∑

t

γtrt|π
]

(1)

Here, γ represents the temporal discount factor applied to
our reward.

A popular way to determine π∗ is to use Q-learning (Sut-
ton and Barto 1998). Q-learning learns a Q - function,
Q : S ×A → R which is defined as

Q(s, a) = max
π

E[
∞∑
i=0

γirt+i|st = s, at = a, π] (2)

In tabular environments, we can learn aQ function for the
states and actions as shown in Algorithm 1. In deterministic
environments α = 1 is the optimal learning rate.

In this algorithm ε(t, h) determines at each timestep
whether the algorithm explores or exploits. A standard
choice of ε(t, h) is the following:

1Some formulations allow for a stochastic π such that π(s) is a
probability distribution over A

Algorithm 1: Tabular Q-Learning
∀s, a Q(s, a) := 0;
for episode h do

reset game;
s := game.state();
trajectory = stack();
for timestep t do

explore = flip(ε(h, t));
if explore then

a := game.randomAction();
else

a:= maxa′∈AQ(s, a′);
end
s’, reward = game.play(a);
trajectory.push((s,a,reward));
s = s’;

end
while trajectory is not empty do

s, a, reward := trajectory.pop();
update := reward + γmaxa′∈AQ(s′, a′);
Q(s, a) := Q(s, a) + αt,h(update−Q(s, a)) ;

end
end

Definition 1 (ε greedy annealing). When referring to ε
greedy exploration, we refer to the following policy. Let H
be the number of episodes we anneal during. We define

ε(h, t) = 1− h 1

H
.

Although our schedule is independent of t, our following re-
sults hold even if we anneal within the episode as is common
in many implementations.

m-Stage Epsilon Greedy Exploration
We now present a generalization of ε-greedy described
above, which we refer to as m-Stage ε-greedy exploration.
Definition 2 (m-stage ε greedy annealing). When referring
to ε greedy exploration, we refer to the following policy. Let
H be the number of episodes we anneal during. Let T be the
steps played per episode. We define

ε∗m(h, t) =
[m−1∑
j=0

χ≥j T
m
(t)
]
− hm

H

and obtain:

εm(h, t) = max(0,min(1, ε∗(h, t)))

where χu denotes the indicator variable for the set u.
We note that 1-stage ε-greedy exploration is simply ε-

greedy exploration. Informally, this exploration scheme sep-
arates the timesteps of an episode into m segments, and
anneals each segment in sequence throughout m stages.
Specifically, if we have timesteps [1, ..., T] and choose m =
2, segment 1 would be [1, ..., T2] and segment 2 would be
[T2 + 1, ..., T]. During stage 1, for the first h2 episodes, ε for

the timesteps in segment 1 would get annealed while the ep-
silon for timesteps in segment 2 would remain unchanged.
During stage 2, in the remaining h

2 episodes, the epsilon for
timesteps in segment 2 would get annealed.

We hypothesize that this annealing schedule will allow an
agent to exploit the policy it has for the initial states of an
MDP which it has already learned, while still exploring later
states.

Experiments
Symmetric and Asymmetric Action Chain
To begin with a few simple starting examples, we con-
sider two MDPs. The first one will be a chain where the
agent needs to move right at every step otherwise it will get
trapped. The agent gets a reward at every 5 steps it takes
to the right up to 5 · k steps. This is a known difficult ex-
ample for vanilla ε-greedy exploration. The second one will
be an MDP on a line, where the agent begins at 0 and at
each timestep chooses to step right or left for 5 ·k timesteps.
The agent gets a reward every time it crosses a multiple of
5 for the first time. Both of these chains are parameterized
by k. The second chain is better conditioned for vanilla ε-
greedy exploration as it has locally symmetric actions (Liu
and Brunskill 2019). Informally, an MDP is said to have lo-
cally symmetric actions if it is always able to return to its
previous state by taking a single action. Although the first
MDP does not have locally symmetric actions, our second
MDP for the most part does.

Figure 1: Diagram of a k task asymmetric MDP

Figure 2: Diagram of a k task symmetric MDP

Although having a locally symmetric action space seems
to help ε-greedy exploration, in the later states of the envi-
ronment it still seems like little meaningful exploration is
done.

The Floor is Lava
The next environment we consider contains both these el-
ements in the form of a Gridworld composed of a chain
of k 5 × 5 rooms where an agent needs to traverse these

0 20000 40000 60000 80000 100000
Episode

0

10

20

30

40

50

R
ew

ar
d

Asymmetric MDP

1 - stage (Baseline)
50 - stage (Ours)

Figure 3: Plot of exploration with an ε-greedy policy and
with a 50-stage ε greedy policy (over 5 runs)

0 250 500 750 1000 1250 1500 1750
Episode

0

2

4

6

8

10

12

14

16

R
ew

ar
d

Symmetric MDP

1 - stage (Baseline)
15 - stage (Ours)

Figure 4: Plot of exploration with an ε-greedy policy and
with a 15-stage ε greedy policy (over 5 runs)

rooms without touching squares of ‘lava’ within s steps (Fig-
ure 5). The action space of this LavaWorld environment is
composed of the 8 directions, and with probability 0.01 the
agent doesn’t move even when taking an action. Each new
room the agent sees gives it a reward of 5. This simple set-
ting models many adventure games in which an player needs
to explore a world while avoiding hazards that can kill and
send the player back to the start. Pitfall and Montezuma’s
Revenge, two games known for their difficulty in the Atari
Learning Environment (Bellemare et al. 2013) include simi-
lar challenges.

We plot the reward curves of a Q-Learner equipped with
an ε-greedy policy and with a m-stage ε greedy policy for
two such environments, with k = 5 in Figure 6 and k =
50 in Figure 7. From these experiments, we see that as the
number of rooms grow the gap between the performance of
our m-stage ε greedy agent and our 1-stage ε greedy agent
grows.

One common feature in these environments is the pres-
ence of multiple ‘tasks.’ In our first two MDPs each task is
the set of 5 states before encountering the reward. For the
“Floor is Lava” game each room can be considered to be a
task. In all of these environments, vanilla ε-greedy explo-
ration is unable to complete the later tasks. In the following

Figure 5: Example rooms of the “Floor is Lava” game. Or-
ange squares represent lava, black represents the room en-
trance, and blue represents room exit

0 250 500 750 1000 1250 1500 1750
Episode

0

5

10

15

20

25

R
ew

ar
d

5 Room LavaWorld

1 - stage (Baseline)
6 - stage (Ours)

Figure 6: Plot of ε-greedy policy and with a 6-stage ε greedy
policy in a LavaWorld game with m = 5 and s = 30 (over
5 runs)

section we analyze how our algorithm can succeed in this
task-based MDP structure.

Theoretical Analysis
We analyze these two exploration schemes provided in Def-
initions 1 and 2 to understand situations where ε - greedy
fails, and how it can be improved. We begin with defining
a class of environments with multiple tasks inspired by our
experiments.

Definition 3 (Generalized M-Task MDPs). We consider the
class of deterministic 2 MDPs M where each member has
an optimal trajectory of length mn T = {ai}i∈[mn] such
that the reward along every prefix of T which has a length
h such that h mod n = 0 has reward greater than any

2We can construct a similar class of stochastic MDPs but con-
sidering the deterministic case simplifies the analysis while pre-
serving the main ideas.

0 200 400 600 800 1000
Episode

0

50

100

150

200

250

R
ew

ar
d

50 Room LavaWorld

1 - stage (Baseline)
60 - stage (Ours)

Figure 7: Plot of an ε-greedy policy and a 60-stage ε greedy
policy in a LavaWorld game withm = 50 and s = 300 (over
5 runs)

other sequence of actions of length h starting at the ini-
tial state of the MDP (task-optimality criterion). We refer
to {ain+1, ..., a(i+1)n} as the ith generalized task.

LetA be the cardinality of the action space ofM. We say
that an algorithm E solvesM if for every x ∈ M using H
episodes if E can determine the optimal trajectory only af-
ter experiencing H episodes of the process. We say that E
solves the environment with high probability if the proba-
bility (as a function of n and m) that E does not solve the
environment is o(1

m). The reason why we choose this high-
probability condition is to give us a sense for how many
episodes we need to solve many-task environments at ar-
bitrarily high probabilities. Our proof methods in the fol-
lowing section can be adapted to other high-probability type
claims.

In this section we prove the following two statements
which relate the number of tasks in an environment (m) and
the length of each task (n) to the number of episodes (H)
needed to train our two algorithms.

Proposition 1. Epsilon greedy tabular Q-learning re-
quires

H ≥ cmn(A− 1)n

episodes to learn M with high probability, where
m,n,A are defined in the definition of M and c is a
constant.

Proposition 2. m - stage epsilon greedy tabular Q-
learning requires

H ≤ cm(2A)n ln (m)

episodes to learn M with high probability, where
m,n,A are defined in the definition of M and c is a
constant.

Under the conditions of Def 3, these propositions motivate
why our ε schedule leads to faster learning. For example,
even assuming a moderately sized n (the length of the task),

the number of episodes required to train ε-greedy explo-
ration can be up to a polynomial factor in m higher than
for m-stage ε-greedy exploration.
Remark 1. For a Q learner as defined in Algorithm 1, in
some environment in M, if the learner experiences some
trajectory T ′ that is a prefix of the optimal trajectory T of
length h, such that h mod n = 0, it learns the optimal
policy for the states in T along that prefix. This is a conse-
quence of the task-optimality property and the Q-updates in
Algorithm 1 3. We will make heavy use of this property as it
simplifies analysis and abstracts away the learning dynam-
ics of an agent in stochastic environments.

More formally let Ahi be a random variable that repre-
sents the action taken by the agent at step i during episode
h. Let ai be ith action in the optimal trajectory. If Ei is
the event that we learn the first i tasks, and we train for H
episodes then

P (Ei) = P (
⋃
h∈[H]

⋂
t∈[in]

Aht = at) (3)

Next we proceed to prove the two main propositions.

Proposition 1. Epsilon greedy tabular Q-learning requires

H ≥ cmn(A− 1)n

episodes to learn M with high probability, where m,n,A
are defined in the definition ofM and c is a constant.

Proof. For this lower bound, we can construct some M ∈
M such that epsilon-greedy requires H ≥ cmn(A − 1)n

episodes to learn M with high probability. We consider a
MDP with state space S = [mn]∪{0} andA = [A] actions.
At a given state s > 0 if the agent takes action 1, the agent
moves to s + 1, else the agent moves to s = 0. At s =
0, every action leads back to s = 0 (absorbing state). The
optimal trajectory then is taking a = 1 at every state, and at
every nth action on the optimal trajectory the MDP gives a
reward of 1, and for all other state action combinations gives
reward 0. We illustrate this MDP in Figure 8.

Figure 8: Diagram of MDP in Proposition 1

Let us assume that our agent is initialized knowing the
optimal policy for all states s ≤ (m − 1)n and doesn’t
know the optimal policy for the remainder of the game. If
our agent can learn the game in H episodes that means that

3Since this setting is deterministic, the learning rate α = 1

the probability that the agent encounters the final reward
at state mn is P (encounter final reward in any episode) ≤∑H
h=1 P (encounter final reward in episode h). This union

bound gives:

≤
H∑
h=1

[
1− ε(h) + ε(h)

A

](m−1)n(ε(h)
A

)n
(4)

During the first (m− 1)n steps with probability 1− ε(h)
the agent takes the optimal policy, and with probability ε(h)
the agent takes a random action and so it takes the right ac-
tion with probability 1

A . The only way to get the final reward
is to take the correct action at each step due to the construc-
tion of our MDP. Finally for the last n steps the agent has no
knowledge of the correct policy and the only way to learn the
remainder of the policy is to guess the right string of actions,
which just amounts to n independent guesses with success
probability ε(h)

A as there is no intermediate reward between
the region of the state space the agent knows, and the final
reward. A calculation shows that

max
ε

[
1− ε+ ε

A

](m−1)n(ε
A

)n
=

(m− 1)(m−1)n

mmn(A− 1)n
(5)

≤ 1

mn(A− 1)n
(6)

at ε = A
m(A−1) . If we haveH < mn−0.9(m0.9−1)(A−1)n

episodes, then the probability we see the final reward is <
m0.9−1
m0.9 which means that the probability of failure is> 1

m0.9

which is not o(1
m). This completes the proof.

Lemma 1. For an environment some M ∈ M, while train-
ing over H episodes with nm steps per episode, let Ei be
the event that an m-stage ε greedy agent learns the first i
tasks by episode i

mH . Then, for i ∈ [m]

P (Eci |E1, ..., Ei−1) ≤
H/m∏
h=1

(1−
n∏
t=1

εm(h, t)

A
). (7)

Proof. Let a1, a2, ..., anm be the optimal trajectory of ac-
tions to play the game. let Ahj be a random variable repre-
senting the choice of jth action at episode h. We first note
that with our exploration strategy forAhj with h > i

mH , and
j ≤ in,Ahj is deterministic. Next let Ẽi be the event that our
agent has Ahj = aj , j ≤ ni for some h ∈ (i−1m H, imH].

P (Eci |E1, ..., Ei−1) ≤ P (Ẽci |E1, ..., Ei−1) (8)

because Ẽi implies Ei. We examine the right hand side of
this equation. If h ≥ i−1

m , Ahj is deterministic for j ≤ (i −
1)nwhich means that conditioned on learning the first (i−1)
tasks,Ahj = aj for j ≤ (i−1)n and h ∈ (i−1m H, imH]. This
means that for each episode in this range of h, to learn the
ith task, our agent just needs to experience Ahj = aj for all
j ∈ ((i−1)n, in] in order to experience the whole trajectory
a1, ..., ain and learn the task.

Let hr = (i−1m H, imH], tr = ((i− 1)n, in], then

P (Ẽci |E1, ..., Ei−1) = P ((
⋃
h∈hr

⋂
t∈tr

Aht = at)
c) (9)

= P (
⋂
h∈hr

(
⋂
t∈tr

Aht = at)
c) (10)

≤
∏
h∈hr

(1−
∏
t∈tr

εm(h, t)

A
) (11)

Where the last statement comes from the fact that

P (Aht = at|
⋃
t′,h′

Ah
′

t′) ≥
εm(h, t)

A
(12)

t′ 6= t, h′ 6= h (13)

Even when conditioned on any previous learning that has
been done. We arrive at our desired statement by observing
that

εm(h, t) = εm
(
h− i− 1

m
H, t− (i− 1)n

)
(14)

so we can adjust our indices accordingly.

Proposition 2. m - stage epsilon greedy tabular Q-learning
requires

H ≤ cm(2A)n ln (m)

episodes to learn M with high probability, where m,n,A
are defined in the definition ofM and c is a constant.

Proof. Let {Ei}i∈[m] be the events that the agent learns the
first i tasks in some M ∈ M over i

mH episodes with nm
timesteps per episode. P (Ecm) is the probability that the
agent fails to learn the optimal policy for the environment
(Em is equivalent to the agent learning the environment).
The following chain of inequalities holds

P (Ecm) = P ((
⋂
i∈[m]

Ei)
c) (15)

≤
∑
i∈[m]

P (Eci |E1, ...Ei−1) (16)

≤ mmax
i
P (Eci |E1, ..., Ei−1) (17)

The first statement is true because if any Ei does not oc-
cur, then Em cannot occur. The second statement is a union
bound. If we train for H episodes it follows that

P (Eci |E1, ..., Ei−1) ≤
H/m∏
h=1

(1−
n∏
t=1

εm(h, t)

A
) (18)

≤
H
2m∏
h=1

(1− 1

(2A)n
) (19)

= (1− 1

(2A)n
)

H
2m (20)

≤ c0e−
H

m(2A)n (21)

where the first inequality is just Lemma 1, the second in-
equality observes that in half of the episodes, ε(h, t) ≥ 1

2 .
Choosing H = c1m ln(m)(2A)n for large enough fixed c1
makes this probability ≤ 1

m2 . And so

P (Ecm) ≤ m 1

m2
=

1

m
(22)

as desired.

Propositions 1 and 2 motivate the idea that as the number
of stagesm ofM grow, for large enough n, we should see an
improvement in episode sample complexity between these
two algorithms.

In the proof of Proposition 1, we constructed an MDP that
forced worst-case behavior for ε-greedy exploration, but it
is worth considering how realistic having this sort of struc-
ture in an MDP is in practice. MDPs that have mechanics
where a player can ‘die’ and then get reset to the beginning
of the game generally pose challenging exploration prob-
lems to an ε-greedy agent (Liu and Brunskill 2019). In the
proof of Proposition 1 the MDP we constructed was an ex-
treme case of this - where every misstep sends the agent to
an absorbing state until the end of the episode.

A structural property of MDPs that makes them well con-
ditioned for exploration with ε-greedy exploration is hav-
ing locally symmetric actions (Liu and Brunskill 2019). In-
formally, having locally symmetric actions means that an
exploration policy can explore the states of the MDP al-
most like exploring an undirected graph. Many well known
easy reinforcement learning environments like simple Grid-
worlds have this property.

In practice, many task-based environments like Mon-
tezuma’s revenge, or Text Adventure games have some of
both of these elements and so in our experiments we de-
sign, many (but not all) states have locally symmetric action
spaces but it is possible to die and be forced to restart before
all the tasks have been completed.

Although our analysis assumed that we set the number of
stages for exploration equal to the number of tasks, our ex-
periments were conducted with more stages than tasks and
still showed a substantial improvement over vanilla ε-greedy
exploration. In our environments, knowing the number of
tasks was relatively simple, but for more complicated games
it may be harder to determine the number of tasks. In our
experiments the improvements we observed did not require
much fine-tuning of our choice of m and it would be in-
teresting to see if this also holds true in more complicated
environments.

Discussion
Our theoretical and experimental results confirm our hypoth-
esis that ε-greedy exploration is poorly conditioned for en-
vironments consisting of sequences of tasks. More gener-
ally, vanilla ε-greedy exploration has trouble exploring the
states of an MDP later in the optimal trajectory as ε has de-
cayed too much to do meaningful exploration by the time the
agent starts encountering those states. Our generalization of
ε-greedy exploration works to reduce this effect both the-
oretically and empirically in tabular environments. Finally,

this generalization is easy to implement and reason about
and can either serve as an orthogonal improvement to exist-
ing agents and can serve as a harder-to-beat baseline in many
task-based games.

Future work could extend this exploration scheme to deep
reinforcement learning agents. Many continuous environ-
ments admit a task-based structure and could benefit from
m-stage ε greedy exploration. Additionally it would be an
interesting problem to examine how this scheme adapts to
tasks of different lengths. Finally, a natural extension of our
ε annealing schedule would involve smoothly increasing ep-
silon throughout the episode rather than in stages which
could be an interesting variation of our exploration scheme.

References
Bellemare, M.; Srinivasan, S.; Ostrovski, G.; Schaul, T.;
Saxton, D.; and Munos, R. 2016. Unifying count-based ex-
ploration and intrinsic motivation. In Advances in neural
information processing systems, 1471–1479.

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research 47: 253–279.

Burda, Y.; Edwards, H.; Storkey, A.; and Klimov, O. 2018.
Exploration by random network distillation. arXiv preprint
arXiv:1810.12894 .

Dabney, W.; Ostrovski, G.; and Barreto, A. 2020.
Temporally-Extended ε−GreedyExploration.
Fortunato, M.; Azar, M. G.; Piot, B.; Menick, J.; Osband, I.;
Graves, A.; Mnih, V.; Munos, R.; Hassabis, D.; Pietquin, O.;
et al. 2017. Noisy networks for exploration. arXiv preprint
arXiv:1706.10295 .

Lai, T. L.; and Robbins, H. 1985. Asymptotically efficient
adaptive allocation rules. Advances in applied mathematics
6(1): 4–22.

Liu, Y.; and Brunskill, E. 2019. When Simple Exploration is
Sample Efficient: Identifying Sufficient Conditions for Ran-
dom Exploration to Yield PAC RL Algorithms.

Machado, M. C.; Bellemare, M. G.; and Bowling, M. 2018.
Count-based exploration with the successor representation.
arXiv preprint arXiv:1807.11622 .

Ostrovski, G.; Bellemare, M. G.; Oord, A. v. d.; and Munos,
R. 2017. Count-based exploration with neural density mod-
els. arXiv preprint arXiv:1703.01310 .

Pathak, D.; Agrawal, P.; Efros, A. A.; and Darrell, T. 2017.
Curiosity-driven exploration by self-supervised prediction.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 16–17.

Sutton, R.; and Barto, A. 1998. Reinforcement Learning:
An Introduction. IEEE Transactions on Neural Networks
9(5): 1054–1054. ISSN 1045-9227. doi:10.1109/tnn.1998.
712192. URL http://dx.doi.org/10.1109/TNN.1998.712192.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence 112(1):
181–211. ISSN 0004-3702. doi:https://doi.org/10.1016/
S0004-3702(99)00052-1. URL http://www.sciencedirect.
com/science/article/pii/S0004370299000521.
Taiga, A. A.; Fedus, W.; Machado, M. C.; Courville, A.; and
Bellemare, M. G. 2019. On Bonus Based Exploration Meth-
ods In The Arcade Learning Environment. In International
Conference on Learning Representations.
Tang, H.; Houthooft, R.; Foote, D.; Stooke, A.; Chen, O. X.;
Duan, Y.; Schulman, J.; DeTurck, F.; and Abbeel, P. 2017.
exploration: A study of count-based exploration for deep
reinforcement learning. In Advances in neural information
processing systems, 2753–2762.
Thompson, W. R. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika 25(3/4): 285–294.

