
Investigating Policy Adaptations of Deep Q-Learning Autonomous Driving Agents
with Transfer Learning

Jonathan Xu
North Carolina School of Science and Mathematics

jonxu100@gmail.com

Abstract

Reinforcement Learning is a popular AI algorithm used to
teach an agent to learn about its environment by exploring
it. We investigate Deep Reinforcement Learning agents ap-
plied to autonomous driving in the Car Racing Track envi-
ronment from OpenAI gym. Reinforcement learning is very
costly–training agents from scratch in a complex state space
consumes large amounts of time. Transfer learning seeks to
remedy this drawback by adapting knowledge from agents
that have been trained in similar environments. In this paper,
we investigate the effects of direct transfer learning with a
Deep Q-Learning agent pretrained to solve the Car Racing
Track environment. The agent begins training in the altered
environments with weights from its original policy. Our al-
tered environments are generated by adjusting parameters of
the original environment such as the Track Width, Friction,
and Coloring of the track and background. To benchmark the
effect of transfer learning in these altered environments, we
simultaneously train a null agent from scratch and compare
the policies after every episode of training. We analyze the
resulting reward graphs to understand the effects of transfer
learning on learning rate and policy adaptation.

Introduction
Deep Reinforcement Learning (RL) is a state of the art
method to train AI agents learning in an environment. Every
environment includes some reward to indicate the success
of an agent, while the agent develops a policy to maximize
these rewards. By exploring extensively in its environment,
an agent gains knowledge about the environment via rein-
forcement learning. However, in environments with state in-
puts such as raw images, an agent cannot make sense of its
environment very well.

Deep Learning models enable the agent to represent these
image states as numerical knowledge, which can then be fed
into reinforcement learning algorithms. As such, Deep Re-
inforcement Learning has direct applications to computer
vision, particularly in robotics [Kober, Bagnell, and Pe-
ters2013], solving video games [Mnih et al.2013], and auto-
mated vehicles [You et al.2017, Sharma et al.2019]. We will

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

examine an application of Deep Reinforcement Learning in
an approximated environment of autonomous driving.

Deep Reinforcement Learning is very expensive, requir-
ing large amounts of time to train, especially in large and
complex environments such as the video game DOTA 2
[OpenAI et al.2019]. Simulations of real world environ-
ments are no exception, being arguably even more complex
than a video game. With reinforcement learning, an agent
can only learn to map a state and action by experiencing
that mapping explicitly. Thus, as the state space of the en-
vironment increases, it becomes very time consuming for
an agent to experience enough states and actions to build
its knowledge. One game with a very large state space is
chess, which was mastered by reinforcement learning re-
cently with the AlphaGo and AlphaZero project [Silver et
al.2017]. Many environments also feature very sparse re-
wards, which lengthens training time because it is signifi-
cantly more difficult to find successful policies in these en-
vironments.

Recently there has been a lot of work investigating deep
reinforcement learning agents and their ability adaptabil-
ity to new environments more quickly. Some current ap-
proaches include transfer learning [Sharma et al.2019] and
Sim2Real [Sadeghi et al.2018]. Sim2Real is a emerging field
focused specifically on applying transfer learning from vir-
tual environments to real world environments. Despite these
prior attempts, it is still not well understood where transfer
learning will be successful or unsuccessful.

In this paper, we examine the application of transfer learn-
ing with Deep Reinforcement Learning agents to self driving
vehicles in a 2D virtual racing track environment. We use
the 2D Car Racing track simulator from the OpenAI gym
as the environment for our agent. We apply an open source
pretrained Deep-Q Reinforcement Learning agent as the pre-
trained agent to test transfer learning, with an untrained ”null
agent” serving as a baseline. We altered the coloring of the
environment, manipulated the physics, and varied the di-
mensions of the track to examine how the agent would adapt
to these changes relative to the null agent. It’s important to
use a null agent as a control in order to gauge how effec-
tive transfer learning is in these environments. While our
environment much simpler real world, the results of our ex-



periments are likely applicable to agents solving real world
autonomous driving environments.

Related Work
Video games are an appropriate place to test Deep Rein-
forcement Learning agents, as every game involves some
sort of reward that an agent can maximize. The success of
efficient image processing with deep neural networks has led
researchers to investigate combining Deep Learning models
with reinforcement learning. In 2013, by combining a con-
volutional neural network with a Q-learning algorithm, re-
searchers were able to solve Atari 2600 games to a level
beyond human experts [Mnih et al.2013]. More recently,
Deep Reinforcement Learning has been applied to solve
real world environments, such as flight simulations [Kang et
al.2019] and robotics [Kulhánek et al.2019]. Despite its suc-
cesses, the policy of a Deep Reinforcement Learning agent is
very sensitive to small alterations in its environment [Müller
et al.2018]. Transfer learning studies how well knowledge
from one policy will more efficiently or robustly train to
adapt to a similar environment. In this paper, we will inves-
tigate the effects of transfer learning with a pretrained Deep
Q-Learning agent in a game-like emulation of a race track.

Transfer learning in reinforcement learning is a well-
studied area [Zhuang et al.2020]. There are a few general
approaches to this problem such as imitation learning [Pan
et al.2020], GAN [Gamrian and Goldberg2018, Zhang et
al.2018], and direct transfer learning [Müller et al.2018].
In Transfer Learning for Related Reinforcement Learning
Tasks via Image-to-Image Translation [Gamrian and Gold-
berg2018], the authors apply a generative adversarial net-
work (GAN) to remap images between different levels of
Atari games, allowing an agent to transfer its knowledge
from the first level to future levels. They found that signifi-
cant capabilities from previous training could be carried over
to different levels, demonstrating transfer learning’s effec-
tiveness in similar environments. In our Car Racing Track
environment, we utilize a direct approach to transfer learn-
ing as opposed to using a GAN network. We generate alter-
nate test environments by selectively changing parameters
and observing how a pretrained agent responds and learns a
successful policy compared to a null agent.

Approach

Figure 1: An image of the original environment.

In this section we describe our transfer learning approach
in a racecar environment. The first step was to select a
suitable environment–the OpenAI gym Car Racing track
(Shown in Figure 1). The environment’s parameters are eas-
ily adjusted in order to investigate transfer learning of an
agent to our customized altered environments. We then iden-
tified a Deep Q-Learning agent trained in the car racing
track environment, which we used as our pretrained agent
to test transfer learning. Finally, we chose several parame-
ters to conduct several experiments with, investigating the
effectiveness of the transfer of knowledge to solve the new
environments.

Original Environment
The original environment that is solved by our pretrained
agent is the OpenAI gym Car Racing Track environment.
The agent in this environment controls a simple car with 4
possible actions: do nothing, accelerate left, accelerate right,
and accelerate forward. To evaluate an agent, the environ-
ment uses a reward function.

The reward function of this environment is simple. Each
track tile visited awards +1000/N where N is the total num-
ber of tiles with a discount factor of -0.1 every frame of the
simulation. The reward is effective in measuring an agent’s
success for our purposes. It heavily rewards completeness
of the track while encouraging speed by punishing the agent
the longer it takes.

We can represent the environment as a Markov Deci-
sion Process. To traverse the track, an agent utilizes rein-
forcement learning to solve the Markov Decision Process.
A Markov Decision Process is based on the idea that the
future states are dependent on the current state. With a set
of possible actions in the current state, there are only a fi-
nite number of future states the agent can directly reach. A
Markov Decision Process is made up of several components:
the states, the rewards of each states, and actions to traverse
states. An additional factor may represent how significantly
rewards from future states several steps into the future are
weighted in the current state.

As mentioned before, the reward function of this environ-
ment is +1000/N where N is the total number of tiles with a
discount factor of −0.1 every frame, and the actions are rep-
resented by the commands do nothing, accelerate left, ac-
celerate right, and accelerate forward that can be given by
the agent. The states in the car racing environment are the
images of the vehicle and its surroundings. Note that nor-
mally some vector or numerical representation can be given
to each state. In this case the agent only receives raw images,
meaning a deep learning model can be utilized to model each
frame as a state. Given these parts of the Markov Decision
Process, an agent is able to use reinforcement learning to
identify favorable states and actions to take to maximize the
reward from the environment.

Our Reinforcement Learning works by updating the
weights within the agent’s policy after every episode of
training. Every episode is comprised of several rollouts,
which means one iteration of the simulation. A rollout is
comprised of several steps, which recall from the Markov
Decision Process are the state-actions the agent undergoes.



The following are parameters that we will vary in the exper-
iments.

• Road Width: The pixel width of the road for the agent
to traverse. Default=60.

• Friction Value: The friction value for the road. De-
fault=1.0.

• Background Color: RGB value for the color of the back-
ground. Default=[0.4,0.8,0.4] (Green).

• Track Color: RGB value for the color of the track. De-
fault=[0.4, 0.4, 0.4] (Grey).

Model
To solve the original OpenAI Car Racing Track environ-
ment described in the previous section, we utilize a Deep
Q-learning agent. An agent with a policy that already solves
the environment will serve as the pretrained agent in each of
the transfer learning experiments. We used an open sourced
Deep-Q-Network [pekaalto] that is trained to nearly per-
fectly traverse the Car Racing environment. It’s learning rate
is 0.0004 and utilizes a ADAM optimizer. The structure of
the model is shown in Fig. 2.

Figure 2: The convolutional neural network visualized in a
diagram.

The model uses a convolutional neural network in order
to process the input image to determine the correct next ac-
tion for the agent to take. While the simulation displayed by
the OpenAI gym engine is 600 x 400 pixels (the track width
is adjusted on this scale), the agent is limited to a 96 x 96
pixel image input. The network extracts features such as the
border between the track and background from these input
images by utilizing convolutional layers with ADAM opti-
mization. The following layers assess the results of the con-
volutional layers to calculate the perceived optimal action.
Overall, the model uses a learning rate of 0.0004 to train.

Altered Environments
The environment has a set of several parameters that we al-
tered to test the effectiveness of transfer learning. In most
cases, we only alter one parameter in each experiment in or-
der to isolate the results, but occasionally we alter multiple
parameters to investigate if the results still remain consistent.

• Original Environment: Width=60 pixels, Fric-
tion=1.0, Road Color=[0.4, 0.4, 0.4] (Grey), Background
Color=[0.4,0.8,0.4] (Green)

• Small Track: Dropped the width of the track to 5 pixels,
which is notably thinner than the agent. The current policy
of the pretrained agent is to follow alongside the border
of the track. By drastically reducing the track width to be
smaller than the width of the car, we test if the agent’s
original policy is still beneficial to learning.

• Wide Track: Increased the width to 400 pixels. Again,
the current policy relies on identifying some sort of bor-
der. With such a large width, the agent will be unable to
determine a border as the track essentially forms a circle.
Such a large difference in the nature of the track and a
target policy puts transfer learning to the test.

• Slippery Track: Significantly reduced the friction of the
environment from 1.0 to 0.1. Here, we mimic an ”icy”
environment. Altering the physics of the environment in-
terferes with the agent’s mobility given its current policy.
Here we’re isolating the agent’s ability to adapt its control
of the vehicle as opposed to detecting the road.

• Small Slippery Track: Combined changes in friction
with changes in track width. In each of the previous en-
vironment variations, we isolated the differences in the
track detection and maneuvering of the vehicle. Altering
both simultaneously is also of interest to investigate how
quickly and effectively transfer learning is able to accel-
erate learning policies to deal with heavily altered envi-
ronments.

• Altered Color Environments: The static coloring of the
background and track were altered to selected colors. We
then experimented with randomized track or background
color between rollouts.
– Purple Background: Altered the background or

”grass” color of the environment to [0.8, 0.0, 0.8] (Pur-
ple). The green value of the background is likely of
high importance to the agent’s policy. By altering the
background to the opposite color of green, purple, we
test how well the agent is able to leverage its current
policy to learn a policy for a drastically different envi-
ronment.

– White Background: Altered the background or
”grass” color of the environment to [1.0, 1.0, 1.0]
(White). In contrast to the last experiment, we choose a
color that is relatively similar to green, white. The pre-
trained agent is theoretically still able to utilize its pol-
icy on the green rgb value of the background, so this
environment heavily examines the transfer of knowl-
edge.

– Yellow Track: Altered the track color of the envi-
ronment to [0.8, 0.8, 0.0] (Yellow). Here, we’re try-
ing to confuse the pretrained agent again. Yellow is a
very close color to the original background, green, so
it should be quite difficult for the agent to differentiate
the border. The ideal policy here should clearly focus
on the red rgb value, whereas the original policy of the
agent almost certainly doesn’t.

– Blue Track: Altered the track color of the environment
to [0.0, 0.0, 0.8] (Blue). We now change the track to
blue for similar reasons we changed the background to



white. The difference between the original track and
background rgb was in the green value, and that holds
in this experiment. The transfer of knowledge from the
pretrained agent should be more straightforward here.

– Random Background: Changed the background
color to a random color every rollout. Theoretically, it
should be possible for the agent to identify the track
based purely on the pixels of the track, regardless of
the border. The purpose of this experiment is to iden-
tify whether or not the agent is able to create a policy
that allows for this, and whether or not the pretrained
agent is more effective in doing so.

– Random Track: Just as with the previous experiment,
we attempt to motivate the agent into learning a policy
that focuses purely on the background color to identify
its location. The transfer of knowledge is interesting in
these cases, as the pretrained agent should already have
some sense of identifying the road and background re-
gardless of the other.

The resulting environment from some of these alterations
are shown in Figure 3 below.

(a) The Small Track environ-
ment

(b) The Wide Track environment

(c) Although not visible from
this image, this is the Slippery
Environment.

(d) Purple Background Environ-
ment. Several other orientations
of colors were tested as well.

Figure 3: Images of altered environments.

Evaluation
Our goal is to investigate the effectiveness of transfer learn-
ing from the original environment into altered environments.
The original environment consists of a track of width=60
and friction=1.0, with the rgb values of the background and
track as [0.4, 0.8, 0.4] and [0.4, 0.4, 0.4] respectively (rgb
values given on a scale with max 1.0). In each experiment,
the null agent is an agent that has no prior training, while the
pretrained agent had been trained for about 150,000 steps

in the original environment. Each agent had a learning rate
of 0.0004 and utilized the adam optimizer. We train the null
agent and pretrained agent in each altered environment, eval-
uating each agent respectively after every episode of train-
ing. Typically an experiment consisted of 40 episodes of
training, although in some cases experiments lasted up to 60
episodes. Evaluating each experiment is done by running 20
rollouts on every episode and averaging the rewards across
the rollouts. By doing so, we are able to track through each
episode how quickly and how well an agent is able to adapt
to its environment. Comparing the null agent’s results and
pretrained agent’s results gives us insight as to how effective
transfer learning was for learning a proficient policy in an
altered environment.

The current policy of the pretrained agent is simple: find
the left side of the road and maintain a distance from the
right side. The agent is able to smoothly navigate the envi-
ronment with the exception of sharp turns, where it tends to
cut corners and even occasionally spin off. The agent’s abil-
ity to navigate the environment is heavily dependent on the
agent’s ability to identify the bounds of the road. As such, al-
tering the dimensions of the road in certain experiments is an
interesting prospect to investigate transfer learning. The pre-
trained agent must also heavily leverage the static coloring
of the road and the ”grass” surrounding it. Thus, in some ex-
periments we alter the color of the road and the background
individually. Inverting the color of the road and the back-
ground was of special interest, as it seems taking the op-
posite colorings contradicts the learned policies of the pre-
trained agent as much as possible. Additionally, we altered
the friction of the road as a simulation of ”icy” roads. While
the agent should be able to identify the bounds of the roads,
we evaluate how well the agent is able to alter its policy to
refine its motor control.

There are a couple signs to determine if the transferred
knowledge is helpful. The pretrained agent could receive
a “jumpstart”, meaning at episode 0 it already performed
better than the null agent. This meant that the transferred
knowledge was immediately relevant to the altered environ-
ment. The transferred knowledge could also be considered
useful if the ending average reward would be higher than
that of the null agent. A higher final reward means the trans-
ferred knowledge gave the pretrained agent an advantage in
training compared the random noise of the null agent. If the
pretrained agent’s learning speed matches that of the null
agent, we can consider the pretrained agent’s knowledge as
not useful. In the case of a pretrained agent consistenly per-
forming worse than the null agent by the end of the final
episode, we can conclude the transferred knowledge to be
detrimental.

Results
We now present the results of each experiment with graphs
comparing the rewards of the pretrained agent and the null
agent vs the number of episodes trained. From the OpenAI
gym documentation, the Car Racing Track environment (and
these variants) are considered ”solved” when an agent can
achieve a score of 900 consistently. As a baseline in the
original environment the pretrained agent achieves a score



of 800-900 consistently.In every graph, the x-axis represents
the number of episodes of training and the y-axis represents
the average reward for a rollout over 20 trials. With the data,
we are able to deduce the effectiveness of transfer learning
for each of the altered parameters by following the guide-
lines outlined in the evaluation section.

Track Width
In the first experiment we test the Small Track environment,
where the track is narrower than the car itself.

Figure 4: The rewards of the pretrained agent and null agent
in the Small Track and Wide Track environment

As shown in Fig. 4, the pretrained agent exhibits a clear
learning advantage over the null agent. The knowledge of
the background is likely leveraged by the pretrained agent,
which only needs to adjust its policy to recognize the thin-
ner track above and below it. The pretrained agent is given
no jumpstart, which is not surprising because the original
policy of following the track border is not applicable to such
a narrow track. Nevertheless, the knowledge of the original
environment helps the training of the agent rapidly, whereas
the null agent cannot learn very effectively by randomly ex-
ploring such a delicate environment.

In the second experiment we investigate the other extreme
with the Wide Track environment–a track wide enough that
it takes up nearly the entire screen.

With a track that covers virtually the whole screen, the
pretrained agent is initially able to learn to adapt to this en-
vironment more quickly as Figure 4 suggests. This is likely
due to the the pretrained agent’s knowledge of the original
environment, providing it with a jumpstart to its learning.

The null agent struggles for quite a few episodes to make
any progress, but eventually learns very quickly to traverse
the environment just as proficiently as the pretrained agent.
Because the track is so large, the null agent was able to
stay on the track longer and thus undergo more steps every
episode. The Wide Track environment in this way rapidly
accelerates the null agent’s learning compared to null agents
in other environments as we will show later. After about
30 training episodes, the two agents plateau into receiving
about the same average reward.

Recall that a strong score in these environments is about
800-900. Clearly both the null and pretrained agent plateau
to scores between 600-700 consistently, indicating their

policies were far from optimal. The agents simply learned to
roam about randomly within the confines of the road, which
were very lenient and required little skill to traverse. Thus,
there was no need for the agents to systematically visit every
tile to yield a relatively large reward. We can consider this a
local maxima–it is very easy way to gain a fairly large score
with a very simple policy.

Varying the track width to two extrema gave two con-
trasting results in transfer learning. The ideal policy for the
Small Track is very similar to the Wide Track–simply follow
the road and adjust at turns as needed. The transfer learn-
ing yielded very successful results in the narrow track case,
where the agent was forced to approach the track slowly to
maintain precision over the track. With a wide track, the re-
sults were less successful. The goal policy for a track that
covers the screen initially would be to find the border and
follow it. This is much more complex and while the pre-
trained agent may have a notion of traveling on the road, it
ultimately could not improve much from its local maxima.

Friction
For the first experiment in this section we set the track width
to the default 60, and instead drastically alter the friction. We
expect the pretrained agent to perform significantly better
because it already has some understanding of the bounds of
the track. However, the reduction of friction will likely cause
the agent to struggle at turning points, especially sharp turns.

Figure 5: The rewards of the pretrained agent and null agent
in the Slippery Track and Small Slippery Track environment
environment

Figure 5 shows the results are exactly as we expect. The
pretrained agent has a minor jumpstart to the Slippery Track
environment, then rapidly learning to achieve consistently
high results after about 15 episodes of training. The null
agent struggles to learn on this track, only adapting slightly
near the end of the training. This experiment clearly demon-
strates the effectiveness of transfer learning. The agent’s
ability to adapt its model very quickly gives it a significant
advantage over an agent learning to solve the environment
from scratch.

In the previous experiment, setting the width to the de-
fault value gave the pretrained agent a significant advantage.
We now alter the track with to 5 to create a small slippery
track. We combine these two alterations to the environment



to challenge the pretrained agent’s ability to use its prior
knowledge. In such a difficult and volatile environment, we
expect the null agent to struggle to learn a policy. We antici-
pate the pretrained agent learns will learn in a similar fashion
to the Small Track, although slower.

The pretrained agent begins with no jumpstart just as
in the Small Track environment (Figure 4), likely because
the environment is drastically different and volatile. Sur-
prisingly, the pretrained agent begins learning much earlier
in this environment than on the small track, although this
could be by random chance from exploration. Overall, the
result in the Slippery Small Track environment is analogous
to the Small Track environment. The pretrained agent’s fi-
nal average of about 500 in the Slippery variant is slightly
less than the regular Small Track environment, in which the
agent yielded an average of about 600 at the end of training.
The null agent struggles in both environments, demonstrat-
ing the effectiveness of transfer learning when altering these
parameters.

Background Color
Here we will examine the effects of altering the background
color while maintaining the original track width and friction
values. We first tested the White Background environment.
We theorize the green RGB value of the background color is
heavily weighted in convolutional neural network. As such,
an agent in the White Background environment should still
be able to take advantage of the difference in the between
the green RGB values of the background and the road. It
is fair to expect the pretrained agent to perform very well
while the null agent will have to learn from scratch. The

Figure 6: The rewards of the pretrained agent and null agent
in the White Background and Purple Background environ-
ment

results in Figure 6 indicate exactly the phenomenon. The
pretrained agent exhibits a significant jumpstart compared
to the null agent, showing that its policy was well adapt-
able to the white background. The initial average rewards
around 800 in the White Background environment are even
on par with the pretrained agent ”solving” the original envi-
ronment, which recall was an average reward of nearly 900.
Additionally, the pretrained agent becomes more consistent
in reaching high rewards with more and more training, indi-
cating that it’s further optimizing its policy.

The reason for such a massive jumpstart is likely as we hy-
pothesized. With a white background, the green RGB value
is very similar between the original and altered environment.
This means the agent is able to use its policy exactly as be-
fore and achieve strong results. The null agent was much less
successful, slowly learning from scratch a policy in the en-
vironment. This is essentially the equivalent of training the
null agent in the original environment. The transfer learning
was very successful in this experiment due to the similarities
in the environments.

Next we test the pretrained agent’s ability to learn with a
background the inverse color of green–purple.

The results in Figure 6 support the idea that the agent was
able to use its policy in the white background experiment
due to the green value being similar. With a green RGB value
of 0 in the purple background color, the agent essentially
has lost all bearings of its surroundings. Its learning rate is
roughly the same as the null agent, only achieving good re-
sults after 55 episodes of training. The agent has to virtually
relearn its entire policy making it equivalent to a null agent
that learns from scratch, making transfer learning not ideal
in this scenario.

Road Color
We’ve examined the effects of altering the background color,
so it is interesting to see if changing the road color instead
while keeping the original track width and friction values
will yield similar results. First we consider the target envi-
ronment Blue Track. Recall with the white background ex-
periment we emphasized the green RGB value of these en-
vironments, whereas in this experiment we focus on the dis-
tinct blue RGB values. The road and the background clearly
have significantly different blue RGB values in both the
original and blue track. As such, we expect this experiment
to be very similar to the white background experiment, an
immediately successful pretrained agent while the null agent
struggles.

Figure 7: The rewards of the pretrained agent and null agent
in the Blue Track and Yellow Track environments

The pretrained agent surprisingly starts without a jump-
start but immediately makes up for it by learning a proficient
policy by the 17th episode in the Blue Track environment.
Our hypothesis that the pretrained agent would immediately
in the altered environment was false, but we were correct



to anticipate the pretrained agent could very quickly and ef-
fectively adapt to the blue track. From the previous experi-
ments, we know the agent is able to track the background in
addition to the road. Thus, the agent only needs to slightly
alter its CNN layers until averaging a score of 800, indicat-
ing a strong mastery of the environment.

The comparison to the null agent demonstrates just how
effective the transfer learning is in this case. The null agent
struggles to receive any reward, and eventually improves
only slightly reaching a peak reward of only nearly 600 in
one episode. The end policy of the null agent is far less suc-
cessful than that of the pretrained agent.

A blue road, however as discussed before, created an en-
vironment where the target policy is very similar to the
original policy. A more challenging environment where the
road’s color is very similar to the background color could
make transfer learning much less effective. To test this hy-
pothesis, we ran an experiment with a yellow road, again
shown in Figure 7.

The results are as we hypothesized. The pretrained agent’s
knowledge is not useful in this environment because it is
much more difficult to determine the border between the
road and the background. In fact, the null and pretrained
agent behave almost identically, illustrating that the knowl-
edge from the pretrained agent’s model is not useful to adapt
to this environment. By investigating the Yellow Track and
Purple Background environments, we can conclude that in
environments with drastically different parameters, the pre-
trained agent’s knowledge of the original environment is not
useful in the new environment.

Randomized Environments
With such contrasting results between different colorings of
the track and background, we employ an environment with
randomized colors between rollouts to determine if the pre-
trained agent is able to adapt its model to a variety of colors.
The goal is for the agent to be able to learn a policy that no
longer focuses on the background color. Instead, the agent
would ideally only need to observe the road immediately
around it. We expect the pretrained agent to use its original
policy to rapidly develop this generalized policy.

Figure 8: The rewards of the pretrained agent and null agent
in the Random Background and Random Track color envi-
ronment

Figure 8 exhibits interesting results. In general, the pre-
trained agent was on average fairly effective across all
episodes, improving at a consistent pace over episodes to
reach a final average of about 800. This experiment demon-
strated clearly the effectiveness of transfer learning. The pre-
trained agent was given a jumpstart and an initial surge in
its rewards improvement rate. The null agent started very
poorly, but eventually was able to rapidly learn its own pol-
icy and nearly catch up to the pretrained agent.

We also use the Random Track environment to observe
whether or not the agent can learn to maneuver by focusing
on the background.

The pretrained agent is given a jumpstart from its start-
ing at a relatively solid score of about 300 and slowly learn-
ing to average nearly 600. The null agent struggles at the
onset of training, but soon rapidly learns to almost match
the pretrained agent. Prebiously, the pretrained agent’s pol-
icy likely heavily weighted the road to detect the agent’s lo-
cation while only using the background as an edge detec-
tor. If this is the case, it is understandable that the pretrained
agent was unable to quickly learn a policy that uses the back-
ground color to determine its state.

Conclusions
In this paper we investigated the effects of transfer learn-
ing of a Deep Q-Learning agent pretrained in the car rac-
ing environment from OpenAI gym. The Car Racing Track
environment from OpenAI is a simple yet reasonably real-
istic emulation of the real world to test autonomous driv-
ing agents. We altered the environment by varying the track
size, the friction value, and the color scheme of the track
and road. The environments we chose to test were extreme
to test the boundaries of transfer learning. We found trans-
fer learning to be extremely effective in environments that
did not undergo significant transformations. Altering phys-
ical parameters such as the track width and friction lended
well to transfer learning, as the pretrained agent’s policy for
edge detection and maneuvering needed only small modifi-
cations. The pretrained agent struggled, however, in the Pur-
ple Background and Yellow Track because its original policy
was not applicable to the inverted colorings. Transfer learn-
ing was unsuccessful in these environments–the pretrained
agent exhibited no advantage over the null agent in training.

Acknowledgements
I would like to express my deep gratitude to Dr. Matthew
Guzdial, my research supervisor, for his patient guidance,
enthusiastic encouragement and constructive feedback on
this research work. My accomplishment of this project
would not be possible without his continuous support. I
offer my appreciation for his willingness to give his time so
generously.

I would also like to thank OpenAI. Their open source gym
environments served as an accessible resource and inspira-
tion for this work.



References
Gamrian, S., and Goldberg, Y. 2018. Transfer learning
for related reinforcement learning tasks via image-to-image
translation. CoRR abs/1806.07377.
Kang, K.; Belkhale, S.; Kahn, G.; Abbeel, P.; and Levine,
S. 2019. Generalization through simulation: Integrating
simulated and real data into deep reinforcement learning for
vision-based autonomous flight. In 2019 International Con-
ference on Robotics and Automation (ICRA), 6008–6014.
Kober, J.; Bagnell, J. A.; and Peters, J. 2013. Reinforcement
learning in robotics: A survey. The International Journal of
Robotics Research 32(11):1238–1274.
Kulhánek, J.; Derner, E.; de Bruin, T.; and Babuška, R.
2019. Vision-based navigation using deep reinforcement
learning. In 2019 European Conference on Mobile Robots
(ECMR), 1–8.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. A. 2013.
Playing atari with deep reinforcement learning. CoRR
abs/1312.5602.
Müller, M.; Dosovitskiy, A.; Ghanem, B.; and Koltun, V.
2018. Driving policy transfer via modularity and abstrac-
tion.
OpenAI; :; Berner, C.; Brockman, G.; Chan, B.; Cheung, V.;
Debiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.;
Hesse, C.; Józefowicz, R.; Gray, S.; Olsson, C.; Pachocki, J.;
Petrov, M.; de Oliveira Pinto, H. P.; Raiman, J.; Salimans, T.;
Schlatter, J.; Schneider, J.; Sidor, S.; Sutskever, I.; Tang, J.;
Wolski, F.; and Zhang, S. 2019. Dota 2 with large scale deep
reinforcement learning.
Pan, Y.; Cheng, C.-A.; Saigol, K.; Lee, K.; Yan, X.;
Theodorou, E. A.; and Boots, B. 2020. Imitation learning
for agile autonomous driving. The International Journal of
Robotics Research 39(2-3):286–302.
pekaalto.
Sadeghi, F.; Toshev, A.; Jang, E.; and Levine, S. 2018.
Sim2real viewpoint invariant visual servoing by recurrent
control. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 4691–4699.
Sharma, S.; Ball, J. E.; Tang, B.; Carruth, D. W.; Doude,
M.; and Islam, M. A. 2019. Semantic segmentation with
transfer learning for off-road autonomous driving. Sensors
19(11):2577.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T. P.; Simonyan, K.; and Hassabis, D. 2017.
Mastering chess and shogi by self-play with a general rein-
forcement learning algorithm. CoRR abs/1712.01815.
You, Y.; Pan, X.; Wang, Z.; and Lu, C. 2017. Virtual to
real reinforcement learning for autonomous driving. CoRR
abs/1704.03952.
Zhang, M.; Zhang, Y.; Zhang, L.; Liu, C.; and Khurshid, S.
2018. Deeproad: Gan-based metamorphic testing and in-
put validation framework for autonomous driving systems.
In 2018 33rd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), 132–142.

Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.;
Xiong, H.; and He, Q. 2020. A comprehensive survey on
transfer learning. Proceedings of the IEEE 1–34.


