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Abstract

Reinforcement learning has achieved great success in learn-
ing strategies for games with minimal supervision. Here we
consider a specific simple combinatorial game called notakto,
in which players cover squares on a tic-tac-toe board until one
of them loses by finishing a whole row, column, or diagonal.
We introduce optimal strategies for this game played on small
boards, but larger boards have proven difficult to analyze
mathematically. We set out to use reinforcement learning to
help give insight into optimal strategies for larger boards. Sur-
prisingly, we found that, despite the simplicity of the game,
AlphaGo Zero struggled to learn an optimal strategy, even
though we know that they exist. We developed two ways to
accelerate AlphaGo Zero’s learning on this problem: one is
a targeted sampling strategy that biases towards states that
are likely to appear in competent play, and the other is to set
the threshold for updating a model based on statistics in the
training data. Both techniques make AlphaGo Zero converge
faster on notakto, but they are specific to this game and still
do not seem to find a near-optimal strategy. We conjecture
that this difficulty may show some fundamental limitations of
reinforcement learning on combinatorial games that need to
be further investigated.

Introduction

Skill in adversarial games has long been considered a mea-
sure of intelligence in both humans and machines, and much
work in Al has focused on popular human games like Chess,
Checkers, and Go. While early techniques relied on fast
search, look-up tables, and hand-crafted heuristics (Breuker,
Uiterwijk, and van den Herik 2000; Kawano 1996; Scha-
effer et al. 2005, 2007; Yoshizoe, Kishimoto, and Miiller
2007), more recent approaches learn automatically. A ma-
jor achievement of this line of work is AlphaGo Zero (Silver
et al. 2017a,b), which showed that a common framework
based on artificial neural networks can learn to master these
and other games without human knowledge or intervention.

But while Chess and Go are popular among both human
players and Al researchers, their complicated rules make
it difficult to understand what the Al systems are actu-
ally learning. Games with simpler rules that are easier to
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analyze theoretically and analytically can nevertheless be
quite challenging. Investigating how well (or poorly) mod-
ern algorithms learn these games could yield insight into the
strengths and weaknesses of modern game-playing Al ap-
proaches.

For example, consider the simple childhood game of tic-
tac-toe, in which players alternately place pieces ona 3 x 3
grid until a row, column, or diagonal is complete. This sim-
ple game can be made more difficult through three simple
modifications: (1) allow an arbitrarily-sized n x n board, (2)
give both players the same symbol (say, “X”), and (3) invert
the winning condition so that the first player to complete a
row, column, or main diagonal loses. Combinatorial game
theorists would call this the misére version of one-symbol
tic-tac-toe; we call it notakto for short.

Assuming perfect play, which player wins notakto for dif-
ferent values of n? It is obvious that the second player al-
ways wins with n = 1, while the first player always wins for
n = 2. The first player can always force a win for n = 3,
by placing their first piece in the middle of the board. It
was known that the second player wins for n = 4 and the
first player wins for n = 5 (Chow 2010), but solving the
game beyond this point is difficult: the large branching fac-
tor makes it impractical to determine a winner through brute
force search for any but the smallest of boards.

Meanwhile, analytic solutions help but not as much as we
might hope. Algebraic analysis for this game has been car-
ried out for the 3 x 3 board using the so-called misére quo-
tient (Plambeck and Whitehead 2014). Unfortunately, while
the misere quotient has been proven to be useful in solv-
ing several other misere games (Plambeck and Siegel 2008),
for notakto it is not known if the misere quotient of even a
4 x 4 board is finite (Plambeck and Whitehead 2014), which
indicates that this simple game is hard to fully analyze.
Misere variants of combinatorial games, like notakto, are of-
ten harder than their normal play counterparts (see (Siegel
2013, Chapter V) and (Plambeck and Siegel 2008)).

In this paper, we report preliminary results towards our
goal of understanding notakto’s properties using reinforce-
ment learning, and make several steps towards advancing
what is known. We first attack the problem analytically, and
prove that the second player always wins for game boards
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Figure 1: AlphaGoZero’s undesirable option for the first
player, “X”. ”X”’s are current pieces on the 5 by 5 board.
Green areas are the options that can force a win for the first
player while the grey areas are not.

of size n x n for any n that is a multiple of 4. Unfortu-
nately, this analysis does not yield insight into other values
of n. We then try a traditional search-based technique with
hand-crafted optimizations to deal with the huge branching
factor, letting us solve the game for n = 6, for the first time.
However, n > 7 remains well beyond our computational
resources.

We thus tried a third approach: applying reinforcement
learning (in the form of AlphaGo Zero) to learn to play this
game automatically. Our hope was that if AlphaGo Zero
could learn to play notakto well, especially for board sizes of
On > 7, we could use the patterns of its play to derive a win-
ning strategy, and then prove (either analytically or through
more targeted search) that this strategy was optimal. Unfor-
tunately, and surprisingly, we find that AlphaGo Zero strug-
gles to learn notakto, even for modest board sizes, despite
its simple rules. One example is shown in Figure 1, a 5 by
5 board is occupied by six “X’s, the first player can force a
win (there exists a winning route no matter what the second
player plays) if it plays at any of the green area. On the con-
trary, the first player cannot force a win in any of the grey
areas. We trained an AlphaGo Zero model that fails to play
optimally, as “X”” shows. We hypothesize that this is because
the structure of notakto game play can cause the learning
algorithm to spend much time considering highly improb-
able board states. We present a technique to help mitigate
this property, and present experimental results that suggest a
solution for n = 7, 8. However, the techniques are unsatis-
fyingly very specific to notakto. We hope the paper inspires
interest in notakto and other simple games that seem difficult
for reinforcement learning, which may help identify limita-
tions and possible directions for future work.

Who wins notakto?

Despite the simplicity of notakto’s rules, only limited results
are known about optimal strategies for winning. The game is
trivially solvable for n = 1 and n = 2, resulting in a second
player and first player win, respectively. For n = 3, it is easy
to verify by hand that the winner is the first player if she
places her first “X” in the center square; if she chooses any
other square as her first move, the second player can force a
win (Chow 2010). Because the number of board states grows
exponentially with n, it becomes very difficult to analyze
larger boards by hand or through intuition.

Insight from analysis

For 4k x 4k boards, with k € Z*, it was known that the
second player could always win (Chow 2010), though no
formal proof was given. We take the opportunity to introduce
both a formal proof and a winning strategy here. We use the
following notation. If ZT denotes the set of positive integers
and n € ZT, then we define [n] := {1,2,...,n}.

Theorem 1. The second player has a winning strategy for
notakto on any board of size n x n, where n = 4k and
keZt.

Proof. 1If we label the tiles in the n x n board in a coordinate
system where (1,1) is the top-left corner and (n,n) is the
bottom-right, then the second player is guaranteed to win
using the following strategy described by the function f :
[n]? — [n]? given by
(2.9) D (0 +1) =2+ (-1 + (-1)"*).

It is easy to see that f is its own inverse function; that is,
(f o f)(z,y) = (z,y), where o denotes the composition of
two functions. Furthermore, row ¢ is mapped to row (n +
1) —i+ (—1)% column j is mapped to column j + (—1)7+1,
and the main diagonal {(4,7) | ¢ € [n]} is mapped to the
main anti-diagonal {(z,y) | ,y € [n]Jandx +y = n +
1}. Furthermore, since n = 4k with k € Z™, it holds that
i # (n+1)—i+ (1) and so each row is mapped to
a different row by f. Indeed, there are two possibilities: (i)
if i is even, then i = (n + 1) — i + (—1)" would imply
i = 2k + 1, which is impossible, or (ii) if ¢ is odd then ¢ =
(n+1)—i+(—1)* would imply i = 2k, which is impossible.
Furthermore, since y # y + (—1)Y*1, rows get mapped to
different rows as well. Similarly, the main diagonal and main
anti-diagonal are swapped under the action of f. Therefore,
if the second player completes a row, column, or diagonal by
following the pairing of cells in the n x n grid given by f,
then the first player must have completed a row, a column,
or a diagonal earlier in the game. Hence, the second player
is guaranteed to win.

We illustrate the strategy and the corresponding map f in
Table 1. For example, the square labeled “11” in position
(2,3) in Table 1 is mapped to the position indexed as 11
which is position (8, 4) (using row-major indexing starting
with 1 at the upper left).

Interestingly, but unfortunately, this pairing strategy does
not seem to exist for boards where n is not a multiple of
four — even for other even numbers (i.e., for n = 4k + 2
and k € Z™). However, the non-existence of such a strategy
does not prove that the second player will lose (although, as
we discuss below, we do know that the second player loses
for n = 6 assuming perfect play).

Insight from search

Since we could not find analytical solutions for n > 4, we
next turned to using explicit search: to show that the first
player can always win for a given n, for example, we sim-
ply check recursively that there exists a move that the first
player can make such that any move made by the second
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Table 1: A strategy for the second player to always win on
the 8 x 8 board, in the form of a look-up table with exactly
two tiles labeled ¢ for 1 <7 < 32. If the first player chooses
tile ¢, the second player should place their next tile on the
other tile indexed by 1.

player yields a position in which the first player can eventu-
ally force a win. The number of possible configurations for

an n x n board is 2" and the number of possible games is
bounded by (n?)! (although not all of those configurations
and games are reachable in play).

For n = 5, explicit search easily verifies that the first
player can always force a win. In fact, the first player can
choose any tile in the first move and still win later on. If
they choose the center tile on the first move, then they can
choose any tile on their second move and still force a win,
regardless of which tile the second player chooses on their
first move.

For n = 6, we implemented several straightforward opti-
mizations to allow explicitly searching all possible games
(about 40 quadrillion). Because many paths through the
game tree intersect in any given state, we build a look-up
table of all possible states, indexed by a 36-bit integer that
encodes the configuration of the board (where 1s are Xs and
0Os are empty squares). Each entry in the look-up table needs
2 bits, one indicating if the first or second player wins from
this state, and one indicating whether the winner has been
computed yet. The look-up table thus requires about 20GB
of memory to store all 236 possible states. We also use “bit
twiddling” to efficiently detect losing configurations (com-
pleted rows, columns, and diagonals) using bitwise binary
arithmetic.

Our search found that the first player can guarantee a win
for n = 6, which (to our knowledge) is a new result. The
search took only about 15 minutes on a single CPU. Unfor-
tunately, this approach would require nearly 150 TB of RAM
for n = 7. We tried various alternative implementations, but
were not able to find one practical for our computational re-
sources.

A general winning strategy is not known

A general winning strategy for all boards remains elusive for
any board n x n board with any n > 5 that is not multiple of
4. Indeed, if n = 1 there is only one move available and the
first player will complete a row — i.e., lose — in that move.
If n = 2, the first player will win since the second player is
compelled to complete a row, column, or diagonal in its first
move. The case n = 3 has been addressed in (Chow 2010)

with a “knight move strategy”” where the first player should
cover the center tile and then counter each subsequent move
by placing a tile in a square that is a knight move away from
the previous move (either two rows and one column, or two
columns and one row apart). If n = 4, Theorem 1 describes
a perfect strategy for the second player. Despite that no gen-
eral strategy is known, the fact that there exists a simple,
provably-optimal strategy for 4k x 4k for any k should mean
that a powerful reinforcement learning-based game playing
system, such as AlphaGo Zero, should be able to easily learn
it. Moreover, it suggests that simple strategies may exist for
other board sizes as well — if only we could find them.

Enter AlphaGo Zero

Of course, large branching factors are nothing new in ad-
versarial Al research. Most recently, AlphaGo Zero (Silver
et al. 2017b) has demonstrated that deep artificial neural net-
works are capable of learning to play games like Chess and
Go at a level that quickly surpasses that of human champi-
ons. The original version, AlphaGo Zero (Silver et al. 2016),
was specifically designed for Go and was trained using hu-
man supervision and hand-crafted features. AlphaGo Zero
is much more general, avoiding human supervision through
self-play, which simplifies the training process significantly.

Given that AlphaGo Zero performs so well on Go (where
the board is 19 x 19), one would assume that it would easily
learn to play notakto on our relatively modest 7 x 7 board,
especially given that notakto is conceptually much simpler.
Surprisingly, we found that it failed to play well even on
small notakto boards. To explain why it fails and to suggest
a fix, we now discuss key parts of AlphaGo Zero in more
detail.

Background on AlphaGo Zero

AlphaGo Zero uses Monte-Carlo Tree Search (MCTS)
to play against itself from random states. MCTS records
some statistics, such as the times of each state-action pair
(N (s,a)) appears as well as the corresponding results (-1
or 1), etc., to calculate expected reward (s, a) during self-
playing. The loss function is designed (1) to minimize the
difference between predicted outcome v and the actual out-
come z, and (2) to minimize the difference between the pol-
icy vector which comes from random playing (search proba-
bility ) and the predicted policy vector p. That is, AlphaGo
Zero tries to minimize a loss,

10) = (z —v)> — 7" logp + c||9]|, (1)

where third term ¢|0||? is a regularizer to avoid overfitting,
with ¢ the weight of the regularizer and 6 the parameters of
the neural network.

AlphaGo Zero’s training is the normal policy iteration
of reinforcement learning: it computes ) values and learns
policies based on these () values. It uses a neural network to
simulate the statistics of (s, a). Please refer to (Silver et al.
2016) for details.

AlphaGo Zero for Othello and Dawson’s chess

We based our implementation of AlphaGo Zero on publicly-
available code (Nair 2017). Before applying it to notakto,



Othello win rate Dawson win rate

Rival as Black as White as first as second
Random 100% 100% 99% T5%
Greedy 100% 100% — —
Itself 2% 98% 100% 0%

Table 2: AlphaGo Zero’s performance on 6 x 6 Othello and
3 x 9 Dawson’s chess, as the first and second player, when
played against a random player, a greedy player (that plays
randomly but avoids immediately losing moves), and itself.
An optimal player would always win Othello as white (sec-
ond), and always win Dawson’s chess as the first player.

we first tested it on two games which are better understood
to verify that our implementation was working correctly. We
first trained a 6 x 6 Othello game, which is strongly solved
(the white player can always force a win) (Feinstein 2004).
We found that our trained model almost always forces a win
(as second player) when it plays against a random player
(100%), a greedy player (100%), and itself (98%), as shown
in Table 2.

To test on a game more similar to notakto, we imple-
mented Dawson’s Chess (Conway 2001; Dawson 1934),
which is a misére game played on a 3 x n chessboard with
pawns of opposite colors on the first and third row. White
moves first and if a capture is possible, then it must be per-
formed. The last player to move loses. On a 3 x 9 board,
it is known that the first player can force a win by moving
its center piece on the first move, and making their second
move not adjacent to the opponent’s first move. We trained
our implementation of AlphaGo Zero on a board of this size
a Dirichlet o of 1 and a cpy,c¢ Of 6. The loss stopped decreas-
ing at about 50 iterations each with 100 simulations. As with
Othello, Table 2 indicates that AlphaGo Zero has learned a
near-optimal strategy, suggesting that our implementation is
working correctly.

AlphaGo Zero for notakto

We expected AlphaGo Zero to be competitive in playing no-
takto given its prowess in much more complicated games
like Chess and Go, and our results for Othello and Dawson’s
Chess above. Surprisingly, we found that even for our mod-
est board sizes, it did not perform much better than random
play.

Our hypothesis is that this is due to a unique property
of notakto. For most games, random play repeated enough
times can simulate all cases (states) of a game. However, in
notakto’s case, there are certain very important states that
prevent the game from ending early, and it is important that
these states be sampled frequently since they normally arise
in competent play. We call these key states. In Figure 3, for
example, random sampling would place pieces at positions
1,2,3,4, or 5 with equal probability, but only position 4
makes sense; the other positions would immediately end the
game, which means that play involving the piece at 4 is not
sampled enough times. As a result, an optimal model is not

Figure 2: An example showing a case where only one path
through the game tree results in a win, preventing AlphaGo
Zero from learning a reasonable policy. See text for details.

easily learned, because the game tends to end prematurely.

In more detail, say we have a Markov decision process to
find solutions that can maximize the reward (—1, or 1), as
Figure 2 shows. There are many branches starting from the
root, but only one path (colored by red) is optimal. During
search, we use > N (s,b)/N(s,a) to determine the search-
ing direction. Obviously, it will take a long time for AlphaGo
Zero to begin to search the optimal route (root — a — b —
leaf). This is not a big issue since we can adjust other pa-
rameters in AlphaGo Zero like ¢, Dirichlet o, and 7 to
encourage the exploration. A flaw of the algorithm here is
that AlphaGo Zero trains a neural network to simulate the
statistics of explorations (N (s, b), N(s,a)) to get the pol-
icy 7(s,a), and the searching probability is proportional to
its exponentiated visit count (7, o< N(s,a)'/7). In other
words, although most of the exploration statistics should not
be part of policy, the neural network still tries to simulate
them, so AlphaGo Zero just uses a neural network to simu-
late explorations rather than learn from them. This issue has
also been pointed out in more detail in (Selsam 2018).

Key states sampling for notakto

We tried to address this sampling issue by applying a smart
way of exploration in the specific context of notakto, and in
particular by biasing the sampling towards the “key states.”
Key states are those crucial states that determine a win or
loss of a game. The core idea of key state sampling (see
Algorithm 1) is to avoid “bad” samples that could end the
game early. From the viewpoint of machine learning, key
state sampling re-balances the training data, effectively giv-
ing these crucial samples a higher weight — e.g., samples
that involve Position 4 in the example of Figure 3. We still
adopt random sampling during training, but deliberately pre-
vent some states (like Positions 1, 2, 3, 5) from being taken
into the calculation of @ values (Q(s, a)).

Since notakto boards are much smaller than Go, we used
a neural network with 4 convolutional layers (kernel size 3),
each with 512 nodes, and three full connected layers (with
number outputs for 1024, 512, and the size of the board
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Figure 3: Illustration of key states sampling; see text.
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plus one (to indicate no available moves), respectively). The
learning rate was set to 0.001. We use exactly the same net-
work architecture for our tests of both the original AlphaGo
Zero, and AlphaGo Zero with key state sampling.

Sampling initialization N (s, a);
while not converge do
Get all valid candidate states given current state;
Extract key states (remove states that result in loss);
Update visit count N (s, a) by key states;
Update mean action-value Q(s, a) ;
end
Algorithm 1: Key state sampling

Testing for convergence AlphaGo Zero has two phases.
The first phase is sampling (Q(s, a), N (s, q)), and the sec-
ond phase trains a neural network to simulate the statistics
of sampled records. To make our model converge to the opti-
mal point, we need to make sure the samples we extract are
representative enough, and the loss of the neural networks
is small enough. For the first phase, if we find that Q(s, a)
stops changing (for small boards) or changes very slowly
(for large boards), then we know that the first phase (sam-
pling) converges. For the second phase, we can monitor the
loss curve for both policy vectors as well as the outcome
(our model is fundamentally a neural network). Apart from
the above method, for notakto, we can also take advantage
of its unique property to decide whether we should end the
training. For example, for a particular board of size n, if our
model converges, the winning rate should be close to 50%
when our model plays against the previous best model (since
each player takes the first turn in half the rounds). Thus, a
winning percentage of self-playing close to 50% is also an
indicator of converging. In this paper, we check the winning
rate (current best model versus previous best model) for an
indication of convergence.

Key state sampling for small boards (n < 6) We com-
pared the performance of AlphaGo Zero with our key state
sampling to the original AlphaGo Zero implementation,
when playing against three rivals: themselves (case #1), a
greedy player that plays randomly but avoids placing a piece
that will complete a row, column, or diagonal, unless there
is no choice (case #2), and each other (case #3). We trained

Ours /AlphaGo Zero
n Iterations Rival First Second
n=3 3/3 Itself 100% / 100% 0% / 0%
Greedy 100% / 100% 100% / 100%
AlphaGo Zero 100% /100% 0% / 0%
n=4 83/102 Itself 0% /2% 100% / 98%
Greedy 100% / 100% 100% / 100%
AlphaGo Zero 6% /0% 100% / 94%
n=25 58/72 Itself 78% 158%  22% [ 42%
Greedy 97%193%  710% / 68%
AlphaGo Zero 90%/57%  43% / 10%
n=6 33/33 Itself 67% /50%  33%/50%
Greedy 85% 1 719%  19% / 69%
AlphaGo Zero 66% /54%  46% / 34%

Table 3: Comparison of the performance of our model (be-
fore the slash) and AlphaGo Zero (after the slash) on notakto
boards of size n = 3,4, 5, 6, as first and second player, and
against three different opponents. An optimal player would
win if playing first for n = 3,5, 6, and would win if play-
ing second for n = 4. Iterations is the number of training
iterations for our model and AlphaGo Zero, respectively.

on a machine with one Tesla V100-SXM2-16GB GPU. For
each board size, we trained our models until they converged
or made reasonable predictions. The total number of itera-
tions for training is shown in the second column of Table 3.
For each case, we test its corresponding models 100 times.

For case #1, as Table 3 shows, both our model and the
original AlphaGo Zero model learn the optimal or close-to-
optimal policy for n = 3,4, although our model is a little
better. For n = 5, 6, the first player appears to have an ad-
vantage, although it appears an optimal strategy has not been
learned. Nevertheless, we find that no matter what n is, the
tendency is clear and our model always beats the raw Al-
phaGo Zero model. One exception is for the AlphaGo Zero
model for a 6 x 6 board, where there is no difference be-
tween taking the first move or letting the adversary take the
first move, at least for this case.

For case #2, both our model and the raw AlphaGo Zero
model achieve better performance than the greedy player
even when they have the disadvantage of taking the first or
second move, and our model outperforms the original Al-
phaGo Zero.

For case #3, as Table 3 shows, our model achieves better
performance than the AlphaGo Zero model. We can con-
clude that our model based on key state sampling is more
efficient, requiring fewer iterations to achieve a higher win-
ning rate.

Key-state sampling for large boards (n > 6) For a large
board, we evaluate our sampling by having it play against
itself. We use the same Tesla V100 GPU as above. For each
board size, we train our model for about 20 iterations, with
each iteration containing 100 episodes that are generated by
key state sampling. Note that for each episode, we sample
all the states (the initial state and all the immediate states)



Our model’s win rate

n Rival as first player as second player
n=7 Itself 59% 41%
n=28 Itself 30% 70%
n=9 Itself 60% 40%
n =10 Itself 52.5% 47.5%
n =11 Itself 57.5% 42.5%
n=12 TItself 80% 20%

Table 4: Our model’s performance onn = 7,8,9,10,11,12
Notakto, as the first and second player, when it plays against
itself.

Dynamic threshold versus fixed threshold

n as first player as second player
n="17 55% 1 55% 45% | 45%
n= 60% / 45% 55% 1 40%
n=9 25% / 50% 50% / 75%
n=10  60% /45% 55% / 40%
n=11  70% /65% 35% / 30%
n=12  60% /60% 40% / 40%

Table 5: Updating with dynamic threshold (before the “/”)
versus fixed threshold (after the “/”).

all along to the end state.

We let our model play against itself 100 (n=7, 8) or 40
(n=9, 10, 11, 12) times. Ideally, the winning rate for self-
play should be close to 100% for the first or second player,
which would indicate that the model has learn an optimal
strategy. As shown in Table 4, the winning rates of moving
first for n = 7 and second for n = 8 are 59% and 70%, re-
spectively. This suggests that the first player for n = 7 and
the second player for n = 8 have an advantage. Similarly,
for (n = 9,10,11,12), the first player has an advantage.
However, according to Theorem 1, for (n = 12), the sec-
ond player should have an advantage. We conjecture that our
model for (n = 12) is still far away from being optimized.

AlphaGo Zero with Dynamic threshold for
updating

In AlphaGo Zero (Silver et al. 2017b), a new model will be
updated if it can win against the previous optimal model by
a margin of at least 0.55. In particular, after each iteration,
the newly acquired model p; will play against the last best
model ps. Say nq, no are the number of games won/lost by
p1 as the first player, and ng3, ny are the number of games
won/lost by po as the first player. Then AlphaGo Zero will
decide whether to update the best model if,

ny + ng
ny + ne +ng+ ny

> 0.55. 2)

During training, we found that Equation (2) often results
in “bumpy” loss curves, as the red curves in Figure 4 show.

‘We modified this threshold to reflect the winning rate of r in
the training dataset,

( - >7‘> v ( ns >1—7~>. 3)
n1 + N2 n3 + Ny
This new dynamic threshold gives smoother loss curve (as
Figure 4 shows) as well as better performance (as Table 5
shows).

Note that we did not discuss how the meta-parameters in
AlphaGoZero (such as cpyc¢) impact the performance be-

cause we believe that these parameters are independent of
the key states sampling and the dynamic threshold.

Discussion and Conclusion

In this paper we present preliminary work that makes sev-
eral steps towards a better understanding of a combinatorial
game that has proven difficult to analyze, notakto, but also
suggests that additional work is needed. First, we provide a
formal proof that the second player can always force a win
when playing on a 4k x 4k board with k € Z™, and we give
a strategy for optimal play. We also determine, for the first
time, that the first player wins the 6 x 6 board. These both
formalize and extend the results found in (Chow 2010). Un-
fortunately, these analytic and search techniques could not
be applied to larger boards.

So we instead tried an alternative approach: trying to train
an Al to play notakto well, and then using the learned strat-
egy as a tool to prove properties of the larger boards. Surpris-
ingly, we tested a standard AlphaGo Zero implementation
and found that it does not perform very well, even though
we did find that it worked well for Othello (in normal play)
and Dawson’s chess (in misére play), two games that seem
intuitively similar.

We hypothesized that this is due, at least in part, to the fact
that AlphaGo Zero trains the policy neural network (7 (s, t))
from statistics of explorations and does not learn from the
exploration itself. Since the exploration statistics reflect only
the exploration history rather than the optimal policy that
should have been taken, many exploration statistics should
have been removed. We proposed and tested a technique we
call “key state sampling” as a way of addressing this weak-
ness of AlphaGo Zero in notakto. The idea is to bias sam-
pling towards more important states, which re-balances the
distribution of different state samples and forces key states
to be sampled more frequently. For the neural network we
used, any violations or disagreement with the key states’
statistics result in a larger loss (as key state samples have
larger weights), which in turn forces the neural network to
focus on key state samples to reduce the training loss.

Our experimental results show that key state sampling im-
proves the performance of AlphaGo Zero on notakto, play-
ing better in fewer training iterations than the original al-
gorithm. However, our results show that neither the original
AlphaGo Zero nor our version has learned an optimal strat-
egy for boards of n = 5 and greater, suggesting that no-
takto is significantly more challenging to learn than Othello,
and perhaps beyond the compute capabilities of even our
extremely high-end Tesla V100 GPU. However, our trained
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Figure 4: Fixed threshold versus dynamic threshold. “fixed_pi” or “dynamic_pi” is the loss that comes from the prediction for
next state while “fixed_v” or “dynamic_v” is the loss that comes from the prediction of “who’s winning”. Note that we only list
the cases of n > 6 to emphasize the generalization for large boards.

model wins significantly more often as the first player than
the second player when n = 6, and significantly more often
as the second player than the first player when n = 8, both of
which agree with the expected winner that we have derived
analytically or through brute force search. The fact that our
model wins significantly more often as the first player with
n = 7 leads us to conjecture that there exists an optimal
strategy for the first player to always win, but proving this
will require future work.
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