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Abstract
Regret minimization has proved to be a versatile tool for se-1

quential decision making and extensive-form games. In large2

two-player zero-sum imperfect-information games, modern3

extensions of counterfactual regret minimization (CFR) are4

currently the practical state of the art for computing a Nash5

equilibrium. Most regret-minimization algorithms for sequen-6

tial decision making, including CFR, require (i) an exact model7

of the player’s decision nodes, observation nodes, and how8

they are linked, and (ii) full knowledge, at all times t, about9

the payoffs—even in parts of the decision space that are not10

encountered at time t. Recently, there has been growing in-11

terest towards relaxing some of those restrictions and mak-12

ing regret minimization applicable to settings for which rein-13

forcement learning methods have traditionally been used—for14

example, those in which only black-box access to the envi-15

ronment is available. We give the first, to our knowledge,16

regret-minimization algorithm that guarantees sublinear regret17

with high probability even when requirement (i)—and thus18

also (ii)—is dropped. We formalize an online learning setting19

in which the strategy space is not known to the agent and gets20

revealed incrementally whenever the agent encounters new21

decision points. We give an efficient algorithm that achieves22

O(T 3/4) regret with high probability for that setting, even23

when the agent faces an adversarial environment. Our experi-24

ments show it significantly outperforms the prior algorithms25

for the problem, which do not have such guarantees. It can26

be used in any application for which regret minimization is27

useful: approximating Nash equilibrium or quantal response28

equilibrium, approximating coarse correlated equilibrium in29

multi-player games, learning a best response, learning safe30

opponent exploitation, and online play against an unknown31

opponent/environment.32

1 Introduction33

A sequential decision making (SDM) problem formalizes in34

a tree-form structure the interaction of an agent with an un-35

known and potentially adversarial environment. The agent’s36

tree includes decision nodes, observation nodes, and termi-37

nal nodes. SDM captures the problem that a player faces38

in an extensive-form game. SDM also captures MDPs and39

POMDPs where the agent conditions on observed history,40

but SDM problems are more general because the Markovian41

assumption is not necessarily made.42
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In SDM, the environment may react adversarially to what 43

the agent does. This is important to take into account, for 44

example, in game-theoretic settings and multiagent reinforce- 45

ment learning (MARL) because the other agents’ learning 46

makes the environment nonstationary for the agent (Sand- 47

holm and Crites 1996; Matignon, Laurent, and Le Fort-Piat 48

2012). This is in contrast to the standard assumption in single- 49

agent reinforcement learning where the environment is oblivi- 50

ous to the agent instead of adversarial. Hence, learning strong 51

policies (aka. strategies) in SDM problems is especially chal- 52

lenging, and the agent must be careful about exploration 53

because exploration actions can change the environment. 54

Online, regret minimization methods have been success- 55

fully used in SDM. In particular, the counterfactual regret 56

minimization (CFR) framework decomposes the overall re- 57

gret of an agent to local regrets at individual decision nodes 58

(aka. information sets in game theory) (Zinkevich et al. 2007). 59

That enables significantly larger SDMs to be tackled. Many 60

enhancements have been developed on top of the basic CFR 61

framework (Lanctot et al. 2009; Tammelin 2014; Brown 62

and Sandholm 2015; Brown, Kroer, and Sandholm 2017; 63

Brown and Sandholm 2017a, 2019a; Farina, Kroer, and Sand- 64

holm 2019), and have led to major milestones in imper- 65

fect-information games such as poker (Bowling et al. 2015; 66

Moravčík et al. 2017; Brown and Sandholm 2017b, 2019b). 67

Many of those methods guarantee low regret even against an 68

adversarial environment—which, in turn, enables the compu- 69

tation of game-theoretic solutions such as Nash equilibrium, 70

coarse correlated equilibrium (Moulin and Vial 1978; Celli 71

et al. 2020), best responses, etc. 72

However, those methods usually come with two drawbacks: 73

(i) they require an explicit upfront model of the agent’s deci- 74

sion space, and (ii) depending on the online learning model 75

used, they require full feedback, at all times t, about the 76

payoffs assigned by the environment—even in parts of the de- 77

cision space not encountered at time t. There has been work 78

towards an online learning setting, called the bandit optimiza- 79

tion setting, that drops (ii) (Lattimore and Szepesvári 2020). 80

Most MARL algorithms apply for the unknown game setting 81

and drop both (i) and (ii), often at the cost of invalidating any 82

regret guarantees. In this paper, we give, to our knowledge, 83

the first regret-minimization algorithm that guarantees sublin- 84

ear (specifically O(T 3/4
√

log 1/p) with probability 1 − p) 85

regret even when requirements (i) and (ii) are both dropped. 86



Conceptually, our algorithm has elements of both online87

bandit optimization and MARL. On the one hand, our re-88

gret guarantees hold with high probability no matter how the89

environment picks its actions or assigns utilities to terminal90

nodes at all iterations t. In fact, our algorithm is a regret min-91

imizer in the proper online-learning sense: it does not need92

to know—and makes no assumptions about—the underlying93

policy of the environment or the utility at the terminal states.94

Furthermore, those quantities are not assumed to be time95

independent and they can even be selected adversarially by96

the environment at each iteration. This is contrast with many97

self-play methods, that require control over the opponent in98

order to retain guarantees. In particular, because we assume99

no control over the adversarial environment, every interaction100

with the environment can lead it to react and change behavior101

in the next iteration. So, it is impossible to “freeze” the policy102

of the environment to perform off-policy exploration like103

many self-play methods require. Because of its strong online104

guarantees, our algorithm can be used for all the applications105

in which regret minimization provides benefits—for example,106

to converge to Nash equilibrium in a two-player zero-sum107

extensive-form game, to learn a best response against static108

opponents, to converge to coarse correlated equilibrium in a109

multiagent setting (Moulin and Vial 1978; Celli et al. 2020),110

to converge to a quantal-response equilibrium (Ling, Fang,111

and Kolter 2018; Farina, Kroer, and Sandholm 2019), to com-112

pute safe exploitative strategies (Farina, Kroer, and Sandholm113

2019; Ponsen, De Jong, and Lanctot 2011), or to play online114

against an unknown opponent/environment.115

On the other hand, ours is not an algorithm for the on-116

line bandit optimization problem. In bandit optimization, the117

agent does not interact with the environment: at all times t,118

the agent outputs a policy πt for the whole decision space,119

and receives a single real number ut, representing the gain120

incurred by πt, as feedback. Instead, our algorithm operates121

within a slightly different online learning model that we in-122

troduce, which we call the interactive bandit model. In it,123

the decision maker gets to observe the signals (actions) se-124

lected by the environment on the path from the root of the125

decision problem to the agent’s terminal state, in additions to126

ut. Hence, we operate within a more specific online learning127

model than bandit optimization (which applies to, for exam-128

ple, picking a point on a sphere also, as opposed to just SDM),129

and rather one that is natural to SDM. This comes with a sig-130

nificant advantage. While, to our knowledge, all algorithms131

for the bandit optimization problem require a priori knowl-132

edge of the full structure of the sequential decision problem,1133

our algorithm for the interactive bandits model is model free.134

Here, the structure of the sequential decision process is at135

first unknown and has to be discovered by exploring as part136

of the decision-making process. Decision and observation137

nodes are revealed only at the time the agent encounters them138

for the first time.139

1This is needed, for example, to construct a self-concordant
barrier function (Abernethy, Hazan, and Rakhlin 2008) or a global
regularizer for the strategy space (Abernethy and Rakhlin 2009;
Farina, Schmucker, and Sandholm 2020), to compute a barycentric
spanner (Awerbuch and Kleinberg 2004; Bartlett et al. 2008), or to
set up a kernel function (Bubeck, Lee, and Eldan 2017).

Closely Related Research 140

In the rest of this section we discuss how our algorithm relates 141

to other attempts to connect online learning guarantees with 142

model-free MARL. A comparison between our algorithm 143

and other settings in online learning is deferred to Section 3, 144

where we formally introduce our interactive bandit model. 145

The greatest inspiration for our algorithm is the online 146

variant of Monte Carlo CFR (online MCCFR) algorithm 147

proposed in passing by (Lanctot et al. 2009). Unlike the 148

traditional “self-play” MCCFR, online MCCFR does not as- 149

sume that the algorithm have control over the environment. 150

The authors note that in theory online MCCFR could be 151

used to play games in a model-free fashion, provided that 152

a lower bound on the reach probability of every terminal 153

state can be enforced. That lower bound, say η, is necessary 154

for them to invoke their main theorem, which guarantees 155

O(η−1T 1/2
√

1/p) regret with probability 1− p. They sug- 156

gest perhaps using some form of ε-greedy exploration at each 157

decision node to enforce the lower bound, but no guarantee 158

is provided and the authors then move away from this side 159

note to focus on the self-play case. We show that their pro- 160

posed approach encounters significant hurdles. First, using 161

exploration at each decision node results in a lower bound 162

on the reach of every terminal state on the order of η = εd, 163

where d is the depth of the decision process, thus making 164

the regret bound not polynomial in the size of the decision 165

process itself, but rather exponential. Second, the paper did 166

not provide theoretical guarantees for the online case. In 167

particular, the theory does not take into account the degre- 168

dation effect caused by the exploration itself, which scales 169

roughly as ηT . So, on the one hand, a large η is needed to 170

keep the term η−1 in their regret bound under control, but 171

at the same time a large η results in a ηT term being added 172

to the regret. These hurdles show that it is unlikely that their 173

approach can lead to O(T 1/2
√

1/p) regret with high proba- 174

bility 1 − p as they hypothesized. We address those issues 175

by using a different type of exploration and being careful 176

about bounding the degradation terms in the regret incurred 177

due to the exploration. Because of the latter, our algorithm in- 178

curs O(T 3/4
√

log(1/p)) regret with high probability against 179

adversarial opponents. Because the exponent is less than 1, 180

ours is truly a regret minimization algorithm for SDMs with 181

unknown structure, and to our knowledge, the first. At the 182

same time, our exponent is worse than the originally hypoth- 183

esized exponent 1/2. It is unknown whether the latter can be 184

achieved. Finally, our dependence on p is better than in their 185

hypothesized regret bound. 186

A recent paper by Srinivasan et al. (2018) related policy 187

gradient algorithms to CFR (and, to a much lesser degree, 188

MCCFR). Despite their experiments demonstrating empirical 189

convergence rates for sampled versions of their algorithms, 190

formal guarantees are only obtained for tabularized policy 191

iteration in self-play, and use policy representations that re- 192

quire costly `2 projections back into the policy space. In 193

contrast, our regret guarantees hold (i) in any SDM setting 194

(not just two-player zero-sum extensive-form games), (ii) in 195

high probability, (iii) with sampling, and (iv) when playing 196

against any environment, even an adversarial one, without 197



requiring complex projections.198

A very recent paper (Zhou, Li, and Zhu 2020) on two-199

player zero-sum games proposes combining full-information200

regret minimization with posterior sampling (Strens 2000)201

to estimate the utility function of the player and transition202

model of chance, both of which they assume to be time inde-203

pendent unlike our setting. They show in-expectation bounds204

under the assumption that the agent’s strategy space is known205

ex ante. We operate in a significantly more general setting206

where the observations and utilities are decided by the en-207

vironment and can change—even adversarially—between208

iterations. Like theirs, our algorithm converges to Nash equi-209

librium in two-player zero-sum games when used in self play.210

However, unlike theirs, our algorithm is a regret minimizer211

that can be used for other purposes also, such as finding212

a coarse correlated equilibrium in multiplayer general-sum213

games, a quantal-response equilibrium, or safe exploitative214

strategies. In the latter two applications, the payoff function,215

in effect, changes as the agent changes its strategy. Our regret216

guarantees hold in high probability and we do not assume ex217

ante knowledge of the agent’s strategy space.218

A different line of work has combined fictitious play219

(Brown 1951) with deep learning for function approxima-220

tion (Heinrich, Lanctot, and Silver 2015; Heinrich and Silver221

2016). Those methods do not give regret guarantees. Finally,222

other work has studied how to combine the guarantees of on-223

line learning with MDPs. Kash, Sullins, and Hofmann (2020)224

combine the idea of breaking up and minimizing regret lo-225

cally at each decision point, proper of CFR, with Q-learning,226

obtaining an algorithm with certain in-the-limit guarantees227

for MDPs. Even-Dar, Kakade, and Mansour (2009) study228

online optimization (in the full-feedback setting, as opposed229

to bandit) in general MDPs where the reward function and230

the structure of the MDP is known. Neu et al. (2010) study231

online bandit optimization in MDPs in the oblivious setting,232

achieving O(T 2/3) regret with high probability, again assum-233

ing that the MDP’s structure is known and certain conditions234

are met. Zimin and Neu (2013) give bandit guarantees for235

episodic MDPs with a fixed known transition function.236

2 Our Model for (Unknown) Sequential237

Decision Making and Games238

In this section, we introduce the notation for SDM problems239

that we will be using the rest of the paper.240

A sequential decision making (SDM) problem is structured241

as a tree made of three types of nodes: (i) decision nodes242

j, in which the agent acts by selecting an action from the243

finite set Aj (different decision nodes can admit different244

sets of allowed actions); (ii) observation points k, where the245

agent observes one out of set Sk of finitely many possible246

signal from the environment (different observation points can247

admit different sets of possible signals); and (iii) terminal248

nodes, corresponding to the end of the decision process. We249

denote the set of decision nodes in the sequential decision250

making problem as J , the set of observation points as K,251

and the set of terminal nodes as Z. Furthermore, we let ρ252

denote the dynamics of the game: selecting action a ∈ Aj253

at decision node j ∈ J makes the process transition to the254

next state ρ(j, a) ∈ J ∪K∪Z, while the process transitions 255

to ρ(k, s) ∈ J ∪ K ∪ Z whenever the agent observes signal 256

s ∈ Sk at observation point k ∈ K. 257

Our algorithm operates in the difficult setting where the 258

structure of the SDM problem is at first unknown and can be 259

discovered only through exploration. Decisions and observa- 260

tion nodes are revealed only at the time the agent encounters 261

them for the first time. As soon as a decision node j is re- 262

vealed for the first time, its corresponding set of actions Aj 263

is revealed with it. 264

Sequences In line with the game theory literature, we call 265

a sequence a decision node-action pair; each sequence (j, a) 266

uniquely identifies a path from the root of the decision pro- 267

cess down to action a at decision node j, included. Formally, 268

we define the set of sequences as Σ := {(j, a) : j ∈ J , a ∈ 269

Aj} ∪ {∅}, where the special element ∅ is called the empty 270

sequence. Given a decision node j ∈ J , its parent sequence, 271

denoted pj , is the last sequence (that is, decision node-action 272

pair) encountered on the path from the root of the decision 273

process down to j. If the agent does not act before j (that is, 274

only observation points are encountered on the path from the 275

root to j), we let pj = ∅. 276

Given a terminal node z ∈ Z and a sequence (j, a) ∈ Σ, 277

we write (j, a) z to mean that the path from the root of the 278

decision process to z passes through action a at decision node 279

j. Similarly, given a terminal node z ∈ Z and an observation 280

node-signal pair (k, s) (s ∈ Sk), we write (k, s)  z to 281

indicate that the path from the root of the decision process 282

to z passes through signal s at observation node k. Finally, 283

we let σ(z) be the last sequence (decision node-action pair) 284

on the path from the root of the decision process to terminal 285

node z ∈ Z. 286

Strategies Conceptually, a strategy for an agent in a se- 287

quential decision process specifies a distribution xj ∈ ∆|Aj | 288

over the set of actions Aj at each decision node j ∈ J . We 289

represent a strategy using the sequence-form representation, 290

that is, as a vector q ∈ R|Σ|≥0 whose entries are indexed by 291

Σ. The entry q[j, a] contains the product of the probabili- 292

ties of all actions at all decision nodes on the path from 293

the root of the process down to and including action a at 294

decision node j ∈ J . A vector q ∈ R|Σ|≥0 is a valid sequence- 295

form strategy if and only if it satisfies the constraints (i) 296∑
a∈Aj

q[j, a] = q[pj ] for all j ∈ J ; and (ii) x[∅] = 1 (Ro- 297

manovskii 1962; Koller, Megiddo, and von Stengel 1994; 298

von Stengel 1996). We let Q denote the set of valid sequence- 299

form strategies. Finally, we let Π ⊆ Q denote the subset of 300

sequence-form strategies whose entries are only 0 or 1; a 301

strategy π ∈ Π is called a pure sequence-form strategy, as it 302

assigns probability 1 to exactly one action at each decision 303

node. 304

3 Online Learning and Our Interactive 305

Bandit Model 306

In online learning, an agent interacts with its environment 307

in this order: (i) The environment chooses a (secret) gradi- 308

ent vector `t of bounded norm; (ii) The agent picks a pure 309

strategy πt ∈ Π. The environment evaluates the reward310



(gain) of the agent as (`t)>πt ∈ R; (iii) The agent observes311

some feedback about her reward. The feedback is used by312

the agent to learn to output good strategies over time. The313

learning is online in the sense that the strategy πt at time t314

is output before any feedback for it (or future strategies) is315

available. A standard quality metric for evaluating an agent316

in this setting is the regret that she accumulates over time:317

RT (π̂) :=
∑T

t=1(`t)>π̂−∑T
t=1(`t)>πt. This measures the318

difference between the total reward accumulated up to time319

T , compared to the reward that would have been accumulated320

had the oracle output the fixed strategy π̂ ∈ Π at all times. A321

“good” agent, that is, a regret minimizer, is one whose regret322

grows sublinearly: RT (π̂) = o(T ) for all π̂ ∈ Π.323

Online learning models vary based on the type and extent324

of feedback that is made available to the agent. We will325

focus on two existing models—namely, the full-feedback2326

setting and the bandit linear optimization setting. Then we327

will introduce a third model that is especially natural for328

SDM.329

Full-Feedback2 Setting Here, the environment always re-330

veals the full gradient vector `t to the agent (after the strat-331

egy has been output). This is the same setting that was pro-332

posed in the landmark paper by Zinkevich (2003) and is333

the most well-studied online optimization setting. Efficient334

agents that guarantee O(T 1/2) regret with high probability335

in the full-feedback setting are known well beyond SDM and336

extensive-form games (e.g, (Shalev-Shwartz 2012; Hazan337

2016)). In fact, given any convex and compact set X , it is338

possible to construct an agent that outputs decisions xt ∈ X339

that achieves O(T 1/2) regret in the worst case, even when340

the gradient vectors `t are chosen adversarially by the en-341

vironment after the decision xt has been revealed. In the342

specific context of SDM and extensive-form games, the most343

widely-used oracle in the full-feedback setting is based on344

the counterfactual regret (CFR) framework (Zinkevich et al.345

2007). The idea is to decompose the task of computing a strat-346

egy for the whole decision process into smaller subproblems347

at each decision point. The local strategies are then computed348

via |J | independent full-information regret minimizers, one349

per decision node, that at each t observe a specific feedback350

that guarantees low global regret across the decision process.351

CFR guaranteesO(T 1/2) regret with high probability against352

any strategy π ∈ Π.353

Bandit Linear Optimization Here, the only feedback354

that the environment reveals to the agent is the utility 355

(`t)>πt at each time t (Kleinberg 2004; Flaxman, Kalai, 356

and McMahan 2005). Despite this extremely limited feed- 357

back, Õ(T 1/2) regret can still be guaranteed with high prob- 358

ability in some domains (including simplexes (Auer et al. 359

2002) and spheres (Abernethy and Rakhlin 2009)), although, 360

to our knowledge, a polynomial algorithm that guarantees 361

Õ(T 1/2) regret with high probability for any convex and 362

2In online learning, “full-feedback” is typically called “full-
information”. We use “full-feedback” to avoid confusion with full-
information games, that is, games where the full state is available to
all players at all times.

compact domain has not been discovered yet.3 Guarantee- 363

ing Õ(T 1/2) in expectation is possible for any domain of 364

decisions (Abernethy, Hazan, and Rakhlin 2008), but unfor- 365

tunately in-expectation low regret is not strong enough a 366

guarantee to enable, for instance, convergence to Nash or 367

correlated equilibrium as described above. In the specific 368

case of sequential decision processes, (Farina, Schmucker, 369

and Sandholm 2020) proposed a bandit regret minimizer 370

that achieves O(T 1/2) regret in expectation compared to 371

any policy and linear-time iterations. Upgrading to in-high- 372

probability O(T 1/2) regret guarantees while retaining linear- 373

time iterations remains an open problem. 374

Interactive Bandit We propose interactive bandits as a 375

natural online learning model to capture the essence of se- 376

quential decision processes. Here, an agent interacts with 377

the environment until a terminal state is reached, at which 378

point the payoff (a real number) is revealed to the agent. The 379

agent observes the environment’s action (signal) whenever 380

the interaction moves to an observation point. We formalize 381

this as an online learning model as follows. At all times t, 382

before the agent acts, the environment privately selects (i) a 383

choice of payoff ut : Z → R for each terminal state z ∈ Z, 384

and (ii) a secret choice of signals stk ∈ Sk for all observa- 385

tion points k ∈ K. These choices are hidden, and only the 386

signals relevant to the observation points reached during the 387

interaction will be revealed. Similarly, only the payoff ut(zt) 388

relative to the terminal state zt reached in the interaction will 389

be revealed. In other words, the feedback that is revealed 390

to the agent after the interaction is the terminal state zt that 391

is reached (which directly captures all signals revealed by 392

the environment, as they are the signals encountered on the 393

path from the root of the decision process to zt) and its corre- 394

sponding payoff ut(zt), which can be equivalently expressed 395

as ut(zt) = (`t)>πt, where the gradient vector `t is defined 396

as the (unique) vector such that for all strategies x ∈ Q, 397

(`t)>x =
∑
z∈Z

ut(z)

 ∏
(k,s) z

1[stk = s]

x[σ(z)]. (1)

We assume that the environment is adversarial, in the sense 398

that the environment’s choices of payoffs ut and signals stk 399

at time t can depend on the previous actions of the agent. 400

Our term “interactive bandits” comes from the fact that an 401

algorithm for this setting can be thought of as interacting with 402

the environment until a terminal state of the decision process 403

is reached and a corresponding payoff is revealed. In other 404

words, while for modeling purposes it is convenient to think 405

about online learning algorithms as outputting strategies π 406

for the whole strategy space, one can think of an interactive 407

bandits algorithm as one that instead only outputs one action408

3Several algorithms are able to guarantee one or two out of the
three requirements (i) applicable to any convex domain, (ii) polyno-
mial time per iteration, (iii) Õ(T 1/2) regret with high probability.
For example, Bartlett et al. (2008) achieve (i) and (iii) by extending
an earlier paper by Dani, Kakade, and Hayes (2008), and (György
et al. 2007) achieves (ii) for the set of flows with suboptimal regret
guarantees.



at a time as the interaction moves throughout the decision409

process.410

Since the interactive bandit model requires that the gradient411

vector `t be expressible as in (1), it makes more assumptions412

on the gradient vector than either the bandit linear optimiza-413

tion model or the full-feedback model. In terms of feedback,414

it is an intermediate model: it receives a superset of the feed-415

back that the bandit linear optimization framework receives,416

but significantly less than the full-feedback model. So, the-417

oretically, one could always use an algorithm for the bandit418

linear optimization model to solve a problem in the interac-419

tive bandit model. However, as we show in this paper, one420

can design a regret-minimization algorithm for the interac-421

tive bandit model that achieves sublinearO(T 3/4) regret with422

high probability even in decision processes and extensive-423

form games whose decision space is at first unknown. To our424

knowledge, no algorithm guaranteeing sublinear regret when425

the decision space is at first unknown has been designed for426

bandit linear optimization.427

4 Algorithm for Unknown Sequential428

Decision Making Problems429

We now describe a regret minimizer for the interactive ban-430

dit model. At all time t, it goes through two phases: first,431

the rollout phase, and then the regret update phase. Dur-432

ing the rollout phase, the algorithm plays until a terminal433

state zt and its corresponding payoff ut are revealed. During434

the regret update phase, the algorithm rewinds through the435

decision nodes j encountered during that trajectory, and up-436

dates certain parameters at those decision nodes based on the437

newly-observed payoff ut.4 Like the CFR framework, our438

algorithm picks actions at each decision node j by means of439

a local full-information regret minimizer Rj for the action440

set Aj at that decision node.441

Rollout Phase: Playing the Game442

We describe two alternative algorithms for the rollout phase443

(namely the “upfont-flipping” and the “on-path-flipping” roll-444

out variants), which differ in the way the mix exploration445

and exploitation. Both variants are theoretically sound, and446

yield to the same sublinear in-high-probability regret bound447

(Section 5), even when different variants are used at different448

times t while playing against the adversarial opponent.449

We start from the “upfront-flipping” variant, which is ar-450

guably the conceptually simpler variant, although we find it451

to usually perform worse in practice.452

Upfront-Flipping Rollout Variant When the upfront-453

flipping rollout variant is used at time t, at the beginning454

of the rollout phase and before any action is played, a biased455

coin is tossed to decide the algorithm to use to play out the456

interaction:457

4While our algorithm shares many of the building blocks on
Monte Carlo Tree Search (MCTS)—incremental tree-building, back-
propagation, rollouts—it is not an anytime search algorithm, at least
not in the sense of traditional game-tree search like the one em-
ployed by the Online Outcome Sampling algorithm (Lisỳ, Lanctot,
and Bowling 2015).

• With probability βt, the EXPLORE routine is used. It 458

ignores the recommendations of the local regret minimiz- 459

ers at each decision node and instead plays according 460

to the exploration function ht : Σ → R>0 (more de- 461

tails are below). In particular, at every decision node 462

j encountered during the rollout, the agent picks ac- 463

tion a ∈ Aj at random according to the distribution 464

ht(j, a)/(
∑

a′∈Aj
ht(j, a′)). 465

• With probability 1 − βt, the EXPLOIT routine is used. 466

With this routine, at every decision node j encountered 467

during the rollout, the agent picks a decision by sampling 468

from the distribution xt
j ∈ ∆|Aj | recommended by the 469

regret minimizerRj . 470

In both cases, a regret minimizer Rj for decision node j is 471

created when j is first discovered. 472

Our upfront-flipping rollout strategy differs from the ε- 473

greedy strategy in that the coin is tossed for the entire trajec- 474

tory, not at each decision point. 475

On-Path-Flipping Rollout Variant In the on-path- 476

flipping rollout variant, there is no single coin toss to dis- 477

tinguish between exploration and exploitation, and the two 478

are interleaved throughout the rollout. Before any action is 479

picked, the two reach quantities rt, r̂t are both set to 1. Then, 480

the rollout phase begins, and eventually the agent will be 481

required to make a decision (pick an action) at some deci- 482

sion point j. Let xt
j ∈ ∆|Aj | be the distribution over actions 483

recommended by the regret minimizer Rj . In the on-path- 484

flipping rollout variant, the agent picks an action a ∈ Aj at j 485

with probability proportional to 486

(1− βt)rt · xtj [a] + βtr̂t · ht(j, a)∑
a′∈Aj

ht(j, a′)
.

Let a∗ be the chosen action; rt and r̂t are updated according 487

to the formulas rt ← rt ·xtj [a∗] and r̂t ← r̂t · ht(j,a∗)∑
a′∈Aj

h(j,a′) . 488

The agent keeps using this specific way of selecting actions 489

and updating the reach quantities r, r̂ for all decision points 490

encountered during the rollout. 491

The role of ht In both variants, the role of the exploration 492

function ht is to guide exploration of different parts of the de- 493

cision process.5 The optimal choice for ht is to have ht(j, a) 494

measure the number of terminal states in the subtree rooted at 495

(j, a). When this information is not available, a heuristic can 496

be used instead. If no sensible heuristic can be devised, the 497

uniform exploration strategy ht(j, a) = 1 for all (j, a) ∈ Σ 498

is always a valid fallback. In Theorem 1 below, we give guar- 499

antees about the regret cumulated by our algorithm that apply 500

to any ht : Σ→ R>0.501

Regret Update Phase: Propagating the Payoff up502

the Tree503

In the regret update phase, the revealed feedback (that is,504

the revealed utility ut(zt) and the terminal state zt that was505

5Despite the positive exploration term induced by ht, it is not
guaranteed that all decision points will be discovered as T → ∞
as the adversarial environment might prevent so. Nonetheless, our
algorithm guarantees sublinear regret with high probability.



reached in the rollout phase) is used to construct suitable local506

gradient vectors `tj for each of the local regret minimizers507

Rj on the path from the terminal state zt up to the root.508

Let (j1, a1), . . . , (jm, am) be the sequence of decision nodes509

and actions that were played, in order, that ultimately led to510

terminal state zt during the repetition of the game at time511

t. We start to construct local gradient vectors from decision512

node jm, where we set the three quantities513

γt := (1− βt) ·
m∏
i=1

xtji [ai] + βt ·
m∏
i=1

ht(ji, ai)∑
a′∈Aji

ht(ji, a′)
,

ûtjm :=
ut(zt)

γt
, `tjm := ûtjmeam

,

where we used the notation eam
∈ ∆Aj to denote the am-th514

canonical vector, that is the vector whose components are all515

0 except for the am-th entry, which is 1. Then, for all i =516

1, . . . ,m− 1, we recursively let ûtji := xtji [ai] · ûtji+1
, `tji :=517

ûtjieai
. Finally, for all i = 1, . . . ,m, the gradient vector518

`tji is revealed as feedback to the local full-feedback regret519

minimizerRji at decision point ji.520

Average Policy521

When regret minimizers are used to solve a convex-concave522

saddle point problem (such as a Nash equilibrium in a two-523

player zero-sum game), only the profile of average policies524

produced by the regret minimizers are guaranteed to converge525

to the saddle point. For this reason, it is crucial to be able to526

represent the average policy of an agent. Since we are assum-527

ing that the structure of the decision problem is only partially528

known, this operation requires more care in our setting. As529

we now show, it is possible to modify the algorithm so that530

the average policy can be extracted.531

In order to maintain the average policy, we maintain an532

additional vector x̄j at each discovered decision node j. Intu-533

itively, these vector will be populated with entries from the534

cumulative sum of all partial sequence-form strategies recom-535

mended so far by theRj’s. As soon as j is discovered for the536

first time (say, time t), we create its x̄j . If j’s parent sequence537

is the empty sequence (that is, j is one of the possible first538

decision nodes in the SDM process, i.e., j is preceded only539

by observation nodes), we simply set x̄j [a]t := t/|Aj | for540

all a ∈ Aj . Otherwise, let pj = (j′, a′) be the parent se-541

quence of j, and we set x̄j [a]t := x̄j′ [a
′]/|Aj | for all a ∈ Aj .542

Then, at all times t, after the feedback has been received but543

before the regret update phase has started, we introduce a544

new average policy update phase. In it, we iterate through all545

the decision nodes ji that have been discovered so far (that546

is, the union of all decision points discovered up to time t),547

in the order they have been discovered. For each of them,548

we update x̄ji according to the following rule. Let xji be549

the policy strategy returned by the local full-feedback regret550

minimizerRji . If ji’s parent sequence is the empty sequence,551

we simply set x̄t+1
ji

:= x̄t
ji

+ xji and rtji := xji . Otherwise,552

let pji = (j′, a′) be the parent sequence of j, and we set553

x̄t+1
ji

:= x̄t
ji

+ rtj′ [a
′] · xt

ji
, and rtji [a] := rtj′ [a

′] · xtji [a] for554

all a ∈ Aji .555

In order to play the average policy, it is enough to play ac- 556

tions proportionally to x̄t+1
j at all discovered decision nodes 557

j, and actions picked uniformly at random at undiscovered 558

decision nodes. 559

Observation 1. In all phases, the agent performs an amount 560

of operations at most linear in the number of actions |Aj | at 561

each decision point j discovered up to time t. So, the average 562

policy update phase requires work at most linear in the size 563

of the underlying SDM. 564

5 Guarantees on Regret 565

We now present regret bounds that hold at all times T for 566

our algorithm from Section 4. The bounds do not depend on 567

which rollout variant is chosen at each time t, and different 568

variants can be chosen freely at different times. 569

Theorem 1 provides a general bound that holds for any 570

choice of local regret minimizers Rj (j ∈ J ), (non- 571

increasing) stepsizes βt, and explorations functions ht at 572

all times t. It will then be the basis for Theorem 2, which 573

provides a way to set the algorithm parameters to achieve 574

sublinear O(T 3/4) regret. 575

Theorem 1. Let RT
j (π̂j) denote the regret cumulated by 576

the local full-feedback regret minimizer Rj compared to a 577

generic strategy π̂j , and ∆ be the maximum range of payoffs 578

that can be selected by the environment at all times. Then, for 579

all T ≥ 1, p ∈ (0, 1), and π̂ ∈ Q, with probability at least 580

1− p the regret cumulated by our algorithm satisfies 581

RT(π̂) ≤ max
q∈Π

∑
j∈J

q[pj ] · max
π̂j∈∆|Aj |

RT
j (π̂j)


+

∆

βT
(1 + ν)

√
2T log

2

p
+ ∆

T∑
t=1

βt,

where 582

ν :=

√√√√√ 1

T

T∑
t=1

max
z∈Z

 ∏
(j,a) z

(∑
a′∈Aj

ht(j, a′)

ht(j, a)

)2
. (2)

(Proofs are in the appendix.) When ht measures the number 583

of terminal states reachable under any sequence (j, a), the 584

constant ν satisfies ν ≤ |Σ| − 1. For the uniform exploration 585

function (ht(j, a) = 1 for all j, a), ν is upper bounded by the 586

product of the number of actions at all decision nodes, a poly- 587

nomial quantity in “bushy” decision processes. In Theorem 2 588

we operationalize Theorem 1 by showing sensible choices of 589

stepsizes βt and local regret minimizersRj . 590

Theorem 2. Let the local full-feedback regret minimizers 591

Rj guarantee O(T 1/2) regret in the worst case6, and let 592

p ∈ (0, 1). Furthermore, let the exploration probabilities be 593

βt := min{1, k ·t−1/4} for all t, where k > 0 is an arbitrary 594

constant. Then, there exists a (decision-problem-dependent)595

constant c independent of p and T such that for all T ≥ 1596

P
[
max
π̂∈Π

RT (π̂) ≤ c · T 3/4∆

√
log

2

p

]
≥ 1− p.

6Valid choices include the following algorithms: regret match-
ing (Hart and Mas-Colell 2000), regret matching+ (Tammelin et al.
2015), follow-the-regularized-leader, online mirror descent, expo-
nential weights, hedge, and others.



When ht is an exact measure of the number of terminal states,597

c is polynomial in |Σ|. Otherwise, it is linear in the constant598

ν defined in (2), which depends on the specific exploration599

functions used.600

Since Theorem 2 guarantees sublinear regret with high601

probability, our algorithm can be used for all purposes de-602

scribed in Section 3, including computing an approximate603

Nash equilibrium in a two-player zero-sum extensive-form604

game whose structure is a priori unknown.605

6 Empirical Evaluation606

In our experiments, we used our algorithm to compute an607

approximate Nash equilibrium. We compared our method to608

established model-free algorithms from the multiagent rein-609

forcement learning and computational game theory literature610

for this setting: neural fictitious self-play (NFSP) (Heinrich611

and Silver 2016), the policy gradient (PG) approach of Srini-612

vasan et al. (2018), and the online variant of Monte-Carlo613

CFR (online MCCFR) mentioned in (Lanctot et al. 2009). In614

line with prior empirical evaluations of those methods, we615

compare the algorithms on two standard benchmark games:616

Kuhn poker (Kuhn 1950) and Leduc poker (Southey et al.617

2005). The games are reviewed in Appendix C.618

We used the implementations of PG and NFSP provided in619

OpenSpiel (Lanctot et al. 2019).They internally use Tensor-620

flow. For PG, we tested the RPG and QPG policy gradient for-621

mulations, but not the RM formulation (it performed worst in622

the original paper (Srinivasan et al. 2018)). We implemented623

online MCCFR and our algorithm in C++ (online MCCFR624

is not implemented in OpenSpiel). We ran every algorithm625

with five random seeds. In the figures below, we plot the626

average exploitability (a standard measure of closeness to627

equilibrium) of the players averaged across the five seeds.628

The shaded areas indicate the maximum and minimum over629

the five random seeds. For NFSP we used the hyperparameter630

recommended by the OpenSpiel implementation. For Kuhn631

poker, we used the settings for PG that were tuned and found632

to work the best by Srinivasan et al. (2018)—they are pub-633

licly available through OpenSpiel. For PG in Leduc poker,634

we performed a hyperparameter switch and selected for the635

two PG plot (RPG and QPG formulation) the best combina-636

tion hyperparameters (full details are in the appendix). For637

both online MCCFR and our algorithm, we used RM+ (Tam-638

melin 2014) as the local (full-feedback) regret minimizer.639

For our algorithm, we only show performance for the on-640

path-flipping variant. The upfront-flipping variant performed641

significantly worse and data is available in the appendix. We642

tested k ∈ {0.5, 1, 10, 20} and set ht to either the uniform ex-643

ploration function (ht constant) or the theoretically-optimal644

exploration function ht that measures the number of terminal645

nodes as explained in Section 4. The performance of the two646

exploration functions was nearly identical, so in Figure 1 we647

show our algorithm with the uniform exploration function.648

We chose k = 10 since that performed well on both games.649

The plots for all other hyperparameter combinations for our650

algorithm are in the appendix. For online MCCFR, the only651

hyperparameter is ε, which controls the ε-greediness of the652

exploration term added before sampling and outputting the 653

0.2 0.4 0.6 0.8 1.0

Episodes T ×107

10−2

10−1

A
ve

ra
ge

ex
p

lo
it

ab
il
it

y

Ours (k = 10, unform ht)

Online MCCFR (ε = 0.1)

N
FSP

PG (∇QPG
)

PG (∇RPG
)

Kuhn poker

0.2 0.4 0.6 0.8 1.0

Episodes T ×107

10−1

100

A
ve

ra
g
e

ex
p

lo
it

ab
il
it

y

Ours (k = 10, unform ht)

Online MCCFR (ε = 0.1)

NFSP PG (∇QPG)

PG (∇RPG)

Leduc poker

Figure 1: Comparison of the algorithms.

strategy at each time t. We tested ε = 0.6 (which was found 654

useful for the different, self-play MCCFR algorithm (Lanc- 655

tot et al. 2009)), 0.1, and 0.0 (which corresponds to pure 656

exploitation); Figure 1 shows the setting that performed best. 657

Out of all the algorithms, ours is the only one that guar- 658

antees sublinear regret with high probability. This superior 659

guarantee appears to translate into superior practical perfor- 660

mance as well. In both benchmark games, our algorithm has 661

lowest exploitability, often by a factor 2x-4x. 662

7 Conclusions and Future Research 663

We introduced a new online learning model, which we coined 664

the interactive bandit model, that captures sequential deci- 665

sion making. We developed an algorithm that guarantees 666

sublinear O(T 3/4) regret with high probability in this model, 667

even when the structure of the underlying decision problem 668

is at first unknown to the agent and must be explored as 669

part of the learning process. This is, to our knowledge, the 670

first in-high-probability regret minimizer for this setting. It 671

can be used for multiagent reinforcement learning. Its regret 672

guarantee enables it to be used in any application for which 673

regret minimization is useful: approximating Nash equilib- 674

rium or quantal response equilibrium (Ling, Fang, and Kolter 675

2018; Farina, Kroer, and Sandholm 2019) in two-player zero- 676

sum games, approximating coarse correlated equilibrium in 677

multi-player games (Moulin and Vial 1978; Celli et al. 2020), 678

learning a best response, safe opponent exploitation (Farina,679

Kroer, and Sandholm 2019), online play against an unknown680

opponent/environment, etc. It is open whether better than681

O(T 3/4) regret is achievable in this important setting.682
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A Summary of Online Learning Models878

Online learning
model

Assumptions on gradient vector `t (other
than bounded norm)

Revealed feedback

Full-feedback2 unconstrained: `t ∈ R|Σ| `t

Bandit linear
optimization

unconstrained: `t ∈ R|Σ| (`t)>πt ∈ R

Interactive bandit
(this paper)

ut : Z → R choice of payoff at each z∈Z
stk ∈ Sk choice of signal at each k∈K
`t as in Equation (3)

• zt ∈ Z terminal state,
• ut(zt) = (`t)>πt ∈ R payoff at zt

Table 1: Comparison between different online learning models and their assumptions on the gradient vector
and revealed feedback.

Observation 2. In online learning, the environment picks a secret loss function (gradient vector) `t at879

every iteration t. The gradient vector controls the utility of the player, which is defined as the inner product880

(`t)>πt, where πt is the strategy output by the agent at iteration t. In the interactive bandit model, it is881

perhaps more natural to think of the environment as picking a choice of signal stk at each observation node882

k ∈ K, as well as a choice of payoff ut(z) for each terminal node z ∈ Z. The utility of the agent is then883

computed as ut(zt), where zt is the (unique) terminal node that is reached when the agent plays according884

to πt ∈ Π, and the environment sends the signals stk.885

The two points of view can be reconciled. In particular, at every iteration t it is possible to identify a886

gradient vector `t for the interactive bandit setting such that ut(zt) = (`t)>πt, as follows. As mentioned887

in the body, let σ(z) be the last sequence (decision node-action pair) on the path from the root of the888

decision process to terminal node z ∈ Z, and consider the gradient vector `t, defined as the (unique)889

vector such that890

(`t)>x =
∑
z∈Z

ut(z)

 ∏
(k,s) z

1[stk = s]

x[σ(z)] ∀x ∈ Q. (3)

For each terminal node z ∈ Z in the argument of the sum, the product in parenthesis is 1 if and only if891

signals stk picked by the environment are a superset of those on the path from the root to z. Furthermore,892

when x = πt, x[σ(zt)] = 1 if and only if the decision maker has decided to play all actions on the path893

from the root to zt. So, the only terminal node for which the right hand side of Equation (3) is nonzero is894

z = zt. Consequently, (`t)>πt = ut(zt).895

B Analysis and Proofs896

In order to make the proof approachable, at first we will assume that the structure of the decision process897

is fully known. We will then present and analyze an algorithm that enjoys the properties described in898

Theorem 1. Finally, we will show that the algorithm can be implemented as described in Section 4, and899

therefore, that it does not actually need to know the structure of the decision process.900

Gradient
estimator

RQ
Strategy
sampler

Explorer

+

R̃

R

ξt

(`t)>πt ˜̀t yt ∈ Q wt πt ∈ Π

Figure 2: Conceptual construction of our algorithm for the interactive bandit online learning setting.

At a high level, the construction of our interactive bandit regret minimizer works as follows. At each901

iteration t, we use a full-feedback regret minimizerRQ to output a recommendation for the next sequence-902

form strategy yt ∈ Q to be played. Then, we introduce a bias on yt, which can be thought of as an903



exploration term. The resulting biased strategy is wt ∈ Q. Finally, we sample a deterministic policy904

πt ∈ Π starting from wt. After the playthrough is over and a terminal node zt ∈ Z has been reached, we905

use the feedback (that is, the terminal node zt reached in the playthrough, together with its utility ut(zt)),906

to construct an unbiased estimator ˜̀t of the underlying gradient vector that was chosen by the environment.907

The algorithm that we have just described accumulates regret from the following three sources.908

1. First, it cumulates regret by the full-feedback regret minimizer RQ. This scales with the norm of the909

gradient estimators ˜̀t as O(
√
T ·maxT

t=1 ‖ ˜̀t‖).910

2. Second, there is a degradation term due to the fact that we do not exactly follow the recommendations911

from RQ, and instead bias the recommendations. The biasing is necessary to keep the norm of the912

gradient estimators under control.913

3. Third, there is a regret degradation term due to the fact that we sample a pure strategy starting from the914

biased recommendation wt.915

Our analysis is split into two main conceptual steps. First, we will quantify the regret degradation that is916

incurred in passing from R̃ toR (Figure 2). Specifically, we will study how the regret cumulated by R̃,917

R̃T (π) =

T∑
t=1

(`t)>(π − yt)

is related to the regret cumulated by our overall algorithm,918

RT (π) =

T∑
t=1

(`t)>(π − πt).

In this case, the degradation term comes from the fact that the strategy output byR, that is, πt ∈ Π, is not919

the same as the one, yt, that was recommended by R̃, because an exploration term was added.920

The second step in the analysis will be the quantification of the regret degradation that is incurred in921

passing fromRQ to R̃ (Figure 2). Specifically, we will study how the regret cumulated by R̃ is related to922

the regret923

RT
Q(π) =

T∑
t=1

( ˜̀t)>(π − yt),

which is guaranteed to be O(T 1/2) with high probability. By summing the degradation bounds, the924

asymptotic regret guarantee will change from T 1/2 to T 3/4, while still retaining a high-probability bound.925

Below, we give details about each of the components of our algorithm.926

Gradient Estimator The gradient estimator that we use in our algorithm is given in Lemma 1. It is a927

form of importance-sampling estimator that can be constructed starting from the feedback received by928

the regret minimizer (that is, the terminal leaf zt and its corresponding payoff ut(zt)). It is a particular929

instantiation of the outcome sampling estimator that appeared in the works by Lanctot et al. (2009). We930

follow the formalization of Farina, Kroer, and Sandholm (2020).931

Lemma 1. Let zt be the terminal state in which the process ends at iteration t, that is the terminal state932

reached when the decision maker plays according to the pure strategy πt and the environment plays933

according to the (partially hidden) pure strategy yt. Also, let ut(zt) be the reward of the decision maker934

upon termination and let σ(zt) denote the last sequence (decision node-action pair) on the path from the935

root of the decision process to z. Then,936

˜̀t :=
ut(zt)

wt[σ(zt)]
ezt

is an unbiased estimator of `t, that is, Et[ ˜̀
t] = `t.937

Proof. We will prove the lemma by showing that Et[( ˜̀t)>x] = (`t)>x. By definition, zt is the (unique)938

state such that939

πt[σ(z)] =
∏

(k,s) z

1[stk = s] = 1.



For all other terminal states z, πt[σ(z)] ·∏(k,s) z 1[stk = s] = 0. Hence,940

Et

[
( ˜̀t)>x

]
= Et

[
ut(zt)

wt[σ(zt)]
(e>z x)

]

= Et

∑
z∈Z

πt[σ(z)] ·
∏

(k,s) z

1[stk = s]

 ut(z)

wt[σ(z)]
(e>z x)


=
∑
z∈Z

Et

[
πt[σ(z)]

]
wt[σ(z)]

ut(z)

 ∏
(k,s) z

1[stk = s]

x[σ(z)],

Using the hypothesis that πt is a (conditionally) unbiased estimator of wt we further obtain941

Et

[
πt[σ(z)]

]
= Et[π

t][σ(z)] = wt[σ(z)]

and therefore942

Et

[
( ˜̀t)>x

]
=
∑
z∈Z

ut(z)

 ∏
(k,s) z

1[stk = s]

x[σ(z)] = (`t)>x,

where we used the definition of `t from (1) in the last equality.943

The Full-Feedback Regret Minimizer Our full-feedback regret minimizer RQ is the counterfactual944

regret minimization (CFR) regret minimizer (Zinkevich et al. 2007). CFR decomposes the task of computing945

a strategy yt ∈ Q for the whole decision process into smaller subproblems at each decision point. The946

local strategies are then computed via |J | independent full-feedback regret minimizersRj (j ∈ J ), one947

per decision node, that at each t observe a specific feedback—the counterfactual gradient—that guarantees948

low global regret across the decision process. CFR guarantees O(T 1/2) regret in the worst case against any949

strategy ŷt ∈ Q.950

We now review how the counterfactual gradients that are given as feedback at all local regret minimizers951

Rj are constructed. Let xt
j , j ∈ J , be the local strategies output by the Rj’s, and let ˜̀t be the gradient952

vector observed at time t byRQ. We start by constructing the counterfactual values Vj , indexed over j ∈ J ,953

which are recursively defined as954

V t
j =

∑
a∈Aj

xtj [a]

˜̀t[j, a] +
∑

j′∈J :pj′=(j,a)

V t
j′

.
Then, for all j ∈ J we construct the counterfactual gradient `tj by setting `tj [a] = ˜̀t[j, a] +955 ∑

j′∈J :pj′=(j,a) V
t
j′ for all a ∈ Aj .956

Let RT
j (π̂j) denote the regret cumulated up to time T by the local full-feedback regret minimizerRj957

compared to strategy π̂t
j ∈ ∆|Aj |. Then, the regret cumulated by the CFR algorithm is known to satisfy the958

regret bound in Lemma 2.959

Lemma 2 ((Farina, Kroer, and Sandholm 2019)). At all T , for all π̂ ∈ Q,960

RQ(π̂) ≤ max
q∈Q

∑
j∈J

q[pj ] · max
π̂j∈∆|Aj |

RT
j (π̂j)

.
Exploration Term The role of the exploration term is to reduce the norm of the gradient estimators. We961

bias the strategies yt output byRQ by taking a convex combination with the exploration strategy ξt ∈ Q962

defined as the sequence-form strategy that picks action a ∈ Aj at decision node j ∈ J with probability963

proportional to964

ξt[j, a] ∝ ht(j, a)∑
a∈Aj

ht(j, a)
,

where ht is a generic exploration function Σ→ R>0.965



Let σ(z) denote the last sequence (decision node-action pair) encountered on the path from the root of966

the decision process to terminal node z ∈ Z. A key quantity about ξt, that will be important to quantify the967

effect of the biasing on the norm of the gradient estimator, is the following:968

ρt := max
z∈Z

1

ξt[σ(z)]
= max

z∈Z

∏
(j,a) z

(∑
a′∈Aj

ht(j, a′)

ht(j, a)

)
.

At all times t, we construct the biased strategy wt starting from the unbiased strategy yt and the969

exploration strategy ξt as970

wt := (1− βt) · yt + βt · ξt. (4)

We call the exploration function ht that assigns the constant value 1 to all sequences the uniform971

exploration strategy. We also study an exploration strategy for which we can prove better worst-case972

convergence speed. Specifically, we call the exploration function ht that assigns, to each sequence (j, a) ∈973

Σ, the number of terminal nodes under (j, a) the balanced exploration strategy. For this strategy, the974

minimum reach probability across all terminal nodes, which is important for our worst-case convergence975

guarantee, scales linearly in the game size.976

Lemma 3 ((Farina, Kroer, and Sandholm 2020)). When ht is a perfect measure of the number of terminal977

nodes under each sequence (j, a) ∈ Σ, then ρt ≤ |Σ| − 1.978

Strategy Sampler The role of the strategy sampler is to provide an unbiased estimator πt ∈ Π of979

wt. In fact, any unbiased estimator can be used in our framework. We start by describing a sampling980

scheme for sequence-form strategies that is folklore in the literature. In the natural sampling scheme,981

given a sequence-form strategy q ∈ Q, at all decision nodes j ∈ J an action is sampled according to the982

distribution q[j, a]/q[pj ] : a ∈ Aj .983

• Upfront-flipping strategy sampling Since by constructionwt = (1− βt) · yt + βt · ξt, sampling from984

wt can be done as follows. First, we flip a biased coin, where the probability of heads is 1 − βt and985

the probability of tails is βt. If heads comes up, we sample actions according to the natural sampling986

scheme applied to the sequence-form strategy yt output byRQ. Otherwise, we sample actions according987

to the natural sampling scheme applied to the exploration strategy ξt. We call the strategy sampler just988

described the upfront-flipping sampling scheme.989

• On-path-flipping strategy sampling We now describe a different sampling scheme, which we coin the990

on-path-flipping sampling scheme. First, we compute the strategy wt by explicitly taking the convex991

combination between yt and the exploration term ξt. Then we apply the natural sampling scheme992

for sequence-form strategies to wt. In the on-path-flipping sampling scheme, the exploration and the993

exploitation are interleaved at each decision node in a counterintuitive way.994

Because both sampling schemes are unbiased, our theory, without changes, applies to both of these sampling995

schemes. Later in this appendix, we report experiments on both of these sampling schemes.996

Relationship Between Exploration and Norm of Counterfactual Gradients997

The gradient ˜̀t that is given to RQ as feedback is given in Lemma 1. It has zero entries everywhere,998

except for the sequence σ(zt). Consequently, the counterfactual values V t
j are 0 everywhere, except for999

the decision nodes that were traversed on the path from the root to the terminal node zt ∈ Z. In turn, this1000

means that all counterfactual gradients are 0, except for the sequences that are traversed. for them, the1001

construction of the counterfactual gradients reduces to the regret update phase described in Section 4.1002

The norms of the counterfactual gradients are maximum at the leaves. In particular, the following is1003

known.1004

Lemma 4 ((Lanctot et al. 2009; Farina, Kroer, and Sandholm 2020)). Let ∆ be the maximum range of1005

payoffs that can be selected by the environment at all times. All counterfactual gradients have norm upper1006

bounded as1007

‖`tj‖2 ≤
∆ρt

βt
∀j ∈ J .

Furthermore, the loss estimate ˜̀t satisfies1008

( ˜̀t)>(x− x′) ≤ ∆ρt

βt
∀x,x′ ∈ Q.



Relationship BetweenR and R̃1009

As a first step in our analysis, we establish an important relationship between the regret cumulated byR1010

and R̃. Fundamentally, it quantifies the degradation in the regret incurred from playing πt instead of yt as1011

recommended. The degradation is kept under control by the fact that the expectation of the output πt is1012

close to yt when β is small. Before we state the central result of this subsection (Proposition 1), we need1013

the following simple bound.1014

Lemma 5. Let ∆ be the payoff range of the interaction, that is the maximum absolute value of any payoff1015

that can be selected by the environment at any time. At all T , it holds that1016

T∑
t=1

(`t)>(yt −wt) ≤ ∆

T∑
t=1

βt.

Proof. Using simple algebraic manipulations,1017

T∑
t=1

(`t)>(yt −wt) =

T∑
t=1

(`t)>
(
yt −

(
(1− βt)yt + βtbt

))
=

T∑
t=1

βt(`t)>(yt − bt) ≤ ∆

T∑
t=1

βt,

where the last inequality follows from the definition of ∆.1018

With Lemma 5 we are ready to analyze the relationship betweenR and R̃.1019

Proposition 1. At all T , for all p ∈ (0, 1) and π ∈ Π, with probability at least 1− p,1020

RT (π) ≤ R̃T (π) + ∆

(√
2T log

1

p
+

T∑
t=1

βt

)
.

Proof. Introduce the discrete-time stochastic process1021

dt := (`t)>(πt −wt), t ∈ {1, 2, . . . }.
From the online learning model hypotheses, we have that `t is conditionally independent from πt andwt1022

given all past choices of the algorithm up to time t − 1, and since Et[π
t] = wt by construction, dt is a1023

martingale difference sequence. Furthermore, some elementary algebra reveals that1024

T∑
t=1

dt =

T∑
t=1

(`t)>(πt −wt)

=

T∑
t=1

(`t)>(π − yt)−
T∑

t=1

(`t)>(π − πt) +

T∑
t=1

(`t)>(yt −wt)

= R̃T (π)−RT (π) +

T∑
t=1

(`t)>(yt −wt)

≤ R̃T (π)−RT (π) + ∆

T∑
t=1

βt, (5)

where the last inequality follows from Lemma 5. Since |δt| ≤ ∆ for all t, using the Azuma-Hoeffding1025

inequality (Hoeffding 1963; Azuma 1967) we have that1026

1− p ≤ P

[
T∑

t=1

dt ≥ −∆

√
2T log

1

p

]

≤ P

[
R̃T (π)−RT (π) + ∆

T∑
t=1

βt ≥ −∆

√
2T log

1

p

]

= P

[
RT (π) ≤ R̃T (π) + ∆

(√
2T log

1

p
+

T∑
t=1

βt

)]
,

where the second inequality used (5).1027



Relationship Between R̃ andRQ1028

The next proposition establishes the important relationship between the regret cumulated by R̃ andRQ.1029

Unlike Proposition 1, where a regret degradation was suffered for playing a strategy different that the1030

recommended one, in this case the regret degradation comes from the fact that the gradient that is observed1031

by RQ is different from that observed by R̃. However, as we will show the degradation is kept under1032

control by the fact that ˜̀t is an unbiased estimator of `t by hypothesis.1033

Proposition 2. At all T , for all p ∈ (0, 1) and π ∈ Π, with probability at least 1− p,1034

R̃T (π) ≤ RT
Q(π) +

∆

βT
ν

√
2T log

1

p
,

where1035

ν :=

√√√√ 1

T

T∑
t=1

(ρt)2 =

√√√√√ 1

T

T∑
t=1

max
z∈Z

 ∏
(j,a) z

(∑
a′∈Aj

ht(j, a′)

ht(j, a)

)2
.

Proof. Introduce the discrete-time stochastic process1036

dt := (`t − ˜̀t)>(π − yt), t ∈ {1, 2, . . . }.
From the online learning model hypotheses, we have that `t and ˜̀t are conditionally independent from yt,1037

and since Et[ ˜̀
t] = `t by construction, dt is a martingale difference sequence. At each t, the conditional1038

range of dt is upper bounded by1039

|dt| ≤ |(`t)>(yt − π)|+ |( ˜̀t)>(yt − π)| ≤ ∆ +
∆

βt
ρt ≤ 2∆

βt
ρt,

where the last inequality follows since βt ≤ 1 and ρt ≥ 1. Hence, the sum of quadratic ranges for the1040

martingale difference sequence is1041

r :=

√√√√ 1

T

T∑
t=1

(
2∆

βt
ρt
)2

≤

√√√√ 1

T

T∑
t=1

(
2∆

βT
ρt
)2

=
2∆

βT
ν,

where we used the fact that the βt are (weakly) decreasing. Using the Azuma-Hoeffding inequality, we1042

obtain1043

1− p ≤ P

[
T∑

t=1

dt ≤ r
√
T

2
log

1

p

]

= P

[
T∑

t=1

dt ≤ ∆

βT
ν

√
2T log

1

p

]
. (6)

Finally,1044

T∑
t=1

dt =

T∑
t=1

(`t − ˜̀t)>(yt − π)

=

T∑
t=1

(`t)>(yt − π)−
T∑

t=1

( ˜̀t)>(yt − π)

= R̃T (π)−RT
Q(π), (7)

and substituting (7) into (6) we have1045

P
[
R̃T (π)−RT

Q(π) ≤ ∆

βT
ν

√
2T log

1

p

]
≥ 1− p.

Rearranging the terms inside of the square brackets yields the statement.1046



Regret Analysis for the Overall Algorithm1047

Combining Proposition 2 and Proposition 1 using the union bound lemma, we obtain the following (note1048

that the fractions 1/p inside of the logarithms have become 2/p as a consequence of the union bound1049

lemma).1050

Corollary 1. At all T , for all p ∈ (0, 1) and π ∈ Π, with probability at least 1− p,1051

RT(π) ≤ RT
Q(π) +

∆

βT
(1 + ν)

√
2T log

2

p
+ ∆

T∑
t=1

βt.

where ν is as in Proposition 2.1052

Proof. From Proposition 2 and Proposition 1, respectively, we have that1053

p

2
≥ P

[
RT (π) ≥ R̃T (π) + ∆

(√
2T log

2

p
+

T∑
t=1

βt

)]
p

2
≥ P

[
R̃T (π) ≥ RT

Q(π) +
∆

βT
ν

√
2T log

2

p

]
.

Summing the two inequalities and using the union bound, we obtain1054

p ≥ P

[
RT (π) ≥ R̃T (π) + ∆

(√
2T log

2

p
+

T∑
t=1

βt

)]
+ P

[
R̃T (π) ≤ RT

Q(π) +
∆

βT
ν

√
2T log

2

p

]

≥ P

[(
RT (π) ≥ R̃T (π) + ∆

(√
2T log

2

p
+

T∑
t=1

βt

))
∨
(
R̃T (π) ≤ RT

Q(π) +
∆

βT
ν

√
2T log

2

p

)]

≥ P

[
RT (π) + R̃T (π) ≥

(
R̃T (π) + ∆

(√
2T log

2

p
+

T∑
t=1

βt

))
+

(
RT

Q(π) +
∆

βT
ν

√
2T log

2

p

)]

= P

[
RT(π) ≥ RT

Q(π) +
∆

βT
(βT + ν)

√
2T log

2

p
+ ∆

T∑
t=1

βt

]

≥ P

[
RT(π) ≥ RT

Q(π) +
∆

βT
(1 + ν)

√
2T log

2

p
+ ∆

T∑
t=1

βt

]
.

Taking complements yields the statement.1055

Theorem 2. Let the local full-feedback regret minimizersRj guarantee O(T 1/2) regret in the worst case7,1056

and let p ∈ (0, 1). Furthermore, let the exploration probabilities be βt := min{1, k · t−1/4} for all t, where1057

k > 0 is an arbitrary constant. Then, there exists a (decision-problem-dependent) constant c independent1058

of p and T such that for all T ≥ 11059

P
[
max
π̂∈Π

RT (π̂) ≤ c · T 3/4∆

√
log

2

p

]
≥ 1− p.

When ht is an exact measure of the number of terminal states, c is polynomial in |Σ|. Otherwise, it is linear1060

in the constant ν defined in (2), which depends on the specific exploration functions used.1061

Proof. Fix T ∈ {1, 2, . . . }. At all times t ∈ {1, . . . , T}, the norm that enter regret minimizerRj has norm1062

upper bounded by1063

‖`tj‖ ≤
∆

βt
ρt ≤ ∆

T
max
t=1
{ρt}max

{
1

k
, 1

}
T 1/4,

where we used the fact that βT ≥ min{k, 1}T−1/4 for all T . Letting M̃ := maxT
t=1 ρ

t and k̃ :=1064

max
{

1
k , 1
}

, we obtain ‖`tj‖ ≤ ∆M̃k̃T 1/4.1065

7Valid choices include the following algorithms: regret matching (Hart and Mas-Colell 2000), regret
matching+ (Tammelin et al. 2015), follow-the-regularized-leader, online mirror descent, exponential weights, hedge,
and others.



Let cj be the constant in the regret guarantee for the O(T 1/2) regret ofRj . Since regret guarantees are1066

always with respect to some ball of gradients of bounded norm (say, norm 1) the regret cumulated byRj is1067

bounded as maxπ̂j
RT

j (π̂j) ≤ cj‖`tj‖T 1/2. In other words, we need to keep into account the degradation1068

factor due to the fact that the norms of the gradients constructed through Lemma 1 might exceed the bound1069

for which the regret guarantee forRj was given. So, in particular,1070

max
π̂j

RT
j (π̂j) ≤ cj

(
∆M̃k̃T 1/4

)
T 1/2 = ∆M̃k̃cjT

3/4,

and so1071

max
q∈Q

∑
j∈J

q[pj ] ·max
π̂j

RT
j (π̂j)

 ≤∑
j∈J

max

{
0,max

π̂j

RT
j (π̂j)

}
≤ ∆M̃k̃

∑
j∈J

cj

T 3/4. (8)

Furthermore,1072

∆

βT
(1 + ν)

√
2T log

2

p
≤ ∆k̃T 1/4(1 + ν)

√
2T log

2

p
= ∆(1 + ν)k̃T 3/4

√
log

2

p
. (9)

Finally,1073

∆

T∑
t=1

βt = ∆

T∑
t=1

min{1, k · t−1/4} ≤ ∆k

T∑
t=1

t−1/4 ≤ ∆k

∫ T

0

t−1/4dt =
4∆k

3
T 3/4. (10)

Substituting the bounds (8), (9), and (10) into the general result of Theorem 1 (specifically, (??)), we obtain1074

RT (π) ≤ ∆M̃k̃

∑
j∈J

cj

T 3/4 + ∆(1 + ν)k̃T 3/4

√
log

2

p
+

3∆k

4
T 3/4

= ∆

4k

3
+ (1 + ν)k̃

√
log

2

p
+ k̃M̃

∑
j∈J

cj

T 3/4

≤ ∆

 4k

3 log 2
+ (1 + ν)k̃ +

k̃

log 2
M̃
∑
j∈J

cj

T 3/4

√
log

2

p
,

where we used the fact that log(2/p) ≥ log 2 for all p ∈ (0, 1). Setting c to be the quantity in parentheses1075

and noting that when ht measures the number of terminal states in each subtree ν ≤ |Σ| − 1 (Lemma 3),1076

we obtain the statement.1077

Remark 1. Theorem 2 shows that our algorithm achieves O(T 3/4
√

log(1/p) regret with high proba-1078

bility (specifically, probability at least 1− p). Indeed, using the properties of logarithms,
√

log(2/p) =1079 √
log(1/p) + log 2 ≤ 2

√
log(1/p) = O(

√
log(1/p)) for all p ≤ 1/2.1080

Handling the Unknown Structure1081

As already noted in Section B, only the local full-feedback regret minimizers Rj on the path from the1082

root to zt observe a nonzero counterfactual gradient, which is computed as in the regret update phase1083

described in Section 4. All other local regret minimizers see a zero gradient, and therefore their regret does1084

not increase. So, we can safely avoid updating those regret minimizers that are not on the path from the1085

root to the most recent terminal leaf.1086

The upfront-flipping sampling scheme and the on-path-flipping sampling scheme can both be imple-1087

mented so that the actions are sampled incrementally as the interaction with the environment progresses. In1088

other words, there is no need to sample actions at all decision nodes upfront in order to interact with the1089

environment. In the body of this paper, we only described how to do so for the upfront-flipping sampling1090

scheme, which is conceptually the most important, as it showcases well the difference with, for example,1091

epsilon-greedy exploration used by MCCFR.1092

C Additional Details about Experiments1093

Description of Games1094

Here, we review the two standard benchmark games that we use in the experiments.1095

In Kuhn poker (Kuhn 1950), two players put an ante worth 1 into the pot at the beginning of the game.1096

Then, each player is privately dealt one card from a deck that contains only three cards—specifically, jack,1097



queen, and king. Then Player 1 decides to either check or bet 1. If Player 1 checks, Player 2 can decide to1098

either check or raise 1. If Player 2 checks, a showdown occurs. If Player 2 raises, Player 1 can fold—and1099

the game ends with Player 2 taking the pot—or call, at which point a showdown occurs. Otherwise, if the1100

first action of Player 1 is to raise, then Player 2 may fold (the game ends with Player 1 taking the pot) or1101

call, at which point a showdown occurs. In a showdown, the player with the higher card wins the pot and1102

the game ends.1103

Leduc poker (Southey et al. 2005) is played with a deck of 3 unique ranks, each appearing twice in the1104

deck. There are two rounds in the game. In the first round, all players put an ante of 1 in the pot and are1105

privately dealt a single card. A round of betting then starts. Player 1 acts first, and at most two bets are1106

allowed per player. Then, a card is publicly revealed, and another round of betting takes place, with the1107

same dynamics described above. After the two betting round, if one of the players has a pair with the public1108

card, that player wins the pot. Otherwise, the player with the higher card wins the pot. All bets in the first1109

round are worth 2, while all bets in the second round are 4.1110

Hyperparameter Tuning for the Policy Gradient Approach by Srinivasan et al. (2018)1111

We acknowledge the help of some of the original authors (Srinivasan et al. 2018) in tuning hyperparameters1112

for their algorithm on the Leduc poker benchmark.1113

For both the RPG and the QPG formulation, the following combinations of hyperparameters was tested:1114

• Critic learning rate: {0.001, 0.05, 0.01};1115

• Pi learning rate: {0.001, 0.01, 0.05};1116

• Entropy cost (used to multiply the entropy loss): {0.01, 0.1};1117

• Batch size (for Q and Pi learning): {16, 64, 128};1118

• Num critics (before each Pi update): {16, 64, 128}.1119

In Tables 2 and 3 we report the average exploitability (computed across 5 independent runs for each1120

choice of hyperparameters) for the top 5 choices of hyperparameters for the RPG and QPG formulation,1121

respectively. The experimental results in the body show data for the best combination of eitherparameters1122

(first row of each table).1123

Critic learning rate Pi learning rate Entropy cost Batch size Num Critics Avg. exploitability

0.01 0.05 0.01 128 64 0.448680
0.01 0.05 0.01 64 64 0.451409

0.001 0.01 0.01 16 128 0.472729
0.01 0.01 0.01 128 16 0.493694
0.05 0.01 0.01 128 64 0.494840

Table 2: Performance of PG with RPG gradient formulation using the top 5 combinations of hyperparame-
ters.

Critic learning rate Pi learning rate Entropy cost Batch size Num Critics Avg. exploitability

0.01 0.05 0.01 64 128 0.421745
0.01 0.01 0.01 64 16 0.451535

0.001 0.01 0.01 16 128 0.457430
0.01 0.01 0.01 64 128 0.471100
0.05 0.01 0.01 128 64 0.524005

Table 3: Performance of PG with QPG gradient formulation using the top 5 combinations of hyperparame-
ters.

Additional Experiments1124

In Figures 3 to 6 we study how the uniform and balanced exploration functions compare in Kuhn and1125

Leduc poker, for both the on-path-flipping and the upfront-flipping sampling scheme. We test different1126

values of the exploration multiplier k (Theorem 2), specifically k ∈ {0.5, 1, 10, 20}.1127

The experiments show that the on-path-flipping sampling schemes leads to significantly less variance1128

than the upfront-flipping sampling scheme. Sometimes the latter leads to better average convergence very1129

early on in the learning, but overall has worse convergence in practice.1130

The experiments show no meaningful different between the uniform and balanced exploration strategies.1131



Figure 7 shows how MCCFR performed with different exploration parameters.1132
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Figure 3: Comparison between uniform and balanced exploration strategies in Kuhn poker, for different
values of the exploration multipler k, when using the on-path-flipping sampling scheme.
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Figure 4: Comparison between uniform and balanced exploration strategies in Kuhn poker, for different
values of the exploration multipler k, when using the upfront-flipping sampling scheme.
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Figure 5: Comparison between uniform and balanced exploration strategies in Leduc poker, for different
values of the exploration multipler k, when using the on-path-flipping sampling scheme.
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Figure 6: Comparison between uniform and balanced exploration strategies in Leduc poker, for different
values of the exploration multipler k, when using the upfront-flipping sampling scheme.
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Figure 7: Performance of MCCFR for different amounts of ε-greedy exploration.
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