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Abstract

Blackwell approachability is a framework for reasoning about1

repeated games with vector-valued payoffs. We introduce2

predictive Blackwell approachability, where an estimate of3

the next payoff vector is given, and the decision maker tries to4

achieve better performance based on the accuracy of that es-5

timator. In order to derive algorithms that achieve predictive6

Blackwell approachability, we start by showing a powerful7

connection between four well-known algorithms. Follow-the-8

regularized-leader (FTRL) and online mirror descent (OMD)9

are the most prevalent regret minimizers in online convex10

optimization. In spite of this prevalence, the regret match-11

ing (RM) and regret matching+ (RM+) algorithms have been12

preferred in the practice of solving large-scale games (as the13

local regret minimizers within the counterfactual regret min-14

imization framework). We show that RM and RM+ are the15

algorithms that result from running FTRL and OMD, respec-16

tively, to select the halfspace to force at all times in the under-17

lying Blackwell approachability game. By applying the pre-18

dictive variants of FTRL or OMD to this connection, we ob-19

tain predictive Blackwell approachability algorithms, as well20

as predictive variants of RM and RM+. In experiments across21

18 common zero-sum extensive-form benchmark games, we22

show that predictive RM+ coupled with counterfactual regret23

minimization converges vastly faster than the fastest prior al-24

gorithms (CFR+, DCFR, LCFR) across all games but two of25

the poker games, sometimes by two or more orders of mag-26

nitude.27

1 Introduction28

Extensive-form games (EFGs) are the standard class of29

games that can be used to model sequential interaction,30

outcome uncertainty, and imperfect information. Opera-31

tionalizing these models requires algorithms for comput-32

ing game-theoretic equilibria. A recent success of EFGs is33

the use of Nash equilibrium for several recent poker AI34

milestones, such as essentially solving the game of limit35

Texas hold’em (Bowling et al. 2015), and beating top hu-36

man poker pros in no-limit Texas hold’em with the Libratus37

AI (Brown and Sandholm 2017). A central component of all38

recent poker AIs has been a fast iterative method for com-39

puting approximate Nash equilibrium at scale. The leading40

approach is the counterfactual regret minimization (CFR)41
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framework, where the problem of minimizing regret over 42

a player’s strategy space of an EFG is decomposed into a 43

set of regret-minimization problems over probability sim- 44

plexes (Zinkevich et al. 2007; Farina, Kroer, and Sandholm 45

2019c). Each simplex represents the probability over actions 46

at a given decision point. The CFR setup can be combined 47

with any regret minimizer for the simplexes. If both players 48

in a zero-sum EFG repeatedly play each other using a CFR 49

algorithm, the average strategies converge to a Nash equilib- 50

rium. Initially regret matching (RM) was the prevalent sim- 51

plex regret minimizer used in CFR. Later, it was found that 52

by alternating strategy updates between the players, taking 53

linear averages of strategy iterates over time, and using a 54

variation of RM called regret-matching+ (RM+) (Tammelin 55

2014) leads to significantly faster convergence in practice. 56

This variation is called CFR+. Both CFR and CFR+ guar- 57

antee convergence to Nash equilibrium at a rate of T−1/2. 58

CFR+ has been used in every milestone in developing poker 59

AIs in the last decade (Bowling et al. 2015; Moravčík et al. 60

2017; Brown and Sandholm 2017, 2019b). This is in spite 61

of the fact that its theoretical rate of convergence is the same 62

as that of CFR with RM (Tammelin 2014; Farina, Kroer, 63

and Sandholm 2019a; Burch, Moravcik, and Schmid 2019), 64

and there exist algorithms which converge at a faster rate 65

of T−1 (Hoda et al. 2010; Kroer et al. 2020; Farina, Kroer, 66

and Sandholm 2019b). In spite of this theoretically-inferior 67

convergence rate, CFR+ has repeatedly performed favorably 68

against T−1 methods for EFGs Kroer, Farina, and Sandholm 69

(2018); Kroer et al. (2020); Farina, Kroer, and Sandholm 70

(2019b); Gao, Kroer, and Goldfarb (2019). Similarly, the 71

follow-the-regularized-leader (FTRL) and online mirror de- 72

scent (OMD) regret minimizers, the two most prominent al- 73

gorithms in online convex optimization, can be instantiated 74

to have a better dependence on dimensionality than RM+ 75

and RM, yet RM+ has been found to be superior (Brown, 76

Kroer, and Sandholm 2017). 77

There has been some interest in connecting RM to the 78

more prevalent (and more general) online convex optimiza- 79

tion algorithms such as OMD and FTRL, as well as classi- 80

cal first-order methods. Waugh and Bagnell (2015) showed 81

that RM is equivalent to Nesterov’s dual averaging algorithm 82

(which is an offline version of FTRL), though this equiva- 83

lence requires specialized step sizes that are proven correct 84

by invoking the correctness of RM itself. Burch (2018) stud- 85



ies RM and RM+, and contrasts them with mirror descent86

and other prox-based methods.87

We show a strong connection between RM, RM+, and88

FTRL, OMD. This connection arises via Blackwell ap-89

proachability, a framework for playing games with vector-90

valued payoffs, where the goal is to get the average pay-91

off to approach some convex target set. Blackwell originally92

showed that this can be achieved by repeatedly forcing the93

payoffs to lie in a sequence of halfspaces containing the tar-94

get set Blackwell (1956). Our results are based on extend-95

ing an equivalence between approachability and regret min-96

imization Abernethy, Bartlett, and Hazan (2011). We show97

that RM and RM+ are the algorithms that result from run-98

ning FTRL and OMD, respectively, to select the halfspace to99

force at all times in the underlying Blackwell approachabil-100

ity game. The equivalence holds for any constant step size.101

Thus, RM and RM+, the two premier regret minimizers in102

EFG solving, turn out to follow exactly from the two most103

prevalent regret minimizers from online optimization theory.104

This is surprising for several reasons:105

• RM+ was originally discovered as a heuristic modifica-106

tion of RM in order to avoid accumulating large nega-107

tive regrets. In contrast, OMD and FTRL were developed108

separately from each other.109

• When applying FTRL and OMD directly to the strat-110

egy space of each player, Farina, Kroer, and Sandholm111

(2019b, 2020) found that FTRL seems to perform better112

than OMD, even when using stochastic gradients. This113

relationship is reversed here, as RM+ is vastly faster nu-114

merically than RM.115

• The dual averaging algorithm (whose simplest variant is116

an offline version of FTRL), was originally developed117

in order to have increasing weight put on more recent118

gradients, as opposed to OMD which has constant or119

decreasing weight (Nesterov 2009). Here this relation-120

ship is reversed: OMD (which we show has a close link121

to RM+) thresholds away old negative regrets, whereas122

FTRL keeps them around. Thus OMD ends up being123

more reactive to recent gradients in our setting.124

• FTRL and OMD both have a step-size parameter that125

needs to be set according to the magnitude of gradients,126

while RM and RM+ are parameter free (which is a desir-127

able feature from a practical perspective). To reconcile128

this seeming contradiction, we show that the step-size129

parameter does not affect which halfspaces are forced,130

so any choice of step size leads to RM and RM+.131

Leveraging our connection, we study the algorithms that132

result from applying predictive variants of FTRL and OMD133

to choosing which halfspace to force. By applying predic-134

tive OMD we get the first predictive variant of RM+, that135

is, one that has regret that depends on how good the se-136

quence of predicted regret vectors is (as a side note of their137

paper, Brown and Sandholm (2019a) also tried a heuris-138

tic for optimism/predictiveness by counting the last regret139

vector twice in RM+, but this does not yield a predic-140

tive algorithm). We call our regret minimizer predictive re-141

gret matching+ (PRM+). We go on to instantiate CFR with142

PRM+ using the two standard techniques—alternation and 143

quadratic averaging—-and find that it often converges much 144

faster than CFR+ and every other prior CFR variant, some- 145

times by several orders of magnitude. We show this on a 146

large suite of common benchmark EFGs. However, we find 147

that on poker games (except shallow ones), discounted CFR 148

(DCFR) (Brown and Sandholm 2019a) is the fastest. We 149

conclude that our algorithm based on PRM+ yields the new 150

state-of-the-art convergence rate for the remaining games. 151

Our results also highlight the need to test on EFGs other 152

than poker, as our non-poker results invert the superiority of 153

prior algorithms as compared to recent results on poker. 154

2 Online Linear Optimization, 155

Regret Minimizers, and Predictions 156

At each time t, an oracle for the online linear optimization 157

(OLO) problem supports the following two operations, in 158

order: NEXTSTRATEGY returns a point xt ∈ D ⊆ Rn, 159

and OBSERVELOSS receives a loss vector `t that is meant 160

to evaluate the strategy xt that was last output. Specifically, 161

the oracle incurs a loss equal to 〈`t,xt〉. The loss vector `t 162

can depend on all past strategies that were output by the ora- 163

cle. The oracle operates online in the sense that each strategy 164

xt can depend only on the decision x1, . . . ,xt−1 output in 165

the past, as well as the loss vectors `1, . . . , `t−1 that were 166

observed in the past. No information about the future losses 167

`t, `t+1, . . . is available to the oracle at time t. The objective 168

of the oracle is to make sure the regret 169

RT (x̂) :=

T∑
t=1

〈`t,xt〉 −
T∑
t=1

〈`t, x̂〉 =

T∑
t=1

〈`t,xt − x̂〉,

which measures the difference between the total loss in- 170

curred up to time T compared to always using the fixed 171

strategy x̂, does not grow too fast as a function of time T . 172

Oracles that guarantee that RT (x̂) grow sublinearly in T 173

in the worst case for all x̂ ∈ D (no matter the sequence 174

of losses `1, . . . , `T observed) are called regret minimizers. 175

While most theory about regret minimizers is developed un- 176

der the assumption that the domain D is convex and com- 177

pact, in this paper we will need to consider sets D that are 178

convex and closed, but unbounded (hence, not compact). 179

Incorporating Predictions 180

A recent trend in online learning has been concerned with 181

constructing oracles that can incorporate predictions of the 182

next loss vector `t in the decision making (Chiang et al. 183

2012; Rakhlin and Sridharan 2013a,b). Specifically, a pre- 184

dictive oracle differs from a regular (that is, non-predictive) 185

oracle for OLO in that the NEXTSTRATEGY function re- 186

ceives a prediction mt ∈ Rn of the next loss `t at all times 187

t. Conceptually, a “good” predictive regret minimizer should 188

guarantee a superior regret bound than a non-predictive re- 189

gret minimizer if mt ≈ `t at all times t. Algorithms ex- 190

ist that can guarantee this. For instance, it is always pos- 191

sible to construct an oracle that guarantees that RT = 192

O(1+
∑T
t=1 ‖`t−mt‖2), which implies that the regret stays 193

constant when mt is clairvoyant. In fact, even stronger re- 194

gret bounds can be attained: for example, Syrgkanis et al. 195



Algorithm 1: (Predictive) FTRL
1 L0 ← 0 ∈ Rn

2 function NEXTSTRATEGY(mt)
. Setmt = 0 for non-predictive version

3 return arg min
x̂∈D

{
〈Lt−1 +mt, x̂〉+

1

η
ϕ(x̂)

}
4 function OBSERVELOSS(`t)

5 Lt ← Lt−1 + `t

Algorithm 2: (Predictive) OMD
1 z0 ∈ D such that∇ϕ(z0) = 0

2 function NEXTSTRATEGY(mt)
. Setmt = 0 for non-predictive version

3 return arg min
x̂∈D

{
〈mt, x̂〉+

1

η
Dϕ(x̂ ‖zt−1)

}
4 function OBSERVELOSS(`t)

5 zt ← arg min
ẑ∈D

{
〈`t, ẑ〉+

1

η
Dϕ(ẑ ‖zt−1)

}

(2015) show that the sharper Regret bounded by Variation in196

Utilities (RVU) condition can be attained, while Farina et al.197

(2019) focus on stable-predictivity.198

FTRL, OMD, and their Predictive Variants199

Follow-the-regularized-leader (FTRL) (Shalev-Shwartz and200

Singer 2007) and online mirror descent (OMD) are the two201

best known oracles for the online linear optimization prob-202

lem. Their predictive variants are relatively new and can be203

traced back to the works by Rakhlin and Sridharan (2013a)204

and Syrgkanis et al. (2015). Since the original FTRL and205

OMD algorithms correspond to predictive FTRL and pre-206

dictive OMD when the prediction mt is set to the 0 vector207

at all t, the implementation of FTRL in Algorithm 1 and208

OMD in Algorithm 2 captures both algorithms. In both al-209

gorithm, η > 0 is an arbitrary step size parameter, D ⊆ Rn210

is a convex and closed set, and ϕ : D → R≥0 is a 1-211

strongly convex differentiable regularizer (with respect to212

some norm ‖ · ‖). The symbol Dϕ( ‖ ) used in OMD de-213

notes the Bregman divergence associated with ϕ, defined as214

Dϕ(x ‖ c) := ϕ(x)−ϕ(c)−〈∇ϕ(c),x−c〉 for allx, c ∈ D.215

We state regret guarantees for (predictive) FTRL and (pre-216

dictive) OMD in Proposition 1. Our statements are slightly217

more general than those by Syrgkanis et al. (2015), in that218

we (i) do not assume that the domain is a simplex, and (ii) do219

not use quantities that might be unbounded in non-compact220

domains D. A proof of the regret bounds is in Appendix A221

for FTRL and Appendix B for OMD.222

Proposition 1. At all times T , the regret cumulated by (pre-223

dictive) FTRL (Algorithm 1) and (predictive) OMD (Algo-224

rithm 2) compared to any strategy x̂ ∈ D is bounded as225

RT (x̂) ≤ ϕ(x̂)

η
+η

T∑
t=1

‖`t−mt‖2∗−
1

cη

T−1∑
t=1

‖xt+1−xt‖2,

(1)
where c = 4 for FTRL and c = 8 for OMD, and where ‖ · ‖∗226

denotes the dual of the norm ‖ · ‖ with respect to which ϕ is227

1-strongly convex.228

Proposition 1 implies that, by appropriately setting the229

step size parameter (for example, η = T−1/2), (predictive)230

FTRL and (predictive) OMD guarantee RT (x̂) = O(T 1/2)231

for all x̂. Hence, (predictive) FTRL and (predictive) OMD232

are regret minimizers.233

3 Blackwell Approachability 234

Blackwell approachability (Blackwell 1956) generalizes the 235

problem of playing a repeated two-player game to games 236

whose utilites are vectors instead of scalars. In a Blackwell 237

approachability game, at all times t, two players interact in 238

this order: first, Player 1 selects an action xt ∈ X ; then, 239

Player 2 selects an action yt ∈ Y; finally, Player 1 incurs the 240

vector-valued payoff u(xt,yt) ∈ Rd, where u is a biaffine 241

function. The sets X ,Y of player actions are assumed to be 242

compact convex sets. Player 1’s objective is to guarantee that 243

the average payoff converges to some desired closed convex 244

target set S ⊆ Rd. Formally, given target set S ⊆ Rd, Player 245

1’s goal is to pick actions x1,x2, . . . ∈ X such that no mat- 246

ter the actions y1,y2, . . . ∈ Y played by Player 2, 247

min
ŝ∈S

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt,yt)

∥∥∥∥∥
2

→ 0 as T →∞. (2)

A central concept in the theory of Blackwell approacha- 248

bility is the following. 249

Definition 1 (Approachable halfspace, forcing function). 250

Let (X ,Y,u(·, ·), S) be a Blackwell approachability game 251

as described above and let H ⊆ Rd be a halfspace, that 252

is, a set of the form H = {x ∈ Rd : a>x ≤ b} for some 253

a ∈ Rd, b ∈ R. The halfspace H is said to be forceable if 254

there exists a strategy of Player 1 that guarantees that the 255

payoff is in H no matter the actions played by Player 2. In 256

symbols, H is forceable if there exists x∗ ∈ X such that for 257

all y ∈ Y , u(x∗,y) ∈ H . When this is the case, we call 258

action x∗ a forcing action for H . 259

Blackwell’s approachability theorem (Blackwell 1956) 260

states that goal (2) can be attained if and only if all halfs- 261

pacesH ⊇ S are forceable. Blackwell approachability has a 262

number of applications and connections to other problems in 263

the online learning and game theory literature (e.g., (Black- 264

well 1954; Foster 1999; Hart and Mas-Colell 2000)). 265

In this paper we leverage the Blackwell approachabil- 266

ity formalism to draw new connections between FTRL and 267

OMD with RM and RM+, respectively. We also intro- 268

duce predictive Blackwell approachability, and show that it 269

can be used to develop new state-of-the-art algorithms for 270

simplex domains and imperfect-information extensive-form 271

zero-sum games. 272



Algorithm 3: From OLO to (predictive) approachability
Data: D ⊆ Rn convex and closed, s.t. K := C◦ ∩ Bn2 ⊆ D ⊆ C◦

L online linear optimization algorithm for domain D
1 function NEXTSTRATEGY(vt)

. Set vt = 0 for non-predictive version

2 θt ← L.NEXTSTRATEGY(−vt)
3 return xt ∈ X

4 function RECEIVEPAYOFF(u(xt,yt))
5 L.OBSERVELOSS(−u(xt,yt))

Figure 1: Reduction from an OLO oracle to a strategy for
playing a Blackwell approachability game.

4 From Online Linear Optimization to273

Blackwell Approachability274

Abernethy, Bartlett, and Hazan (2011) showed that it is al-275

ways possible to convert a regret minimizer into an algo-276

rithm for a Blackwell approachability game (that is, an al-277

gorithm that chooses actions xt at all times t in such a way278

that goal (2) holds no matter the actions y1,y2, . . . played279

by the opponent). In this section, we slightly extend their280

constructive proof by allowing more flexibility in the choice281

of the domain of the regret minimizer. This extra flexibility282

will be needed to show that RM and RM+ can be obtained283

directly from FTRL and OMD, respectively.284

We start from the case where the target set in the Black-285

well approachability game is a closed convex cone C ⊆ Rn.286

As Proposition 2 shows, Algorithm 3 provides a way of287

playing the Blackwell approachability game that guarantees288

that (2) is satisfied (the proof is in Appendix C). In broad289

strokes, Algorithm 3 works as follows (see also Figure 2):290

the regret minimizer has as its decision space the polar cone291

to C (or a subset thereof), and its decision is used as the nor-292

mal vector in choosing a halfspace to force. At time t, the293

algorithm plays a forcing action xt for the halfspace Ht in-294

duced by the last decision θt output by the OLO oracle L.295

Then, L incurs the loss −u(xt,yt), where u is the payoff296

function of the Blackwell approachability game.297

C

C◦

Kθt

Ht

Figure 2: Pictorial depiction of Algorithm 3’s inner working:
at all times t, the algorithm plays a forcing action for the
halfspaceHt induced by the last decision output by the OLO
oracle L.

Proposition 2. Let (X ,Y,u(·, ·), C) be an approachability 298

game, where C ⊆ Rn is a closed convex cone, such that 299

each halfspace H ⊇ C is approachable (Definition 1). Let 300

K := C◦∩Bn2 , whereC◦ = {x ∈ Rn : 〈x,y〉 ≤ 0 ∀y ∈ C} 301

denotes the polar cone to C and Bn2 := {x ∈ Rn : ‖x‖2 ≤ 302

1} is the unit ball. Finally, let L be an oracle for the OLO 303

problem (for example, the FTRL or OMD algorithm) whose 304

domain of decisions is any closed convex set D, such that 305

K ⊆ D ⊆ C◦. Then, at all times T , the distance between 306

the average payoff cumulated by Algorithm 3 and the target 307

cone C is upper bounded as 308

min
ŝ∈C

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt,yt)

∥∥∥∥∥
2

=
1

T
max
x̂∈K

RTL(x̂),

whereRTL(x̂) is the regret cumulated byL up to time T com- 309

pared to always playing x̂ ∈ K. 310

As K is compact, by virtue of L being a regret minimizer, 311
1/T ·maxx̂∈KRT (x̂)→ 0 as T →∞, Algorithm 3 satisfies 312

the Blackwell approachability goal (2). The fact that Propo- 313

sition 2 applies only to conic target sets does not limit its 314

applicability. Indeed, Abernethy, Bartlett, and Hazan (2011) 315

showed that any Blackwell approachability game with a 316

non-conic target set can be efficiently transformed to another 317

one with a conic target set. In this paper, we only need to fo- 318

cus on conic target sets. 319

The construction by Abernethy, Bartlett, and Hazan 320

(2011) coincides with Proposition 2 in the special case 321

where the domain D is set to D = K. In the next section, 322

we will need our added flexibility in the choice of D: in or- 323

der to establish the connection between RM+ and OMD, it 324

is necessary to set D = C◦ 6= K. 325

5 Connecting FTRL, OMD with RM, RM+
326

Constructing a regret minimizer for a simplex domain 327

∆n := {x ∈ R≥0 : ‖x‖1 = 1} can be reduced to con- 328

structing an algorithm for a particular Blackwell approach- 329

ability game Γ := (∆n,Rn,u(·, ·),Rn≤0) that we now de- 330

scribe Hart and Mas-Colell (2000). For all i ∈ {1, . . . , n}, 331

the i-th component of the vector-valued payoff function u 332

measures the change in regret incurred at time t, compared 333

to always playing the i-th vertex ei of the simplex. Formally, 334

u : ∆n × Rn → Rn is defined as 335

u(xt, `t) = 〈`t,xt〉1− `t, (3)
where 1 is the n-dimensional vector whose components are 336

all 1. It is known that Γ is such that the halfspace Ha := 337

{x ∈ Rn : 〈x,a〉 ≤ 0} ⊇ Rn≤0 is forceable (Definition 1) 338

for all a ∈ Rn≥0. A forcing action forHa is given by g(a) := 339

a/‖a‖1 ∈ ∆n when a 6= 0; when a = 0, any x ∈ ∆n is a 340

forcing action. The following is known. 341

Lemma 1. The regretRT (x̂) = 1
T

∑T
t=1〈`t,xt− x̂〉 cumu- 342

lated up to any time T by the decisions x1, . . . ,xT ∈ ∆n 343

compared to any x̂ ∈ ∆n is related to the distance of the 344

average Blackwell payoff from the target cone Rn≤0 as 345

1

T
RT (x̂) ≤ min

ŝ∈Rn
≤0

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt, `t)

∥∥∥∥∥
2

. (4)



Algorithm 4: (Predictive) regret matching
1 r0 ← 0 ∈ Rn, x0 ← 1/n ∈ ∆n

2 function NEXTSTRATEGY(mt)
. Setmt = 0 for non-predictive version

3 θt ← [rt−1 + 〈mt,xt−1〉1−mt]+

4 if θt 6= 0 return xt ← θt / ‖θt‖1
5 else return xt ← arbitrary point in ∆n

6 function OBSERVELOSS(`t)
7 rt ← rt + 〈`t,xt〉1− `t

Algorithm 5: (Predictive) regret matching+

1 z0 ← 0 ∈ Rn, x0 ← 1/n ∈ ∆n

2 function NEXTSTRATEGY(mt)
. Setmt = 0 for non-predictive version

3 θt ← [zt−1 + 〈mt,xt−1〉1−mt]+

4 if θt 6= 0 return xt ← θt / ‖θt‖1
5 else return xt ← arbitrary point in ∆n

6 function OBSERVELOSS(`t)
7 zt ← [zt−1 + 〈`t,xt〉1− `t]+

So, a strategy for the Blackwell approachability game Γ is a346

regret-minimizing strategy for the simplex domain ∆n.347

When the approachability game Γ is solved by means of348

the constructive proof of Blackwell’s approachability theo-349

rem (Blackwell 1956), one recovers a particular regret min-350

imizer for the domain ∆n known as the regret matching351

(RM) algorithm Hart and Mas-Colell (2000). The same can-352

not be said for the closely related RM+ algorithm Tammelin353

(2014), which converges significantly faster in practice than354

RM, as has been reported many times.355

We now uncover deep and surprising connections be-356

tween RM, RM+ and the OLO algorithms FTRL, OMD by357

solving Γ using Algorithm 3. Let Lftrl
η be the FTRL algo-358

rithm instantiated over the conic domain D = Rn≥0 with the359

1-strongly convex regularizer ϕ(x) = 1/2 ‖x‖22 and an arbi-360

trary step size parameter η. Similarly, let Lomd
η be the OMD361

algorithm instantiated over the same domain D = Rn≥0362

with the same convex regularizer ϕ(x) = 1/2 ‖x‖22. Since363

Rn≥0 = (Rn≤0)◦, D satisfies the requirements of Proposi-364

tion 2. So, Lftrl
η and Lomd

η can be plugged into Algorithm 3 to365

compute a strategy for the Blackwell approachability game366

Γ. When that is done, the following can be shown (all proofs367

for this section are in Appendix D).368

Theorem 1 (FTRL reduces to RM). For all η > 0, when Al-369

gorithm 3 is set up with D = Rn≥0 and regret minimizer Lftrl
η370

to play Γ, it produces the same iterates as the RM algorithm.371

Theorem 2 (OMD reduces to RM+). For all η > 0, when372

Algorithm 3 is set up with D = Rn≥0 and regret minimizer373

Lomd
η to play Γ, it produces the same iterates as the RM+374

algorithm.375

Pseudocode for RM and RM+ is given in Algorithms 4376

and 5 (whenmt = 0). In hindsight, the equivalence between377

RM and RM+ with FTRL and OMD is clear. The computa-378

tion of θt on Line 3 in both PRM and PRM+ corresponds379

to the closed-form solution for the minimization problems380

of Line 4 in FTRL and Line 3 in OMD, respectively, in ac-381

cordance with Line 2 of Algorithm 3. Next, Lines 4 and 5 in382

both PRM and PRM+ compute the forcing action required383

in Line 3 of Algorithm 3 using the function g defined above.384

Finally, in accordance with Line 6 of Algorithm 3, Line 7 of385

PRM corresponds to Line 6 of FTRL, and Line 7 of PRM+386

to Line 5 of OMD.387

6 Predictive Blackwell Approachability, and 388

Predictive RM and RM+
389

It is natural to wonder whether it is possible to devise an 390

algorithm for Blackwell approachability games that is able 391

to guarantee faster convergence to the target set when good 392

predictions of the next vector payoff are available. We call 393

this setup predictive Blackwell approachability. We answer 394

the question in the positive by leveraging Proposition 2. 395

Since the loss incurred by the regret minimizer is `t := 396

−u(xt,yt) (Line 5 in Algorithm 3), any prediction vt of 397

the payoff u(xt,yt) is naturally a prediction about the next 398

loss incurred by the underlying regret minimizer L used in 399

Algorithm 3. Hence, as long as the prediction is propagated 400

as in Line 2 in Algorithm 3, Proposition 2 holds verbatim. In 401

particular, we prove the following. All proofs for this section 402

are in Appendix E. 403

Proposition 3. Let (X ,Y,u(·, ·), S) be a Blackwell ap- 404

proachability game, where every halfspace H ⊇ S is ap- 405

proachable (Definition 1). For all T , given predictions vt 406

of the payoff vectors, there exist algorithms for playing the 407

game (that is, pick xt ∈ X at all t) that guarantee 408

min
ŝ∈S

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt,yt)

∥∥∥∥∥
2

≤ 1√
T

(
1+

2

T

T∑
t=1

‖u(xt,yt)−vt‖22

)
.

We now focus on how predictive Blackwell approacha- 409

bility ties into our discussion of RM and RM+. In Sec- 410

tion 5 we showed that when Algorithm 3 is used in con- 411

junction with FTRL and OMD on the Blackwell approach- 412

ability game Γ of Section 5, the iterates coincide with those 413

of RM and RM+, respectively. In the rest of this section 414

we investigate the use of predictive FTRL and predictive 415

OMD in that framework. Specifically, we use predictive 416

FTRL and preditictive OMD as the regret regret minimiz- 417

ers to solve the Blackwell approachability game introduced 418

in Section 5, and coin the resulting predictive regret mini- 419

mization algorithms for simplex domains predictive regret 420

matching (PRM) and predictive regret matching+ (PRM+), 421

respectively. Ideally, starting from the prediction mt of the 422

next loss, we would want the prediction vt of the next util- 423

ity in the equivalent Blackwell game Γ (Section 5) to be 424

vt = 〈mt,xt〉1−mt to maintain symmetry with (3). How- 425

ever, vt is computed before xt is computed, and xt depends 426

on vt, so the previous expression requires the computation 427

of a fixed point. To sidestep this issue, we let 428

vt := 〈mt,xt−1〉1−mt



instead. We give pseudocode for PRM and PRM+ as Algo-429

rithms 4 and 5. In the rest of this section, we discuss formal430

guarantees for PRM and PRM+.431

Theorem 3 (Correctness of PRM, PRM+). Let Lftrl*
η and432

Lomd*
η denote the predictive FTRL and predictive OMD algo-433

rithms instantiated with the same choice of regularizer and434

domain as in Section 5, and predictions vt as defined above435

for the Blackwell approachability game Γ. For all η > 0,436

when Algorithm 3 is set up with D = Rn≥0, the regret min-437

imizer Lftrl*
η (resp., Lomd*

η ) to play Γ, it produces the same438

iterates as the PRM (resp., PRM+) algorithm. Furthermore,439

PRM and PRM+ are regret minimizer for the domain ∆n,440

and at all times T satisfy the regret bound441

RT (x̂) ≤
√

2

(
T∑
t=1

‖u(xt, `t)− vt‖22

)1/2
.

At a high level, the main insight behind the regret bound of442

Theorem 3 is to combine Proposition 2 with the guarantees443

of predictive FTRL and predictive OMD (Proposition 1). In444

particular, combining (4) with Proposition 2, we find that the445

regret RT cumulated by the strategies x1, . . . ,xT produced446

up to time T by PRM and PRM+ satisfies447

1

T
max
x̂∈∆n

RT (x̂) ≤ 1

T
max

x̂∈Rn
≥0
∩Bn

2

RTL(x̂), (5)

where L = Lftrl*
η for PRM and L = Lomd*

η for PRM+. Since448

the domain of the maximization on the right hand side is a449

subset of the domain D = Rn≥0 of L, the bound in Proposi-450

tion 1 holds, and in particular451

max
x̂∈∆n

RT (x̂)≤ max
x̂∈Rn

≥0
∩Bn

2

{
‖x̂‖22
2η

+η

T∑
t=1

‖u(xt, `t)−vt‖22

}

≤

(
1

2η
+ η

T∑
t=1

‖u(xt, `t)− vt‖22

)
, (6)

where in the first inequality we used the fact that ϕ(x̂) =452

‖x̂‖22/2 by construction and in the second inequality we453

used the definition of unit ball Bn2 . Finally, using the fact454

that the iterates produced by PRM and PRM+ do not de-455

pend on the chosen step size η > 0 (first part of Theorem 3),456

we conclude that (6) must hold true for any η > 0, and so in457

particular also the η > 0 that minimizes the right hand side:458

max
x̂∈∆n

RT (x̂) ≤ inf
η>0

{
1

2η
+ η

T∑
t=1

‖u(xt, `t)− vt‖22

}

=
√

2

(
T∑
t=1

‖u(xt, `t)− v2‖22

)1/2
.

7 Experiments459

We conduct experiments on solving two-player zero-sum460

games. As mentioned previously, for EFGs the CFR frame-461

work is used for decomposing regrets into local regret mini-462

mization problems at each simplex corresponding to a de-463

cision point in the game (Zinkevich et al. 2007; Farina,464

Kroer, and Sandholm 2019a), and we do the same. How- 465

ever, as the regret minimizer for each local decision point, 466

we use PRM+ instead of RM. In addition, we apply two 467

heuristics that usually lead to better practical performance: 468

we use quadratic averaging of the strategy iterates, that is, 469

we average the sequence-form strategies x1, . . . ,xT using 470

the formula 6
T (T+1)(2T+1)

∑T
t=1 t

2xt, and we use the alter- 471

nating updates scheme. We call this algorithm PCFR+. We 472

compare PCFR+ to the prior state-of-the-art CFR variants: 473

CFR+ (Tammelin 2014), Discounted CFR (DCFR) with its 474

recommended parameters (Brown and Sandholm 2019a), 475

and Linear CFR (LCFR) (Brown and Sandholm 2019a). 476

We conduct the experiments on common benchmark 477

games. We show results on seven games in the main body 478

of the paper. An additional 11 games are shown in the ap- 479

pendix. The experiments shown in the main body are repre- 480

sentative of those in the appendix. A description of all the 481

games is in Appendix G, and the results are shown in Fig- 482

ure 3. The x-axis shows the number of iterations of each 483

algorithm. Every algorithm pays almost exactly the same 484

cost per iteration, since the predictions require only one ad- 485

ditional thresholding step in PCFR+. For each game, the top 486

plot shows on the y-axis the Nash gap, while the bottom plot 487

shows the accuracy in our predictions of the regret vector, 488

measured as the average `2 norm of the difference between 489

the actual loss `t received and its prediction mt across all 490

regret minimizers at all decision points in the game. For all 491

non-predictive algorithms (CFR+, LCFR, and DCFR), we 492

letmt = 0. For our predictive algorithm, we setmt = `t−1 493

at all times t ≥ 2 andm1 = 0. Both y-axes are in log scale. 494

On Battleship and Pursuit-evasion, PCFR+ is faster than the 495

other algorithms by 3-6 orders of magnitude already after 496

500 iterations, and around 10 orders of magnitude after 2000 497

iterations. On Goofspiel, PCFR+ is also significantly faster 498

than the other algorithms, by 0.5-1 order of magnitude. Fi- 499

nally, in the River endgame, our only poker experiment here, 500

PCFR+ is slightly faster than CFR+, but slower than DCFR. 501

Finally, PRM+ converges very rapidly on the smallmatrix 502

game, a 2-by-2 matrix game where CFR+ and other RM- 503

based methods converge at a rate slower than T−1 Farina, 504

Kroer, and Sandholm (2019b). Across all non-poker games 505

in the appendix, we also find that PCFR+ beats the other al- 506

gorithms, often by several orders of magnitude. We conclude 507

that PCFR+ seems to be the fastest method for solving non- 508

poker EFGs. The only exception to the non-poker-game em- 509

pirical rule is Liar’s Dice (game [B]), where our predictive 510

method performs comparably to DCFR. In the appendix, we 511

also test CFR+ with quadratic averaging (as opposed to the 512

linear averaging that CFR+ normally uses). This does not 513

change any of our conclusions, except that for Liar’s Dice, 514

CFR+ performs comparably to DCFR and PCFR+ when us- 515

ing quadratic averaging (in fact, quadratic averaging hurts 516

CFR+ in every game except poker and Liar’s Dice). 517

We tested on three poker games, the River endgame 518

shown here (which is a real endgame encountered by the Li- 519

bratus AI (Brown and Sandholm 2017) in the man-machine 520

“Brains vs. Artificial Intelligence: Upping the Ante” com- 521

petition), as well as Kuhn and Leduc poker in the appendix. 522
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[G] Leduc poker (13 ranks) Dimension of the games

Decision
points Actions Leaves

[A] 4.4×106 5.3×106 1.7×106
[B] 2.5×104 4.9×104 1.5×105
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Figure 3: Performance of PCFR+, CFR+, DCFR, and LCFR on five EFGs. In all plots, the x axis is the number of iterations of
each algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a log scale), the bottom plot shows and
the average prediction error (on a log scale).

On Kuhn poker, PCFR+ is extremely fast and the fastest of523

the algorithms. That game is known to be significantly easier524

than deeper EFGs for predictive algorithms (Farina, Kroer,525

and Sandholm 2019b). On Leduc poker as well as the River526

endgame, the predictions in PCFR+ do not seem to help as527

much as in other games. On the River endgame, the perfor-528

mance is essentially the same as that of CFR+. On Leduc529

poker, it leads to a small speedup over CFR+. On both of530

those games, DCFR is fastest. In contrast, DCFR actually531

performs worse than CFR+ in our non-poker experiments,532

though it is sometimes on par with CFR+. In the appendix,533

where we try quadratic averaging in CFR+, we find that for534

poker games this does speed up CFR+, and allows it to be535

slightly faster than PCFR+ on the River endgame and Leduc536

poker. We conclude that PCFR+ is much faster than CFR+537

and DCFR on non-poker games, whereas on poker games538

DCFR is the fastest.539

The convergence rate of PCFR+ is closely related to540

how good the predictions mt of `t are. On Battleship and541

Pursuit-evasion, the predictions become extremely accurate542

very rapidly, and PCFR+ converges at an extremely fast rate.543

On Goofspiel, the predictions are fairly accurate (the error is544

of the order 10−5) and PCFR+ is still significantly faster545

than the other algorithms. On the River endgame, the aver-546

age prediction error is of the order 10−3, and PCFR+ per-547

forms on par with CFR+, and slower than DCFR. Similar548

trends prevail in the experiments in the appendix. Additional 549

experimental insights are described in the appendix. 550

8 Conclusions and Future Research 551

We extended Abernethy, Bartlett, and Hazan (2011)’s re- 552

duction of Blackwell approachability to regret minimiza- 553

tion beyond the compact setting. This extended reduction al- 554

lowed us to show that FTRL applied to the decision of which 555

halfspace to force in Blackwell approachability is equiva- 556

lent to the regret matching algorithm. OMD applied to the 557

same problem turned out to be equivalent to RM+. Then, we 558

showed that the predictive variants of FTRL and OMD yield 559

predictive algorithms for Blackwell approachability, as well 560

as predictive variants of RM and RM+. Combining PRM+ 561

with CFR, we introduced the PCFR+ algorithm for solving 562

EFGs. Experiments across many common benchmark games 563

showed that PCFR+ outperforms the prior state-of-the-art 564

algorithms on non-poker games by orders of magnitude. 565

This work also opens future directions. Can PRM+ guar- 566

antee T−1 convergence on matrix games like optimistic 567

FTRL and OMD, or do the less stable updates prevent 568

that? Can one develop a predictive variant of DCFR, which 569

is faster on poker domains? Can one combine DCFR and 570

PCFR+, so DCFR would be faster initially but PCFR+ 571

would overtake? If the cross-over point could be approxi- 572

mated, this might yield a best-of-both-worlds algorithm. 573



9 Broader Impact574

In this paper, we contributed several theoretical and algo-575

rithmic results. The most direct impact is practical advance-576

ments in equilibrium computation: in most cases, the re-577

gret minimizers we introduce converge to equilibrium in578

extensive-form imperfect-information games faster than the579

prior state of the art.580

The downstream applications of our results are hard to581

predict. For one, our results could be used to compute strong,582

game-theoretic strategies in strategic interactions between583

rational agents. If all agents in the interaction have compara-584

ble access to equilibrium computation technology, this can585

result in improved social welfare and economic efficiency.586

On the other hand, if only a small subset of agents have ac-587

cess to technology that is able to compute strong strategies,588

those strategies could be used to maximally exploit agents589

that do not have access to such technology. This risk is es-590

pecially true in zero-sum interactions, where a gain in value591

for one agent has to be compensated by a loss in value from592

one (or more) of the other agents.593

We believed that publishing this paper and disseminating594

fast algorithms for equilibrium computation is a first step595

towards mitigating the risk of unequal access to equilibrium-596

finding technology.597
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Additional Bibliographic Remarks698

1. Gordon’s Lagrangian Hedging framework (Gordon 2005, 2007) partially overlaps with the construction by Abernethy,699

Bartlett, and Hazan (2011) that we used in the paper. It appears that Abernethy et al. were not aware of Gordon’s results. We700

did not investigate to what extent the predictive point of view we adopted in the paper could apply to Gordon’s result.701

2. In his PhD thesis, Burch (2018) mentions an algorithm that he coins “optimistic RM+”. No theory is provided, and unfortu-702

nately Burch never defined the algorithm formally, so it is not clear whether his algorithm is the same as PRM+ as defined703

in Algorithm 5 in our paper. Brown, Kroer, and Sandholm (2017) gave an interpretation of optimistic RM+ by Burch that704

would imply it is different from PRM+. We indend to check with Burch directly for the final version of this paper.705
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A Analysis of (Predictive) FTRL711

In the proof of Proposition 5 we will use the following technical lemma (see, e.g, Farina, Kroer, and Sandholm (2019)).712

Lemma 2. Let ϕ : D → R≥0 be a 1-strongly convex differentiable regularizer with respect to some norm ‖ · ‖, and let ‖ · ‖∗ be713

the dual norm to ‖ · ‖. Finally, let ψ : Rn → D be the function714

ψ : g 7→ arg min
x̂∈D

{
〈g, x̂〉+

1

η
ϕ(x̂)

}
.

Then, ψ is η-Lipschitz continuous with respect to the dual norm, in the sense that715

‖ψ(g)−ψ(g′)‖ ≤ η ‖g − g′‖∗ ∀g, g′ ∈ Rn.

Proposition 4. Let ϕ : D → R≥0 be a 1-strongly regularizer with respect to some norm ‖ · ‖, and let ‖ · ‖∗ be the dual norm to716

‖ · ‖. For all x̂ ∈ D, all η > 0, and all times T , the regret cumulated by (predictive) FTRL (Algorithm 1) compared to any fixed717

strategy x̂ ∈ D is bounded as718

RT (x̂) ≤ ϕ(x̂)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

4η

T−1∑
t=1

‖xt+1 − xt‖2. (7)

Proof. We combine several techniques and insights from the original works of Rakhlin and Sridharan (2013) and Syrgkanis719

et al. (2015). Let ψ : Rn → D be the function that maps720

ψ : g 7→ arg min
x̂∈D

{
〈g, x̂〉+

1

η
ϕ(x̂)

}
.

With that notation, at all times t, predictive FTRL outputs the decision xt = ψ(Lt−1 +mt), where Lt−1 =
∑t−1
τ=1 `

τ . For the721

purpose of this proof, we also introduce the sequence wt := ψ(Lt) for t = 1, 2, . . . . For any x̂ ∈ D,722

RT (x̂) =

T∑
t=1

〈`t,xt − x̂〉 =

T∑
t=1

〈mt,xt −wt〉+ 〈`t,wt − x̂〉︸ ︷︷ ︸
A

+

T∑
t=1

〈`t −mt,xt −wt〉︸ ︷︷ ︸
B

We now bound each of the three terms on the right-hand side:723

A A critical observation to bound A is the following. Since ψ(g) is a minimizer of 〈g, x̂〉 + 1
ηϕ(x̂), then by the fist-order724

optimality conditions,725 〈
g +

1

η
∇ϕ(ψ(g)), ξ −ψ(g)

〉
≥ 0 ∀g ∈ Rn, ξ ∈ D. (8)

Using the hypothesis on the 1-strongly convexity of ϕ and applying (8), for all ξ we obtain726

1

η
ϕ(ξ) + 〈g, ξ〉 ≥ 1

η
ϕ(ψ(g)) + 〈g,ψ(g)〉+

〈
g +

1

η
∇ϕ(ψ(g)), ξ −ψ(g)

〉
+

1

2η
‖ξ −ψ(g)‖2



≥ 1

η
ϕ(ψ(g)) + 〈g,ψ(g)〉+

1

2η
‖ξ −ψ(g)‖2. (9)

By applying (9) to the two choices (g, ξ) = (Lt−1,xt), (Lt−1 +mt,wt), respectively, we have the two inequalities727

1

η
ϕ(xt) + 〈Lt−1,xt〉 ≥ 1

η
ϕ(wt−1) + 〈Lt−1,wt−1〉+

1

2η
‖xt −wt−1‖2

1

η
ϕ(wt) + 〈Lt−1 +mt,wt〉 ≥ 1

η
ϕ(xt) + 〈Lt−1 +mt,xt〉+

1

2η
‖wt − xt‖2.

Summing the two above inequalities and rearranging terms yields728

〈mt,xt −wt〉 ≤ 1

η
(ϕ(wt)− ϕ(wt−1)) + 〈Lt−1,wt −wt−1〉 − 1

2η

(
‖xt −wt−1‖2 + ‖wt − xt‖2

)
.

Summing over t = 1, . . . , T and simplifying telescopic terms,729

T∑
t=1

〈mt,xt −wt〉 ≤ 1

η
(ϕ(wT )− ϕ(w0)) +

T∑
t=1

〈Lt−1,wt −wt−1〉 −
T∑
t=1

1

2η

(
‖xt −wt−1‖2 + ‖wt − xt‖2

)
≤ 1

η
(ϕ(wT )− ϕ(w0)) +

T∑
t=1

〈Lt−1,wt −wt−1〉 −
T−1∑
t=1

1

2η

(
‖xt+1 −wt‖2 + ‖wt − xt‖2

)
≤ 1

η
(ϕ(wT )− ϕ(w0)) +

T∑
t=1

〈Lt−1,wt −wt−1〉 −
T−1∑
t=1

1

4η
‖xt+1 − xt‖2,

where the second inequality follows by removing a term from the last parenthesis and rearranging, and the third from the730

parallelogram inequality ‖a‖2 + ‖b‖2 ≥ 1
2‖a+ b‖2 valid for all choices of vectors a, b and norm ‖ · ‖.731

In order to recognize A on the left-hand side, we add the quantity
∑T
t=1〈`t,wt − x̂〉 on both sides, and obtain732

A ≤ 1

η
(ϕ(wT )− ϕ(w0)) +

T∑
t=1

(
〈`t,wt − x̂〉+ 〈Lt−1,wt −wt−1〉

)
− 1

4η

T−1∑
t=1

‖xt+1 − xt‖2

=
1

η
(ϕ(wT )− ϕ(w0)) +

T∑
t=1

(
〈Lt,wt〉 − 〈Lt−1,wt−1〉 − 〈`t, x̂〉

)
− 1

4η

T−1∑
t=1

‖xt+1 − xt‖2

=
1

η
(ϕ(wT )− ϕ(w0)) + 〈LT ,wT − x̂〉 − 1

4η

T−1∑
t=1

‖xt+1 − xt‖2, (10)

where we simplified the telescopic sum
∑T
t=1〈Lt,wt〉 − 〈Lt−1,wt−1〉 = 〈LT ,wT 〉 in the last step. Finally, using733

Equation (9) with g = LT , ξ = x̂, we can write734

1

η
ϕ(x̂) + 〈LT , x̂〉 ≥ 1

η
ϕ(wT ) + 〈LT ,wT 〉 =⇒ 1

η
ϕ(wT ) + 〈LT ,wT − x̂〉 ≤ 1

η
ϕ(x̂),

and substituting the last expression into (10), we obtain735

A ≤ 1

η
(ϕ(x̂)− ϕ(w0))−

T−1∑
t=1

1

4η
‖xt+1 − xt‖2 ≤ ϕ(x̂)

η
− 1

4η

T−1∑
t=1

‖xt+1 − xt‖2. (11)

B By applying the generalized Cauchy-Schwarz inequality and Lemma 2,736

〈`t −mt,xt −wt〉 ≤ ‖`t −mt‖∗ ‖xt −wt‖ ≤ η‖`t −mt‖2∗.

Hence,737

B =

T∑
t=1

〈`t −mt,xt −wt〉 ≤ η
T∑
t=1

‖`t −mt‖2∗. (12)

Finally, summing the bounds for A (11) and for B (12), we obtain the statement.738



B Analysis of (Predictive) OMD739

In the proof of Proposition 5 we will use the two following technical lemmas.740

Lemma 3. For any a, b ∈ Rn and ρ > 0, it holds that 〈a, b〉 ≤ ρ

2
‖a‖2∗ +

1

2ρ
‖b‖2.741

Proof. By the arithmetic mean-geometric mean inequality, we have742

ρ

2
‖a‖2∗ +

1

2ρ
‖b‖2 =

1

2

(
ρ‖a‖2∗ +

1

ρ
‖b‖2

)
≥
√
‖a‖2∗ · ‖b‖2 = ‖a‖∗ · ‖b‖ ≥ 〈a, b〉,

where we used the generalized Cauchy-Schwarz inequality in the last step.743

Lemma 4. Let D ⊆ Rd be closed and convex, let g ∈ Rn, c ∈ D, and Let ϕ : D → R≥0 be a 1-strongly convex differentiable744

regularizer with respect to some norm ‖ · ‖, and let ‖ · ‖∗ be the dual norm to ‖ · ‖. Then,745

a∗ := arg min
â∈D

{
〈g, â〉+

1

η
Dϕ(â ‖ c)

}
is well defined (that is, the minimizer exists and is unique), and for all â ∈ D satisfies the inequality746

〈g,a∗ − â〉 ≤ 1

η

(
Dϕ(â ‖ c)−Dϕ(â ‖a∗)−Dϕ(a∗ ‖ c)

)
.

Proof. The necessary first-order optimality conditions for the argmin problem in the statement is747 〈
∇a
[
〈g,a〉+

1

η
Dϕ(a ‖ c)

]
(a∗),a∗ − â

〉
≥ 0 ∀ â ∈ D.

Expanding the gradient, we have that for all â ∈ D748 〈
g − 1

η

(
∇ϕ(a∗)−∇ϕ(c)

)
,a∗ − â

〉
≥ 0 ⇐⇒ 〈g,a∗ − â〉 ≤ 1

η

〈
∇ϕ(a∗)−∇ϕ(c),a∗ − â

〉
.

Finally, noting that749 〈
∇ϕ(a∗)−∇ϕ(c),a∗ − â

〉
=
(
ϕ(â)− ϕ(c)− 〈∇ϕ(c), â− c〉

)
−
(
ϕ(â)− ϕ(a∗)− 〈∇ϕ(a∗), â− a∗〉

)
−
(
ϕ(a∗)− ϕ(c)− 〈∇ϕ(c),a∗ − c〉

)
= Dϕ(â ‖ c)−Dϕ(â ‖a∗)−Dϕ(a∗ ‖ c)

yields the statement.750

Proposition 5. Let ϕ : D → R≥0 be a 1-strongly convex differentiable regularizer with respect to some norm ‖ ·‖, and let ‖ ·‖∗751

be the dual norm to ‖ · ‖. For all x̂ ∈ D, all η > 0, and all times T , the regret cumulated by (predictive) OMD (Algorithm 2)752

compared to any fixed strategy x̂ ∈ D is bounded as753

RT (x̂) ≤ Dϕ(x̂ ‖ z0)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

8η

T−1∑
t=1

‖xt+1 − xt‖2. (13)

Proof. We combine several techniques and insights from the original works of Rakhlin and Sridharan (2013) and Syrgkanis754

et al. (2015). For any x̂ ∈ D,755

RT (x̂) =

T∑
t=1

〈`t,xt − x̂〉 =

T∑
t=1

(
〈`t −mt,xt − zt〉︸ ︷︷ ︸

A

+ 〈mt,xt − zt〉︸ ︷︷ ︸
B

+ 〈`t, zt − x̂〉︸ ︷︷ ︸
C

)

We now bound each of the three terms on the right-hand side:756

A We use Lemma 3 with ρ = 2η to bound the first term:757

〈`t −mt,xt − zt〉 ≤ η‖`t −mt‖2∗ +
1

4η
‖xt − zt‖2.



B C In order to bound these terms, we use Lemma 4:758

〈mt,xt − zt〉 ≤ 1

η

(
Dϕ(zt ‖ zt−1)−Dϕ(zt ‖xt)−Dϕ(xt ‖ zt−1)

)
〈`t, zt − x̂〉 ≤ 1

η

(
Dϕ(x̂ ‖ zt−1)−Dϕ(x̂ ‖ zt)−Dϕ(zt ‖ zt−1)

)
Hence, combining all bounds, we have that for any x̂ ∈ D,759

RT (x̂) ≤
T∑
t=1

(
η‖`t −mt‖2∗ +

1

4η
‖xt − zt‖2

+
1

η

(
Dϕ(x̂ ‖ zt−1)−Dϕ(x̂ ‖ zt)−Dϕ(zt ‖xt)−Dϕ(xt ‖ zt−1)

))
≤

T∑
t=1

(
η‖`t −mt‖2∗ +

1

4η
‖xt − zt‖2 +

1

η

(
Dϕ(x̂ ‖ zt−1)−Dϕ(x̂ ‖ zt)

)
− 1

2η

(
‖xt − zt‖2 + ‖xt − zt−1‖2

))
=

T∑
t=1

(
η‖`t −mt‖2∗ −

1

4η
‖xt − zt‖2 − 1

2η
‖xt − zt−1‖2 +

1

η

(
Dϕ(x̂ ‖ zt−1)−Dϕ(x̂ ‖ zt)

))

≤
T∑
t=1

(
η‖`t −mt‖2∗ −

1

4η
‖xt − zt‖2 − 1

4η
‖xt − zt−1‖2 +

1

η

(
Dϕ(x̂ ‖ zt−1)−Dϕ(x̂ ‖ zt)

))

where we used the fact that Dϕ(a ‖ b) ≥ 1
2‖a − b‖

2 for all a, b ∈ D (because ϕ is 1-strongly convex by hypothesis) in the760

second inequality. Since the differences of divergences on the right-hand side are telescopic, we further obtain761

RT (x̂) ≤ Dϕ(x̂ ‖ z0)−Dϕ(x̂ ‖ zt)
η

+ η

T∑
t=1

‖`t −mt‖2∗ −
1

4η

T∑
t=1

‖xt − zt‖2 − 1

4η

T∑
t=1

‖xt − zt−1‖2

≤ Dϕ(x̂ ‖ z0)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

4η

T∑
t=1

‖xt − zt‖2 − 1

4η

T∑
t=1

‖xt − zt−1‖2

=
Dϕ(x̂ ‖ z0)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

4η

T∑
t=1

‖xt − zt‖2 − 1

4η

T−1∑
t=0

‖xt+1 − zt‖2

≤ Dϕ(x̂ ‖ z0)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

4η

T−1∑
t=1

‖xt − zt‖2 − 1

4η

T−1∑
t=1

‖xt+1 − zt‖2

=
Dϕ(x̂ ‖ z0)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

4η

T−1∑
t=1

(
‖xt − zt‖2 + ‖xt+1 − zt‖2

)
,

where we used the nonnegativity of divergences in the second inequality, and some trivial manipulation of summation indices762

in the later steps. Finally, we use the triangle inequality for the norm ‖ · ‖ to conclude that at all t = 1, . . . , T − 1763

‖xt − zt‖2 + ‖xt+1 − zt‖2 ≥ 1

2
‖xt+1 − xt‖2,

and hence for all x̂ ∈ D764

RT (x̂) ≤ Dϕ(x̂ ‖ z0)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

8η

T−1∑
t=1

‖xt+1 − xt‖2.

765

When∇ϕ(z0) = 0 as in Line 1 in Algorithm 2, Dϕ(x̂ ‖ z0) ≤ ϕ(x̂) and so Proposition 5 becomes766



Corollary 1. For all x̂ ∈ D, all η > 0, and all times T , the regret cumulated by (predictive) OMD (Algorithm 2) compared to767

any fixed strategy x̂ ∈ D is bounded as768

RT (x̂) ≤ ϕ(x̂)

η
+ η

T∑
t=1

‖`t −mt‖2∗ −
1

8η

T−1∑
t=1

‖xt+1 − xt‖2. (14)

C Online Linear Optimization to Approachability769

Proposition 2. Let (X ,Y,u(·, ·), C) be an approachability game, where C ⊆ Rn is a closed convex cone, such that each770

halfspace H ⊇ C is approachable (Definition 1). Let K := C◦ ∩ Bn2 , where C◦ = {x ∈ Rn : 〈x,y〉 ≤ 0 ∀y ∈ C} denotes771

the polar cone to C and Bn2 := {x ∈ Rn : ‖x‖2 ≤ 1} is the unit ball. Finally, let L be an oracle for the OLO problem (for772

example, the FTRL or OMD algorithm) whose domain of decisions is any closed convex set D, such that K ⊆ D ⊆ C◦. Then,773

at all times T , the distance between the average payoff cumulated by Algorithm 3 and the target cone C is upper bounded as774

min
ŝ∈C

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt,yt)

∥∥∥∥∥
2

=
1

T
max
x̂∈K

RTL(x̂),

where RTL(x̂) is the regret cumulated by L up to time T compared to always playing x̂ ∈ K.775

Proof. Let K := C◦ ∩ Bn2 . As proved by Abernethy, Bartlett, and Hazan (2011), the distance from the generic point z to the776

convex cone C can be computed as777

min
ŝ∈C
‖ŝ− z‖2 = max

θ̂∈K
〈θ̂, z〉.

Hence,778

min
ŝ∈C

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt,yt)

∥∥∥∥∥
2

= max
θ̂∈K

〈
θ̂,

1

T

T∑
t=1

u(xt,yt)

〉

= − 1

T

T∑
t=1

〈θt, `t〉+
1

T
max
θ̂∈K

{
T∑
t=1

〈`t,θt − θ̂〉

}
(15)

= − 1

T

T∑
t=1

〈θt, `t〉+
1

T
max
θ̂∈K

R(θ̂) (16)

where the second step uses `t = −u(xt,yt). Since θt ∈ D ⊆ C◦, the halfspace Ht := {z : 〈θt, z〉 ≤ 0} contains C at all779

times t. Furthermore, by construction xt forces Ht, and so 〈θt, `t〉 = −〈θt,u(xt,yt)〉 ≥ 0, and therefore780

− 1

T

T∑
t=1

〈θt, `t〉 ≤ 0. (17)

Plugging (17) into (16) yields the statement.781

D Connections between FTRL, OMD and RM, RM+
782

Lemma 1. The regretRT (x̂) = 1
T

∑T
t=1〈`t,xt− x̂〉 cumulated up to any time T by the decisions x1, . . . ,xT ∈ ∆n compared783

to any x̂ ∈ ∆n is related to the distance of the average Blackwell payoff from the target cone Rn≤0 as784

1

T
RT (x̂) ≤ min

ŝ∈Rn
≤0

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt, `t)

∥∥∥∥∥
2

. (4)

So, a strategy for the Blackwell approachability game Γ is a regret-minimizing strategy for the simplex domain ∆n.785

Proof. The regret RT (x̂) cumulated by PRM and PRM+ satisfies786

1

T
RT (x̂) =

1

T

T∑
t=1

(
〈`t,xt〉 − 〈`t, x̂〉

)
=

T∑
t=1

(
〈`t,xt〉〈1, x̂〉 − 〈`t, x̂〉

)
=

〈
1

T

T∑
t=1

〈`t,xt〉1− `t, x̂

〉
=

〈
1

T

T∑
t=1

u(xt, `t), x̂

〉



= min
ŝ∈Rn

≤0

〈
−ŝ+

1

T

T∑
t=1

u(xt, `t), x̂

〉
, (18)

where we used the fact that x̂ ∈ ∆n in the second equality, and the fact that minŝ∈Rn
≤0
〈−ŝ, x̂〉 = 0 since x̂ ≥ 0. Applying the787

Cauchy-Schwarz inequality to the right-hand side of (24), we obtain788

1

T
RT (x̂) ≤ min

ŝ∈Rn
≤0

∥∥∥∥∥−ŝ+
1

T

T∑
t=1

u(xt, `t)

∥∥∥∥∥
2

‖x̂‖2.

So, using the fact that ‖x̂‖2 ≤ 1 for any x̂ ∈ ∆n, and applying Proposition 2,789

1

T
RT (x̂) ≤ min

ŝ∈Rn
≤0

∥∥∥∥∥−ŝ+
1

T

T∑
t=1

u(xt, `t)

∥∥∥∥∥
2

=
1

T
max

x̂′∈Rn
≥0
∩Bn

2

RTL(x̂′), (19)

790

Theorem 1 (FTRL reduces to RM). For all η > 0, when Algorithm 3 is set up with D = Rn≥0 and regret minimizer Lftrl
η to play791

Γ, it produces the same iterates as the RM algorithm.792

Proof. Given the definition of Γ and Algorithm 3, at all times t,Lftrl
η observes loss−u(xt, `t), whereu(xt, `t) := 〈`t,xt〉1−`t793

is the vector-valued payoff in Γ and measures the increase of regret at time t relative to each vertex of the simplex. For the794

specific choice of domain D = Rn≥0 and regularizer ϕ(x) = 1
2‖x‖

2
2, the computation of the next iterate (Line 3 in non-795

predictive FTRL, Algorithm 1) reduces to796

θt = arg min
x̂∈Rn

≥0

{〈
−

T∑
t=1

u(xt, `t), x̂

〉
+

1

2η
‖x̂‖22

}

= arg min
x̂∈Rn

≥0

{〈
−2η

T∑
t=1

u(xt, `t), x̂

〉
+ ‖x̂‖22

}

= arg min
x̂∈Rn

≥0

∥∥∥∥∥x̂− η
T∑
t=1

u(xt, `t)

∥∥∥∥∥
2

2

=

[
η

T∑
t=1

u(xt, `t)

]+

= η

[
T∑
t=1

u(xt, `t)

]+

.

Now, the value of η > 0 does not affect the forcing action that needs to be played on Line 3 of Algorithm 3. Indeed, whenever797

θt 6= 0, g(θt) = θt/‖θt‖1, so η cancels out in the fraction and at all t,798

xt =

[∑T
t=1 u(xt, `t)

]+∥∥∥∥[∑T
t=1 u(xt, `t)

]+∥∥∥∥
1

.

This is exactly the strategy output by RM.799

Theorem 2 (OMD reduces to RM+). For all η > 0, when Algorithm 3 is set up with D= Rn≥0 and regret minimizer Lomd
η to800

play Γ, it produces the same iterates as the RM+ algorithm.801

Proof. Given the definition of Γ and Algorithm 3, at all times t, Lomd
η observes loss−u(xt, `t), where u(xt, `t) := 〈`t,xt〉1−802

`t is the vector-valued payoff in Γ and measures the increase of regret at time t relative to each vertex of the simplex. In803

the non-predictive version of OMD mt = 0, Line 3 in Algorithm 2 is equivalent to arg minDϕ(x̂ ‖ zt−1) = zt−1. Hence,804

for the specific choice of domain D = Rn≥0 and regularizer ϕ(x) = 1
2‖x‖

2
2, the computation of the next iterate (Line 5 in805

non-predictive OMD, Algorithm 2) reduces to806

θt = zt−1 = arg min
ẑ∈Rn

≥0

{〈
− u(xt−1, `t−1), ẑ

〉
+

1

η
Dϕ(ẑ ‖ zt−2)

}
= arg min

ẑ∈Rn
≥0

{〈
− u(xt−1, `t−1), ẑ

〉
+

1

2η
‖ẑ − zt−2‖22

}
= arg min

ẑ∈Rn
≥0

∥∥∥ẑ − zt−2 − ηu(xt−1, `t−1)
∥∥∥2

2
=
[
zt−2 + ηu(xt−1, `t−1)

]+



=
[
θt−1 + ηu(xt−1, `t−1)

]+
. (20)

Since θ1 = z0 = 0, the only effect of the step size η is a rescaling of all iterates {θt} by a constant. However, the forcing807

action g(θt) = θt/‖θt‖1 is invariant to positive rescaling of θt. For this reason, all choices of η > 0 result in the same iterates808

being output by the algorithm. So, in particular we can assume without loss of generality that η = 1 in (20), which corresponds809

exactly to the update step in RM+.810

E Predictive Blackwell Approachability and Predictive RM, RM+
811

Proposition 3. Let (X ,Y,u(·, ·), S) be a Blackwell approachability game, where every halfspace H ⊇ S is approachable812

(Definition 1). For all T , given predictions vt of the payoff vectors, there exist algorithms for playing the game (that is, pick813

xt ∈ X at all t) that guarantee814

min
ŝ∈S

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt,yt)

∥∥∥∥∥
2

≤ 1√
T

(
1+

2

T

T∑
t=1

‖u(xt,yt)−vt‖22

)
.

Proof. As shown by Abernethy, Bartlett, and Hazan (2011), a Blackwell approachability game with a non-conic target set815

can be converted to a conic target set at the cost of a factor 2 in the distance bound. Hence, we assume that S is a closed816

convex cone, and use the construction of Algorithm 3 instantiated with the FTRL algorithm with domain D = S◦, regularizer817

ϕ(x) = 1
2‖x‖

2
2, and step size parameter η > 0. Proposition 2, along with the aforementioned factor 2 reduction from generic818

convex target set to conic target set, implies that819

min
ŝ∈C

∥∥∥∥∥ŝ− 1

T

T∑
t=1

u(xt,yt)

∥∥∥∥∥
2

≤ 2

T
max

x̂∈S◦∩Bn
2

RT (x̂)

≤ 2

T
max

x̂∈S◦∩Bn
2

(
‖x̂‖22
2η

+ η

T∑
t=1

‖u(xt,yt)− vt‖22

)

≤ 2

T

(
1

2η
+ η

T∑
t=1

‖u(xt,yt)− vt‖22

)
where the second inequality follows from expanding the regret bound for FTRL (Proposition 4), and the third inequality follows820

from the fact that x̂ ∈ Bn2 . Setting η = 1√
T

yields the result.821

Theorem 3 (Correctness of PRM, PRM+). Let Lftrl*
η and Lomd*

η denote the predictive FTRL and predictive OMD algorithms822

instantiated with the same choice of regularizer and domain as in Section 5, and predictions vt as defined above for the823

Blackwell approachability game Γ. For all η > 0, when Algorithm 3 is set up with D = Rn≥0, the regret minimizer Lftrl*
η (resp.,824

Lomd*
η ) to play Γ, it produces the same iterates as the PRM (resp., PRM+) algorithm. Furthermore, PRM and PRM+ are regret825

minimizer for the domain ∆n, and at all times T satisfy the regret bound826

RT (x̂) ≤
√

2

(
T∑
t=1

‖u(xt, `t)− vt‖22

)1/2
.

Proof. Given the definition of Γ and Algorithm 3, at all times t, Lftrl*
η and Lomd*

η observe loss −u(xt, `t), where u(xt, `t) :=827

〈`t,xt〉1 − `t is the vector-valued payoff in Γ and measures the increase of regret at time t relative to each vertex of the828

simplex. Furthermore, at all t the prediction given to Lftrl*
η and Lomd*

η is −vt (Line 2, Algorithm 3). We now break up the829

analysis according to the OLO oracle used.830

Lftrl*
η corresponds to Predictive RM For the specific choice of domain D = Rn≥0 and regularizer ϕ = ‖ · ‖22, Line 3 in831

Algorithm 1 has the closed-form solution832

θt =

[
−η

(
−

T∑
t=1

u(xt, `t)− vt
)]+

= η

[
T∑
t=1

u(xt, `t) + vt

]+

.

Since the forcing action g(θt) = θt/‖θt‖1 is invariant to positive constants, we see that the action xt picked by Algorithm 3833

(Line 3) is the same for all values of η > 0 and is computed as834

xt =

[∑T
t=1 u(xt, `t) + vt

]+∥∥∥∥[∑T
t=1 u(xt, `t) + vt

]+∥∥∥∥
1

. (21)



provided θt 6= 0, and is an arbitrary vector xt ∈ ∆n otherwise, in accordance with the analysis of the approachability of835

halfspaces in Γ (Section 5). By using the definition of u(xt, `t) := 〈`t,xt〉1− `t and vt := 〈mt,xt−1〉1−mt, we see that at836

all times t the iterates produced by Line 4 in Algorithm 4 are exactly as in (21).837

Lomd*
η corresponds to Predictive RM+ For the specific choice of domain D = Rn≥0 and regularizer ϕ = ‖ · ‖22, as already838

note in the proof of Theorem 2, Line 5 in Predictive OMD (Algorithm 2) has the closed-form solution839

zt =
[
zt−1 + ηu(xt, `t)

]+
(22)

at all t. Similarly, Line 3 in Predictive OMD (Algorithm 2) has the closed-form solution840

θt =
[
zt−1 + ηvt

]+
. (23)

Since both (22) and (23) are homogeneous in η > 0 (that is, the only effect of η is to rescale all θt and zt by the same constant)841

and the forcing action g(θt) = θt/‖θt‖1 for Γ is invariant to positive rescaling of θt, we see that Algorithm 3 outputs the same842

iterates no matter the choice of step size parameter η > 0. In particular, we can assume without loss of generality that η = 1. In843

that case, Equation (22) corresponds exactly to Line 7 in PRM+ (Algorithm 5), and line Equation (23) corresponds exactly to844

Line 4.845

Regret analysis The regret RT (x̂) cumulated by PRM and PRM+ satisfies846

1

T
RT (x̂) =

1

T

T∑
t=1

(
〈`t,xt〉 − 〈`t, x̂〉

)
=

T∑
t=1

(
〈`t,xt〉〈1, x̂〉 − 〈`t, x̂〉

)
=

〈
1

T

T∑
t=1

〈`t,xt〉1− `t, x̂

〉
=

〈
1

T

T∑
t=1

u(xt, `t), x̂

〉

= min
ŝ∈Rn

≤0

〈
−ŝ+

1

T

T∑
t=1

u(xt, `t), x̂

〉
, (24)

where we used the fact that x̂ ∈ ∆n in the second equality, and the fact that minŝ∈Rn
≤0
〈−ŝ, x̂〉 = 0 since x̂ ≥ 0. Applying the847

Cauchy-Schwarz inequality to the right-hand side of (24), we obtain848

1

T
RT (x̂) ≤ min

ŝ∈Rn
≤0

∥∥∥∥∥−ŝ+
1

T

T∑
t=1

u(xt, `t)

∥∥∥∥∥
2

‖x̂‖2.

So, using the fact that ‖x̂‖2 ≤ 1 for any x̂ ∈ ∆n, and applying Proposition 2,849

1

T
RT (x̂) ≤ min

ŝ∈Rn
≤0

∥∥∥∥∥−ŝ+
1

T

T∑
t=1

u(xt, `t)

∥∥∥∥∥
2

=
1

T
max

x̂′∈Rn
≥0
∩Bn

2

RTL(x̂′), (25)

where RTL is the regret cumulated by the OLO oracle used in Algorithm 3—in our case, Lftrl*
η for PRM and Lomd*

η for PRM+. In850

either case (L = Lftrl*
η or L = Lomd*

η ), Proposition 1 offers a bound on RTL(x̂) that holds for all x̂ ∈ D = Rn≥0. So, in particular851

the bound holds for all points in K = Rn≥0 ∩ Bn2 ⊆ D. Consequently,852

max
x̂′∈Rn

≥0
∩Bn

2

RTL(x̂′) ≤ max
x̂′∈Rn

≥0
∩Bn

2

{
‖x̂′‖22

2η
+ η

T∑
t=1

‖u(xt, `t)− vt‖22

}
≤ 1

2η
+ η

T∑
t=1

‖u(xt, `t)− vt‖22, (26)

where we used the fact that x̂′ ∈ Bn2 in the last step. Substituting (26) into (25), we have853

RT (x̂) ≤ 1

2η
+ η

T∑
t=1

‖u(xt, `t)− vt‖22.

Since we have shown above that the iterates produced by the algorithm are independent of η > 0, we can minimize the854

right-hand side over η > 0, obtaining the bound855

RT (x̂) ≤
√

2

(
T∑
t=1

‖u(xt, `t)− vt‖22

)1/2

.

Finally, expanding the definition of u(xt, `t) := 〈`t,xt〉1− `t and vt := 〈mt,xt−1〉1−mt, we obtain the statement.856



F Extensive-Form Games and Counterfactual Regret Minimization857

An extensive-form game is a game played on a game tree. Each player in an extensive-form game faces a sequential decision858

process. A sequential decision process is a tree consisting of two types of nodes: decision nodes and observation nodes. We859

denote the set of decision nodes as J , and the set of observation nodes with K. At each decision node j ∈ J , the agent picks860

an action according to a distribution xj ∈ ∆nj over the set Aj of nj = |Aj | actions available at that decision node, and the861

process moves to the observation node that is reached by following the edge corresponding to the selected action at j, if any.862

At each observation point k ∈ K, the agent receives one out of nk possible signals; the set of signals that the agent can observe863

is denoted as Sk. After the signal is received, the process moves to the decision node that is reached by following the edge864

corresponding to the signal at k.865

The observation node that is reached by the agent after picking action a ∈ Aj at decision point j ∈ J is denoted by ρ(j, a).866

Likewise, the decision node reached by the agent after observing signal s ∈ Sk at observation point k ∈ K is denoted by867

ρ(k, s). The set of all observation points reachable from j ∈ J is denoted as Cj := {ρ(j, a) : a ∈ Aj}. Similarly, the set of all868

decision points reachable from k ∈ K is denoted as Ck := {ρ(k, s) : s ∈ Sk}. To ease the notation, sometimes we will use the869

notation Cja to mean Cρ(j,a).870

Pairs z = (j, a) with j ∈ J , a ∈ Aj for which ρ(j, a) = ∅ are called terminal sequences and have an associated payoff871

vector (u(z),−u(z)) (that is, we assume the game is zero sum). We denote the set of all terminal sequences (also called leaves)872

with Z.873

Sequence Form for Sequential Decision Processes Given a strategy {xj}j∈J for the player, its sequence-form representa-874

tion (von Stengel 1996), denoted µ(x) is defined as the vector indexed over {(j, a) : j ∈ J , a ∈ Aj}whose entry corresponding875

to a generic pair (j, a) is the product of the probability of all actions on the path from the root of the decision process to (j, a).876

We denote the range of µ, that is the set of all possible sequence-form strategies as the xj vary arbitrarily over ∆|Aj | as Q. We877

call Q the sequence-form strategy space of the player.878

It is well-known that a Nash equilibrium in a two-player zero-sum extensive form game can be expressed as a bilinear saddle879

point problem880

min
q1∈Q1

max
q2∈Q2

q>1Aq2,

where Q1 and Q2 are the sequence-form strategy spaces of Player 1 and 2, respectively, and A is a suitable game-dependent881

matrix. It is also common knowledge that by letting regret minimizers for Q1 and Q2 play against each other, we can sole the882

bilinear saddle point above (e.g., Farina, Kroer, and Sandholm (2018)). So, we now focus on the task of constructing a regret883

minimizer for a sequence-form strategy space.884

Counterfactual Regret Minimization885

The counterfactual regret minimization framework (Zinkevich et al. 2007) provides a way of constructing a regret minimization886

for the sequence-form strategy space of a player by combining independent regret minimizers local to each of the player’s887

decision points j ∈ J . At each j ∈ J , the corresponding regret minimizer—denoted Rj—is responsible for selecting the888

strategy xtj at all times t.889

CFR achieves its goal by setting the losses observed by the local regret minimizers in a specific way. In particular, let `t be890

the loss at time t relative to the whole sequence-form strategy space Q of the player. Then, for each decision point j ∈ J , the891

regret minimizerRj local at j is fed the loss vector `tj ∈ R|Aj |, whose entries are defined as892

`tj [a] := `t[(j, a)] +
∑
j′∈Cja

V tj′ (27)

for each a ∈ Aj , where893

V tj :=
∑
a∈Aj

xtj [a]

`t[(j, a)] +
∑
j′∈Cja

V tj′

 ∀j ∈ J . (28)

Theorem 4 (Laminar regret decomposition, (Farina, Kroer, and Sandholm 2018)). At all times T , the regret RT cumulated by894

the CFR algorithm can be bounded as895

max
x̂∈Q

RT (x̂) ≤ max
x̂∈Q

∑
j∈J

x̂[σ(j)] ·RTj (x̂j)

where RTj denotes the regret cumulated by the local regret minimizerRj at decision point j.896

Theorem 4 in particular implies that if all local regret minimizers Rj (j ∈ J ) guarantee O(T 1/2) regret, then so does the897

overall algorithm, that is RT (x̂) = O(T 1/2) for all x̂ ∈ Q.898



Counterfactual Loss Predictions899

We now describe the construction of the counterfactual loss predictions, starting from a generic predictionmt for `t relative to900

the whole sequence-form strategy space Q of the player. In order to maintain symmetry with Equation (27) and Equation (28),901

for each decision point j ∈ J , the regret minimizer Rj local at j is fed the loss prediction vector mt
j ∈ R|Aj |, whose entries902

are defined as903

mt
j [a] := mt[(j, a)] +

∑
j′∈Cja

W t
j′

for each a ∈ Aj , where904

W t
j :=

∑
a∈Aj

xtj [a]

mt[(j, a)] +
∑
j′∈Cja

W t
j′

 ∀j ∈ J .

It important to observe that the counterfactual loss predictionmt
j depends on the decisions produced at time t in the subtree905

rooted at j. In other words, in order to construct the prediction for what loss Rj will observe after producing the decision xtj ,906

we use the “future” decisions from the subtrees under j.907

In our experiments, we always setmt = `t−1. This is a common choice, that in other algorithms (not ours) is known to lead908

to asymptotically lower regret than O(T 1/2) (Syrgkanis et al. 2015; Farina, Kroer, and Sandholm 2019,?).909

G Description of the Game Instances910

Kuhn poker (Games [H] and [I]) is a standard benchmark in the EFG-solving community (Kuhn 1950). In Kuhn poker, each911

player puts an ante worth 1 into the pot. Each player is then privately dealt one card from a deck that contains R unique912

cards. Then, a single round of betting then occurs, with the following dynamics. First, Player 1 decides to either check or bet913

1. Then,914

• If Player 1 checks Player 2 can check or raise 1.915

– If Player 2 checks a showdown occurs; if Player 2 raises Player 1 can fold or call.916

* If Player 1 folds Player 2 takes the pot; if Player 1 calls a showdown occurs.917

• If Player 1 raises Player 2 can fold or call.918

– If Player 2 folds Player 1 takes the pot; if Player 2 calls a showdown occurs.919

When a showdown occurs, the player with the higher card wins the pot and the game immediately ends.920

We used R = 3 in Game [H] (this corresponds to the original game as introduced by Kuhn (1950)), while in Game [I] we921

used R = 13.922

Leduc poker (Games [G] and [O] to [Q]) is another standard benchmark in the EFG-solving community Southey et al. (2005).923

The game is played with a deck of R unique cards, each of which appears exactly twice in the deck. The game is composed924

of two rounds. In the first round, each player places an ante of 1 in the pot and is dealt a single private card. A round of925

betting then takes place, with Player 1 acting first. At most two bets are allowed per player. Then, a card is is revealed face926

up and another round of betting takes place, with the same dynamics described above. After the two betting round, if one of927

the players has a pair with the public card, that player wins the pot. Otherwise, the player with the higher card wins the pot.928

All bets in the first round are worth 1, while all bets in the second round are 2.929

We set R = 3 in Game [O], R = 5 in Game [P], R = 9 in Game [Q], and R = 13 in Game [G].930

Small matrix (Game [F]) is a small 2× 2 matrix game. Given a mixed strategy x = (x1, x2) ∈ ∆2 for Player 1 and a mixed931

strategy y = (y1, y2) ∈ ∆2 for Player 2, the payoff function for player 1 is defined as932

u(x,y) := 5x1y1 − x1y2 + x2y2.

This game was found by Farina, Kroer, and Sandholm (2019) to be a hard instance for the CFR+ game.933

Goofspiel (Games [A] and [L]) This is another popular benchmark game, originally proposed by Ross (1971). It is a two-934

player card game, employing three identical decks of k cards each whose values range from 1 to k. At the beginning of the935

game, each player gets dealt a full deck as their hand, and the third deck (the “prize” deck) is shuffled and put face down on936

the board. In each turn, the topmost card from the prize deck is revealed. Then, each player privately picks a card from their937

hand. This card acts as a bid to win the card that was just revealed from the prize deck. The selected cards are simultaneously938

revealed, and the highest one wins the prize card. If the players’ played cards are equal, the prize card is split. The players’939

score are computed as the sum of the values of the prize cards they have won. In Game [L] the value of k is k = 4, while in940

Game [A] k = 5.941

Limited-information Goofspiel (Games [M] and [N]) This is a variant of the Goofspiel game used by Lanctot et al. (2009). In942

this variant, in each turn the players do not reveal their cards. Rather, they show their cards to a fair umpire, which determines943

which player has played the highest card and should therefore received the prize card. In case of tie, the umpire directs the944



players to discard the prize card just like in the Goofspiel game. In Game [M] the number of cards in each deck is k = 4,945

while in Game [N] k = 5.946

Pursuit-evasion (Games [E], [J], and [K]) is a security-inspired pursuit-evasion game played on the graph shown in Figure 4.947

It is a zero-sum variant of the one used by Kroer, Farina, and Sandholm (2018), and a similar search game has been considered948

by Bošanskỳ et al. (2014) and Bošanskỳ and Čermák (2015).949

P1 P2

S

5

10

3

Figure 4: The graph on which the search game is played.

In each turn, the attacker and the defender act simultaneously. The defender controls two patrols, one per each respective950

patrol areas labeled P1 and P2. Each patrol can move by one step along the grey dashed lines, or stay in place. The attacker951

starts from the leftmost node (labeled S) and at each turn can move to any node adjacent to its current position by following952

the black directed edges. The attacker can also choose to wait in place for a time step in order to hide all their traces. If a953

patrol visits a node that was previously visited by the attacker, and the attacker did not wait to clean up their traces, they will954

see that the attacker was there. The goal of the attacker is to reach any of the rightmost nodes, whose corresponding payoffs955

are 5, 10, or 3, respectively, as indicated in Figure 4. If at any time the attacker and any patrol meet at the same node, the956

attacker is loses the game, which leads to a payoff of −1 for the attacker and of 1 for the defender. The game times out after957

m simultaneous moves, in which case both players defender receive payoffs 0. In Game [J] we set m = 4, in Game [K] we958

set m = 5 and in Game [E] we set m = 6.959

Battleship (Games [C] and [R]) is a parametric version of a classic board game, where two competing fleets take turns shooting960

at each other (Farina et al. 2019). At the beginning of the game, the players take turns at secretly placing a set of ships on961

separate grids (one for each player) of size 3 × 2. Each ship has size 2 (measured in terms of contiguous grid cells) and a962

value of 4, and must be placed so that all the cells that make up the ship are fully contained within each player’s grids and do963

not overlap with any other ship that the player has already positioned on the grid. After all ships have been placed. the players964

take turns at firing at their opponent. Ships that have been hit at all their cells are considered sunk. The game continues until965

either one player has sunk all of the opponent’s ships, or each player has completed R shots. At the end of the game, each966

player’s payoff is calculated as the sum of the values of the opponent’s ships that were sunk, minus the sum of the values of967

ships which that player has lost.968

In Game [R] we set R = 3, while in Game [C] we set R = 4.969

River Endgame (Game [D]) The river endgame is structured and parameterized as follows. The game is parameterized by the970

conditional distribution over hands for each player, current pot size, board state (5 cards dealt to the board), and a betting971

abstraction. First, Chance deals out hands to the two players according to the conditional hand distribution. Then, Libratus972

has the choice of folding, checking, or betting by a number of multipliers of the pot size: 0.25x, 0.5x, 1x, 2x, 4x, 8x, and973

all-in. If Libratus checks and the other player bets then Libratus has the choice of folding, calling (i.e. matching the bet and974

ending the betting), or raising by pot multipliers 0.4x, 0.7x, 1.1x, 2x, and all-in. If Libratus bets and the other player raises975

Libratus can fold, call, or raise by 0.4x, 0.7x, 2x, and all-in. Finally when facing subsequent raises Libratus can fold, call, or976

raise by 0.7x and all-in. When faced with an initial check, the opponent can fold, check, or raise by 0.5x, 0.75x, 1x, and all-in.977

When faced with an initial bet the opponent can fold, call, or raise by 0.7x, 1.1x, and all-in. When faced with subsequent978

raises the opponent can fold, call, or raise by 0.7x and all-in. The game ends whenever a player folds (the other player wins979

all money in the pot), calls (a showdown occurs), or both players check as their first action of the game (a showdown occurs).980

In a showdown the player with the better hands wins the pot. The pot is split in case of a tie. The specific endgame we use is981

subgame 4 from the set of open-sourced Libratus subgames at https://github.com/Sandholm-Lab/LibratusEndgames.982

Liar’s dice (Game [B]) is another standard benchmark in the EFG-solving community (Lisỳ, Lanctot, and Bowling 2015).983

In our instantiation, each of the two players initially privately rolls an unbiased 6-face die. The first player begins bidding,984

announcing any face value up to 6 and the minimum number of dice that the player believes are showing that value among the985

dice of both players. Then, each player has two choices during their turn: to make a higher bid, or to challenge the previous986

bid by declaring the previous bidder a “liar”. A bid is higher than the previous one if either the face value is higher, or the987

number of dice is higher. If the current player challenges the previous bid, all dice are revealed. If the bid is valid, the last988

https://github.com/Sandholm-Lab/LibratusEndgames


bidder wins and obtains a reward of +1 while the challenger obtains a negative payoff of−1. Otherwise, the challenger wins989

and gets reward +1, and the last bidder obtains reward of −1.990
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[N] Goofspiel 5 (lim. info.) Dimension of the games

Decision
points Actions Leaves

[H] 12 24 30

[I] 52 106 780

[J] 3.8×102 2.1×103 1.6×104

[K] 2.1×103 1.2×104 6.1×104

[L] 3.5×104 4.3×104 1.4×104

[M] 1.7×104 2.1×104 1.4×104

[N] 1.2×106 1.4×106 1.7×106

Legend: PCFR+ CFR+ LCFR DCFR

Figure 5: Performance of PCFR+, CFR+, DCFR, and LCFR on EFGs. In all plots, the x axis is the number of iterations of each
algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a log scale), the bottom plot shows and the
average prediction error (on a log scale).

In all games but Leduc 13 (Game [G]), PCFR+ significantly outperforms all other algorithms, by 2-8 orders of magnitude. In992

Leduc 13, PCFR+ outperforms CFR+ but not the DCFR algorithm. CFR+ is equivalent or slightly superior to DCFR, except in993

Leduc 13, where it outperforms CFR+ by slightly less of one order of magnitude. This is in line with the experimental results994

presented in the body of this paper, where we found that DCFR performs significantly better than CFR+ in poker games but995

not other domains.996

CFR+, LCFR, and DCFR perform similarly in the Small matrix game (Game [F]), and in particular all exhibit slower than997

T−1 convergence. This is not the case for our predictive algorithm PCFR+. This confirms that Small matrix is a hard instance998

for non-predictive methods but not for predictive methods, as already observed by Farina, Kroer, and Sandholm (2019).999

In all game instances, we empirically find that the prediction error decreases quickly to extremely small values. This suggests1000

that PCFR+ might enjoy stability guarantees similar to predictive FTRL and OMD (Syrgkanis et al. 2015). Exploring such1001

properties is an interesting future research direction.1002

Correlation between game structure and PCFR+ performance The empirical investigation of PCFR+ shows that in most1003

classes of games PCFR+ performs significantly better than CFR+ and DCFR, while in other games (such as the poker games1004

and Liar’s Dice) predictivity seems to be less useful or even detrimental. It is natural to wonder what game structures can benefit1005

from the use of predictive methods and what do not. While we do not currently have a good answer to that question, we have1006

collected here some thoughts and observations.1007
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Figure 6: Performance of PCFR+, CFR+, DCFR, and LCFR on EFGs. In all plots, the x axis is the number of iterations of each
algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a log scale), the bottom plot shows and the
average prediction error (on a log scale).

• Size. Some predictive methods proposed in the past were found to only produce a speedup in small games, and perform1008

worse than the state of the art in large games (Farina, Kroer, and Sandholm 2019). This is not the case for PCFR+: the river1009

endgame and Liar’s Dice are not the largest games in our dataset. So, size does not seem to be a good predictor for whether1010

predictive CFR+ is beneficial over CFR+ and DCFR.1011

• Number of terminal states. The river endgame and Liar’s Dice both have a large ratio between the number of terminal1012

states (leaves) and number of decision points. On the other hand, the pursuit-evasion game with 5 turns (Game [K]) has a1013

significantly larger ratio than Liar’s Dice but unlike in Liar’s Dice, predictivity yields a speedup of more than 6 orders of1014

magnitude on the Nash gap.1015

• Private information. Poker games and Liar’s Dice have a strong private information structure: a chance node distributes1016

independent private initial states for the two players, and each player has no information about the opponent’s state. This is1017

in contrast with, for example, the Battleship games, where each player is not handed a random configuration for their ships1018

by the chance player, but rather privately picks one configuration. This shows that the “amount of private information” alone1019

is not a good discriminator for when predictivity can be useful.1020

• Private information induced by chance nodes. From the discussion in the previous bullet, we conjecture that the way the1021

private information arises (for example, through "dealing out cards" like in Poker games or "rolling a die" as in Liar’s Dice)1022

might affect whether predictivity helps or hurts convergence to Nash equilibrium. We leave pursuing this direction open. It1023

is not immediately clear how one could formalize that metric.1024

Comparison between Linear and Quadratic Averaging in PCFR+ and CFR+
1025

We also investigated the performance of CFR+ with quadratic averaging in all games, as well as the performance of PCFR+1026

with linear averaging. The experimental results are shown in Figures 7 and 9. Since only the averaging that is used when1027

computing the (approximate) Nash equilibrium varies, but not the iterates themselves, the prediction errors are independent of1028

the averaging variant used. Therefore, in the prediction error plots we only report one curve for each of the two algorithms.1029



CFR+ with quadratic averaging of iterates performs similarly to CFR+ with linear averaging. PCFR+ with linear averaging1030

performs similarly or slightly better than PCFR+ with quadratic averaging in two games. It performs better than CFR+ with1031

either linear or quadratic averaging in 11 games, and worse than both in two games (no-limit Texas hold’em river endgame and1032

Leduc poker). We conclude that the speedup of PCFR+ is mostly due to the use of loss predictions, rather than the particular1033

averaging of iterates.1034
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Figure 7: Performance of PCFR+ and CFR+ with linear and quadratic averaging on EFGs. In all plots, the x axis is the number
of iterations of each algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a log scale), the bottom
plot shows and the average prediction error (on a log scale).
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Figure 8: (continued) Performance of PCFR+ and CFR+ with linear and quadratic averaging on EFGs. In all plots, the x axis is
the number of iterations of each algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a log scale),
the bottom plot shows and the average prediction error (on a log scale).
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Figure 9: (continued) Performance of PCFR+ and CFR+ with linear and quadratic averaging on EFGs. In all plots, the x axis is
the number of iterations of each algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a log scale),
the bottom plot shows and the average prediction error (on a log scale).

Predictive Discounted CFR and Quadratic-Average Loss Prediction1035

DCFR is the regret minimizer that results from applying the counterfactual regret minimization framework (Appendix F) using1036

the discounted regret matching regret minimizer at each decision point. We experimentally evaluated a predictive-in-spirit11037

variant of discounted regret matching shown in Algorithm 6.1038

Algorithm 6: Predictive discounted regret matching
1 z0 ← 0 ∈ Rn, x0 ← 1/n ∈ ∆n

2 α← 1.5, β ← 0

3 function NEXTSTRATEGY(mt)
. Setmt = 0 for non-predictive version

4 θt ← tα

1 + tα
[zt−1]+ +

tβ

1 + tβ
[zt−1]− + 〈mt,xt〉1−mt

5 if θt 6= 0 return xt ← θt / ‖θt‖1
6 else return xt ← arbitrary point in ∆n

7 function OBSERVELOSS(`t)

8 zt ← tα

1 + tα
[zt−1]+ +

tβ

1 + tβ
[zt−1]− + 〈`t,xt〉1− `t

To maintain symmetry with predictive CFR and predictive CFR+, we coin predictive DCFR the algorithm resulting from1039

applying the counterfactual regret minimization framework (Appendix F) using the predictive discounted regret matching regret1040

minimizer at each decision point of the game.1041

We also investigate the use of the quadratic average of past loss vectors,1042

mt =
6

t(t− 1)(2t− 1)

t−1∑
τ=1

τ2`τ ,

as the prediction for the next loss `t. We call this loss prediction the “quadratic-average loss prediction”.1043

We compare predictive DCFR (with and without quadratic-average loss prediction), PCFR+ (with and without quadratic-1044

average loss prediction), CFR+, and DCFR in Figures 10 and 11.1045

1In fact, we do not have a proof that our variant is predictive in the formal sense described in the body of the paper. However, the variant
we describe follows the natural pattern of predictive RM and predictive RM+.
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Figure 10: Comparison between of discounted CFR and CFR+, with and without quadratic-average loss prediction. In all plots,
the x axis is the number of iterations of each algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a
log scale), the bottom plot shows and the average prediction error (on a log scale).
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Figure 11: (continued) Comparison between of discounted CFR and CFR+, with and without quadratic-average loss prediction.
In all plots, the x axis is the number of iterations of each algorithm. For each game, the top plot shows that the Nash gap on the
y axis (on a log scale), the bottom plot shows and the average prediction error (on a log scale).
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