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Abstract

In online learning an algorithm plays against an environment
with losses possibly picked by an adversary at each round.
The generality of this framework includes problems that are
not adversarial, for example offline optimization, or saddle
point problems (i.e. min max optimization). However, on-
line algorithms are typically not designed to leverage ad-
ditional structure present in non-adversarial problems. Re-
cently, slight modifications to well-known online algorithms
such as optimism and adaptive step sizes have been used in
several domains to accelerate online learning – recovering
optimal rates in offline smooth optimization, and accelerat-
ing convergence to saddle points or social welfare in smooth
games. In this work we introduce optimism and adaptive step-
sizes to Lagrangian hedging, a class of online algorithms
that includes regret-matching, and hedge (i.e. multiplicative
weights). Our results include: a general general regret bound;
a path length regret bound for a fixed smooth loss, applica-
ble to an optimistic variant of regret-matching and regret-
matching+; optimistic regret bounds for Φ regret, a frame-
work that includes external, internal, and swap regret; and
optimistic bounds for a family of algorithms that includes
regret-matching+ as a special case.

Introduction
Online optimization is a general framework applicable to
various problems such as offline optimization, and find-
ing equilibria in games. Typical algorithms only use first-
order information (i.e. a subgradient or gradient), such
as online mirror descent (MD) (Nemirovsky and Yudin
1983; Warmuth and Jagota 1997; Beck and Teboulle
2003) which generalizes projected gradient descent (see
for example (Orabona 2019)), and follow the regularized
leader (FTRL) (Shalev-Shwartz and Singer 2006; Aber-
nethy, Hazan, and Rakhlin 2009; Nesterov 2009).1

In general, online learning is adversarial, losses may
change almost arbitrarily from one time step to the next.
However, most problems of interest including offline op-
timization, and saddle point optimization can be “pre-
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1See Orabona for an excellent historical overview of MD and
FTRL.

dictable.” That is, the sequence of losses induced by run-
ning an online algorithm in these settings has specific struc-
ture and can be predictable under the right conditions,
like smoothness (i.e. Lipschitz continuous gradient). When
losses are predictable a powerful framework is optimistic
online learning (Rakhlin and Sridharan 2013a,b; Chiang
et al. 2012). Where algorithms are modified to incorporate
a guess of the next loss, mt, into their update.

Combining optimism with MD and FTRL yields their
optimistic counterparts, optimistic mirror descent (OMD),
and optimistic follow the regularized leader (OFTRL), re-
spectively. OMD and OFTRL both provide tangible benefits
when problems are not quite adversarial. For example, faster
convergence to a saddle point on the average (Rakhlin and
Sridharan 2013b; Syrgkanis et al. 2015; Farina et al. 2019;
Farina, Kroer, and Sandholm 2019); faster convergence to
optimal social wellfare in n-player games (Syrgkanis et al.
2015); last iterate convergence in games (Daskalakis and
Panageas 2018); acceleration in offline or online optimiza-
tion (Cutkosky 2019; Mohri and Yang 2016; Joulani et al.
2020; Joulani, György, and Szepesvári 2017).

Interestingly, much of the analysis of optimistic algo-
rithms is black-box. For example, most of the results rely
on regret bounds being of a particular form, which is satis-
fied by both OMD and OFTRL. Naturally, one may ask what
other classes of algorithms can be combined with optimism
to achieve faster rates in predictable problems?

In this paper we extend the idea of optimism to the class
of algorithms known as Lagrangian hedging (Gordon 2007).
Unfortunately, the regret bounds attained are not consis-
tent with OMD and OFTRL, therefore, immediate theoret-
ical acceleration via the previously mentioned works is not
attained. However, our analysis provides interesting regret
bounds that should be small given a “good” guess. And in
the case for a smooth fixed loss we show a path length bound
for the regret. This result, for example, is applicable to an
optimistic varaint of the well-known regret-matching algo-
rithm when used to train a linear regressor with L1 regular-
ization and the least-squares loss (Schuurmans and Zinke-
vich 2016).

Additionally, our analysis extends beyond the typical
regret objectives of MD and FTRL, and includes regret
bounds for internal and swap regret (Cesa-Bianchi and Lu-
gosi 2006). To the best of our knowledge, our results provide



the first optimistic and adaptive algorithms for minimizing
internal regret, with possible applications including finding
correlated equilibria in n-player general sum games (Cesa-
Bianchi and Lugosi 2006).

Background
Online Linear Optimization
In online convex optimization an algorithm A interacts with
an environment for T rounds (Zinkevich 2003). In each
round t, A selects an iterate xt within some convex com-
pact set X , afterwhich a convex loss function `t : X → R
chosen by the environment is revealed. Furthermore, A is
only allowed to use information from previous rounds. The
performance of A after T rounds is measured by its regret

RTX =

T∑
t=1

`t(xt)−min
x∈X

T∑
t=1

`t(x). (1)

The objective is to ensure sublinear regret, RTX ∈ o(T ), e.g
RTX ∈ O(

√
T ). In the most general of settings, no assump-

tions are made on the sequence of losses {`t}t≤T , they may
be chosen by an adversary with knowledge of A.

If each loss `t is subdifferentiable at xt, then there exists
a vector ∂`t(xt) (a subgradient) such that

`t(x) ≥ `t(xt) + 〈∂`t(xt), x− xt〉 ∀x ∈ X .

Provided A has access to a subgradient, it is enough to de-
sign algorithms for linear losses. The original regret RTX is
upper bounded by the regret with respect to the linear losses
{˜̀t}t≤T , where ˜̀

t(x) = 〈∂`t(xt), x〉. For the remainder of
the paper we assume linear losses unless specified otherwise.

Lagrangian Hedging
Lagrangian hedging defines a class of algorithms for online
linear optimization (Gordon 2007). The class generalizes
potential based methods introduced by Cesa-Bianchi and
Lugosi for learning with expert advice (Cesa-Bianchi and
Lugosi 2003),2 and includes the well-known Hedge aglo-
rithm (also known as multiplicative weights) (Freund and
Schapire 1997), and regret-matching (Hart and Mas-Colell
2000) .

At each round t a Lagrangian hedging algorithm main-
tains a regret vector

s1:t−1 = s1:t−2 + 〈`t−1, xt−1〉u− `t−1,

with the initial vector initialized as s1:0 = s0 = 0. The
change in the regret vector is denoted as st = 〈`t, xt〉u− `t,
s1:t =

∑t
k=1 sk. u is a vector such that 〈u, x〉 = 1 for any

x ∈ X . As mentioned by Gordon (Gordon 2007), if no such
u can be found then we may append an extra 1 for each
x ∈ X . Then we can take u to be the vector of zeros except
for a 1 coinciding with the new dimension added to x, as
well as append a 0 to each loss. s1:t is referred to as the

2Learning with expert advice resembles online linear optimiza-
tion where the decision set X is an n-dimensional simplex ∆n,
which is interpreted as the set of distributions over n experts.

regret vector because it tracks how well an algorithm has
done so far,

T∑
t=1

〈`t, xt〉 −
T∑
t=1

〈`t, x〉 = 〈s1:T , x〉 ∀x ∈ X .

The regret is then simply RTX = maxx∈X 〈s1:T , x〉.
Instead of explicitly ensuring the regret to be small, La-

grangian hedging ensures s1:T is not too far from a safe set
S. The safe set is defined to be the polar cone to X ,

S = {s : ∀x ∈ X 〈s, x〉 ≤ 0}.

Forcing s1:T to be in S may not be possible, as it would guar-
antee RTX ≤ 0 when it is possible to encounter an adversary
that guarantees Ω(

√
T ) regret (Orabona 2019; Hazan et al.

2016). However,

RTX = max
x∈X
〈s1:T , x〉 ≤ max

x∈X
〈s1:T − s, x〉 ∀s ∈ S

≤ inf
s∈S
‖s1:T − s‖max

x∈X
‖x‖∗ . (2)

Therefore, if the distance of sT to the set S grows at a sublin-
ear rate then the regret will be sublinear, since by assumption
the set X is bounded, ‖x‖∗ ≤ D. The norm ‖·‖∗ is the dual
norm of ‖·‖, defined as ‖x‖∗ = sup{〈x, y〉| ‖y‖ ≤ 1}.

Additionally, we assume the change in the regret vector
is bounded in norm, ‖st‖2 ≤ C. This assumption is similar
to assuming bounded linear functions ‖`t‖ ≤ C, or in the
convex (possibly non-linear) case ‖∂`t‖ ≤ C (i.e convex
Lipschitz continuous functions).

The distance of s1:t to S is then controlled via a smooth
potential function F , with the following conditions:

F (s) ≤ 0 ∀s ∈ S (3)

F (x+ y) ≤ F (x) + 〈∂F (x), y〉+
L

2
‖y‖2 (4)

(F (s) +A)+ ≥ inf
s′∈S

B ‖s− s′‖p , (5)

for constants L,B > 0, A ≥ 0, and 1 ≤ p ≤ 2. ∂F (x) is
a subgradient of F at x. (x)+ refers to the Relu operation
which sets all negative values in the vector to 0. In addi-
tion to the above conditions we will also assume that F is
convex, and therefore differentiable with ∂F (x) = ∇F (x),
the gradient of F at x. When F is differentiable condi-
tion (4) is equivalent to Lipschitz continuity of the gradient,
‖∇F (x)−∇F (y)‖∗ ≤ L ‖x− y‖ (Nesterov 2018)[Theo-
rem 2.1.5].

Once an appropriate potential function is chosen, a La-
grangian hedging algorithm ensures F (s1:T ) ∈ O(T ) by
picking an iterate at each round t such that

〈∇F (s1:t−1), st〉 ≤ 0, (6)

for any possible st (st can change depending on the loss
`t picked by the environment). The above inequality is also
known as the Blackwell condition, often used in potential
based expert algorithms (Cesa-Bianchi and Lugosi 2006),



and, as shown by Gordon, is guaranteed if the iterate at time
t is chosen by the following rule

xt =

{
∇F (s1:t−1)
〈∇F (s1:t−1),u〉 if 〈∇F (s1:t−1), u〉 > 0

arbitrary x ∈ X o.w.
(7)

Gordon also showed that procedure (7) always yields a fea-
sible iterate xt ∈ X .

Equipped with the Blackwell condition and the smooth-
ness of F (condition 4), the growth of F (s1:t) is easily
bounded by

F (s1:t) = F (s1:t−1 + st) ≤ F (s1:t−1) +
L

2
‖st‖2

≤ F (s1:t−1) +
LC

2
.

Summing across time and with s1:0 = s0 = 0,

F (s1:t) ≤ F (0) +
LCt

2
≤ LCt

2
,

since 0 ∈ S . With a linear bound on F (s1:t) a regret bound
follows immediately by condition (5) and (2),

RTX ≤ D
(
LCT + 2A

2B

)1/p

. (8)

If p = 1 then the regret is linear, however, as mentioned
by Gordon, a stepsize can be used to achieve sublinear re-
gret. We can define a new potential function with stepsize η,
Fη(s) = F (ηs). The smoothness condition becomes

Fη(x+ y) = F (η(x+ y)) ≤

F (ηx) + η〈∇F (ηx), y〉+
η2L

2
‖y‖2 ,

Fη(x) + 〈∇Fη(x), y〉+
η2L

2
‖y‖2 .

Fη is therefore a valid potential function, with condition
(4) now being

(Fη(s) +A)+ ≥ inf
s′∈S

ηpB ‖s− s′‖p .3

Following the same arguments as Gordon ((Gordon
2007)[Theorem 3]), the regret becomes

RTX ≤ D
(
η2LCT + 2A

2Bηp

)1/p

. (9)

When p = 1 a stepsize η ∈ O( 1√
T

) achieves a regret

bound of O(
√
T ), similar to the standard results in MD and

FTRL analysis (see (Orabona 2019) for example). Despite
this guarantee on regret, this bound does not hold uniformly
over time, one must have knowledge of the horizon T to
select a stepsize. However, the standard doubling trick can
be applied to achieve a regret guarantee for all time steps,
requiring algorithm resets after exponentially growing time
intervals (Cesa-Bianchi and Lugosi 2006).

3See Gordon for details.

In MD, FTRL, and the potential based approaches from
expert problems, however, a stepsize schedule of ηt ∈
O( 1√

t
)) is enough to achieve a O(

√
T ) regret bound that

holds uniformly over time (applies to any time horizon).
Given that Lagrangian hedging generalizes potential based
methods, a similar result likely should hold. Indeed we show
with the help of the following simple yet important lemma,
that the same learning rate schedule would suffice for La-
grangian Hedging algorithms with potential functions that
need a learning rate (i.e p = 1). This result is interest-
ing as it makes no additional assumptions on the potential
function; whereas, for example when viewing multiplicative
weights as a potential based method and a specific instance
of Lagrangian hedging, inequalities particular to the algo-
rithm (a specific potential function) are used to derive the
regret bounds that hold uniformly over time (Cesa-Bianchi
and Lugosi 2006).

First we extend the Lagrangian hedging framework with
an arbitrary sequence of stepsizes {ηt}t≤T , where the poten-
tial function F (ηts) is used at round t to construct the iterate
xt,

xt =

{
∇F (ηts1:t−1)
〈∇F (ηts1:t−1),u〉 if 〈∇F (ηts1:t−1), u〉 > 0

arbitrary x ∈ X o.w.
(10)

Lemma 1. Assume F is a convex function satisfying condi-
tion (3), consider step sizes 0 < ηt ≤ ηt−1, then

F (ηts) ≤
ηt
ηt−1

F (ηt−1s).

Proof.

F (ηts) = F

(
ηt
ηt−1

ηt−1s+ 0

)
= F

(
ηt
ηt−1

ηt−1s+

(
1− ηt

ηt−1

)
0

)
≤ ηt
ηt−1

F (ηt−1s) + (1− ηt
ηt−1

)F (0)

≤ ηt
ηt−1

F (ηt−1s), since 0 ∈ S.

Coupling the above lemma with the algorithm (10) and
the Blackwell condition yields a bound on the growth of
F (ηtst) and therefore a regret bound. Such a bound is a spe-
cial case of optimistic Lagrangian hedging when the predic-
tion is 0, and so we defer the presentation to the next section.

Adaptivity and Optimism in Lagrangian
Hedging

In this section we present the optimistic Lagrangian hedging
algorithm along with adaptive stepsizes and the regret guar-
antees. Optimistic Lagangian hedging leverages a prediction
mt at round t to construct the iterate xt. In the optimistic
and adaptive variants of MD and FTRL, one hopes to have
mt ≈ `t since the regret bounds attained are usually of the

form O

(√∑T
t=1 ‖mt − `t‖2

)
, with adaptive stepsizes (in



the case of MD) similar to

ηt =
1√∑t−1

s=1 ‖ms − `s‖2
. (11)

In optimistic Lagrangian hedging we hope the predic-
tion mt to be a good predictor of the change in the re-
gret vector mt ≈ st, with the provable regret bound of

O

(√∑T
t=1 ‖mt − st‖2

)
. Interestingly for the case of p =

2 no adaptive step size is needed!

General Optimistic Bound
Given a prediction mt we define optimistic Lagrangian
hedging with stepsizes ηt as the following rule

xt =

{
∇F (ηt(s1:t−1+mt))
〈∇F (ηt(s1:t−1+mt)),u〉 if 〈∇F (ηt(s1:t−1 +mt)), u〉 > 0

arbitrary x ∈ X o.w.

(12)

Optimistic Lagrangian hedging then guarantees the gen-
eral upper bound on the growth of the potential function.
Theorem 1. An optimistic Lagrangian hedging algorithm
with a convex potential function F satisfying conditions (3-
4) and positive decreasing stepsizes 0 < ηt ≤ ηt−1, ensures

F (ηT s1:T ) ≤ L

2

T∑
t=1

ηT ηt ‖st −mt‖2 .

Proof. From the same arguments as Gordon, we have the
following Blackwell condition

〈∇F (ηt(s1:t−1 +mt)), st)〉 ≤ 0.

By the smoothness of F we have

F (ηts1:t) = F (ηt(st−1 +mt + st −mt)) ≤
F (ηt(s1:t−1 +mt))

+ 〈∇F (ηt(s1:t−1 +mt)), ηt(st −mt)〉

+ η2
t

L

2
‖st −mt‖2

= F (ηt(s1:t−1 +mt))− F (ηt(s1:t−1)) + F (ηt(s1:t−1))

+ 〈∇F (ηt(s1:t−1 +mt)),−ηtmt〉+ η2
t

L

2
‖st −mt‖2

≤ F (ηt(s1:t−1)) + η2
t

L

2
‖st −mt‖2 (by convexity)4

≤ ηt
ηt−1

F (ηt−1s1:t−1) + η2
t

L

2
‖st −mt‖2 (by Lemma 1).

We now proceed by induction. Observe that F (η0s0) =
F (0) ≤ 0 by assumption. So, for any η0 ≤ η1,5

F (η1s1:1) ≤ η1

η0
F (η0s0)+η2

1

L

2
‖s1 −m1‖2 ≤ η2

1

L

2
‖s1 −m1‖2 .

4Using the subgradient inequality F (x)−F (y) ≤ 〈∂F (x), x−
y〉.

5η0 is not used to construct x1 and is only used for the analysis.

Assume that

F (ηt−1s1:t−1) ≤ L

2

t−1∑
k=1

ηt−1ηk ‖sk −mk‖2 .

Then we have

F (ηtst) ≤
ηt
ηt−1

F (ηt−1st−1) + η2
t

L

2
‖rt −mt‖2

≤ L

2

t−1∑
s=1

ηtηs ‖rs −ms‖2 + η2
t

L

2
‖rt −mt‖2

Taking no stepsize or constant stepsize and setting mt =
0 recovers the original results by Gordon. When p = 1 and
mt = 0, and applying the assumed upper bound on st, The-
orem 1 gives

RTX ≤ D

(
LC

∑T
t=1 ηt

2B
+

A

BηT

)
. (13)

Therefore, taking ηt ∈ O( 1√
t
) gives a regret bound holding

uniformly over time that is of the order O(
√
T ).

For the case of when p > 1 where no stepsize is needed
the following regret bound is immediate

RTX ≤ D

(
L(
∑T
t=1 ‖st −mt‖2) + 2A

2B

)1/p

. (14)

In the case of regret-matching on the simplex, whereB =
1, A = 0, L = 2, D = 1, and p = 2 (Gordon 2007), we get

RTX ≤

√√√√ T∑
t=1

‖st −mt‖2. (15)

Adaptive Stepsizes
For the case of p = 1 we can still achieve a regret bound sim-
ilar to (15) by taking adaptive stepsizes. Intuitively, the step-
sizes account for how well previous predictions have done,
or in the case of no predictions, how large in norm st have
been.

Unlike the typical adaptive stepsize scheme for mirror de-
scent (11), the stepsizes for Lagrangian hedging will be sim-
ilar to adaptive FTRL methods (Mohri and Yang 2016), in-
cluding the initial stepsize η1,

ηt =
1√

1
η21

+
∑t−1
k=1 ‖sk −mk‖2

t > 1. (16)

Our result is a direct application of the following Lemma,
which is a slight modification of a similar result by
Orabona (Orabona 2019)[Lemma 4.13], we provide the
proof in the appendix.
Lemma 2. Let a0 ≥ 0 and 0 ≤ ai ≤ C for i > 0. If f is a
non-negative decreasing function then
T∑
t=1

atf(a0 +

t−1∑
i=1

ai) ≤ (C − a0)f(a0) +

∫ sT−1

a0

f(x)dx.



Following adaptive stepsize scheme (16) yields the fol-
lowing regret bound.

Theorem 2. An optimistic Lagrangian hedging algorithm
with a convex potential function F satisfying conditions (3-
5), with p = 1 and stepsizes

ηt =
1√

1
η21

+
∑t−1
k=1 ‖sk −mk‖2

t > 1,

and η1 ≤
√

3
C , attains the following regret bound

RTX ≤
D

B

(L+A)

√√√√ 1

η2
1

+

T−1∑
t=1

‖st −mt‖2
 .

See appendix for proof.

Path Length Bound with Smooth Losses
Optimism and adaptivity have found useful applications in
improving rates for several smooth problems. For example,
faster rates in smooth games (Rakhlin and Sridharan 2013b;
Syrgkanis et al. 2015; Farina et al. 2019; Farina, Kroer,
and Sandholm 2019), and faster rates for offline optimiza-
tion (Cutkosky 2019; Joulani et al. 2020).

Unfortunately, these results strongly depend on the regret
bound having the same form as OMD and OFTRL. How-
ever, in Lagrangian hedging we can attain a path length re-
gret bound when the loss is fixed and smooth; the regret is
upper bounded by the change in iterates.

The new path length bound is a direct application of
the general optimistic results of the previous section com-
bined with the assumption of a fixed Lipschitz continuous
smooth convex loss (possibly non-linear), that is `t = `,K ≥
‖∇`(x)‖, and ‖∇`(x)−∇`(y)‖ ≤ L ‖x− y‖∗. If we take
the typical martingale prediction mt = st−1 then we have
that ‖st −mt‖2 ≤ C̃ ‖xt − xt−1‖2∗.

Proof. In the fixed loss case we have st = 〈∇`(xt), xt〉u−
∇`(xt). Therefore,

‖st −mt‖ = ‖st − st−1‖ =

‖∇`(xt−1)−∇`(xt) + 〈∇`(xt), xt〉u− 〈∇`(xt−1), xt−1〉u‖
≤ L ‖xt−1 − xt‖∗ + ‖u‖ |〈∇`(xt), xt〉 − 〈∇`(xt−1), xt−1|
= L ‖xt−1 − xt‖∗
+ ‖u‖ |〈∇`(xt)−∇`(xt−1), xt〉+ 〈∇`(xt−1), xt − xt−1)|
≤ (L+ ‖u‖DL+K) ‖xt − xt−1‖∗ .

Taking C̃ = (L+ ‖u‖DL+K)
2 gives the result.

Generalization to Φ-Regret in Experts
When X = ∆n, the n-dimensional simplex, online linear
optimization becomes a problem of learning with expert ad-
vice. At each round t an iterate xt ∈ ∆n is a distribution
over n actions, interpreted as weightings over recommen-
dations by n experts. Similar to before, regret will compare
the total loss with the best x∗ ∈ X . However, this is equal

to comparing with the best action (best expert recommenda-
tion) and is referred to as external regret,

RTX = max
a∈A

T∑
t=1

〈`t, xt〉 − 〈`t, δa〉. (17)

Where δa is a distribution over A with full weight on action
a. The regret can be interpreted as considering an alterna-
tive sequence of iterates {x̃t}t≤T , where each x̃t = φ(xt),
for some transformation of the form φ(x) = δa. More gen-
erally, we can measure regret with respect to a set of linear
transformations Φ, referred to as Φ regret

RTΦ = max
φ∈Φ

T∑
t=1

〈`t, xt〉 − 〈`t, φ(xt))〉. (18)

Similar to Lagrangian hedging, we seek to force a vector
to some safe set. More precisely, we consider the Φ regret
vector sΦ

1:t that keeps track of how an algorithm is doing
with respect to the set Φ,

sΦ
1:t = sΦ

1:t−1 + sΦ
t . (19)

Where sΦ
t = {〈`t, xt〉 − 〈`t, φ(xt)〉}φ∈Φ ∈ R|Φ|. If sΦ

1:t

has all non-positive entries then RTΦ ≤ 0, therefore the safe
set is chosen to be R|Φ|≤0, the negative orthant. This Φ regret
framework, though abstract, includes other interesting forms
of regret such as internal and swap regret (Greenwald, Li,
and Marks 2006). Internal regret is interesting as it allows
for efficient computation of a correlated equilibrium in game
theory (Cesa-Bianchi and Lugosi 2006).

Similar to Lagrangian hedging, and as proposed by
Greenwald, Li, and Marks, the algorithms will use a poten-
tial function F to measure how far sΦ

1:t is from the safe set
and slow down its growth with the Blackwell condition

〈∇F (sΦ
1:t−1), sΦ

t 〉 ≤ 0. (20)

As shown by Greenwald, Li, and Marks, the generalized
Blackwell condition with respect to Φ is achieved if an al-
gorithm plays a fixed point of a linear operator MΦ

t ,

MΦ
t (x) =

∑
φ∈Φ(∇F (sΦ

1:t−1))φφ(x)

〈∇F (sΦ
1:t−1),1〉

(21)

where (∇F (sΦ
t−1))φ denotes the component of the vector

∇F (sΦ
t−1) ∈ R|Φ| associated with the transformation φ ∈

Φ, and 1 = (1, · · · , 1) ∈ R|Φ|. This fixed point exactly
coincides with the Lagrangian hedging method when X is a
simplex, and Φ = {φ : ∃ a ∈ A ∀xφ(x) = δa}. In other
words, the rule (7) is a fixed point of MΦ

t (x) for external
regret.

If an upperbound on F provides a regret bound, as in the
previous sections, then optimistic Lagrangian hedging can
be generalized to the Φ-regret setting, by defining a new op-
erator,

M̃Φ
t (x) =

∑
φ∈Φ(∇F (ηt(s

Φ
t−1 +mt)))φφ(x)

〈∇F (ηt(sΦ
t−1 +mt)),1〉

. (22)

The main result is a theorem analogous to Theorem 1, except
with the new regret vector sΦ

1:t.



Theorem 3. An optimistic Lagrangian hedging algorithm
playing a fixed point of M̃Φ

t , with a convex potential func-
tion F satisfying conditions (3-4) and positive decreasing
stepsizes 0 < ηt ≤ ηt−1, ensures

F (ηT s
Φ
1:T ) ≤ L

2

T∑
t=1

ηT ηt
∥∥sΦ
t −mt

∥∥2
.

The proof is identical to Theorem 1 except we use the
Blackwell condition

〈∇F (ηt(s
Φ
1:t−1 +mt)), s

Φ
t 〉 ≤ 0,

see appendix for more details.
To the best of our knowledge, this results in the first set of

optimistic and adaptive algorithms for minimizing internal
and swap regret.

Lagrangian Hedging+
In this section we extend optimistic Lagrangian hedging in
the Φ-regret setting to use a modified regret vector

sΦ+
1:t = (sΦ+

1:t−1 + sφt )+.

This modification is inspired by the regret-matching+ algo-
rithm, which has been successfully used to solve large two-
player zero-sum games and play poker at an expert-level
(Tammelin 2014; Tammelin et al. 2015; Burch 2017). In-
deed this framework generalizes regret-matching+, beyond
external regret and beyond regret-matching.

With the modified regret vector sΦ+
1:t , the safe set remains

as R|Φ|≤0, because of the component wise inequality

sΦ
1:t ≤ sΦ+

1:t .

Therefore, sΦ+
1:t ∈ R|Φ|≤0 implies sΦ

1:t ∈ R|Φ|≤0, and we have

RTφ = max
φ∈Φ

(sΦ
1:t)φ ≤ max

φ∈Φ
(sΦ+

1:t )φ.

As one would expect, we define optimistic Lagrangian
hedging+ with the operatorMt but modified to use the regret
vector sΦ+

1:t and a prediction mt.

M̃Φ+
t (x) =

∑
φ∈Φ(∇F (ηt(s

Φ+
t−1 +mt)))φφ(x)

〈∇F (ηt(s
Φ+
t−1 +mt)),1〉

. (23)

Like the previous section, if we can control the growth
of F (sΦ,+

1:t ) and F indeed provides an upper bound to the
safe set, then a regret bound is attainable. However, we must
make an additional assumption on F , for which we call pos-
itive invariant and smooth (D’Orazio 2020). That is

F ((x+ y)+) ≤ F (x) + 〈∂F (x), y〉+
L

2
‖y‖2 .

Once again, equipped with the new smoothness condition
and the Blackwell condition

〈∇F (ηt(s
Φ+
1:t−1 +mt)), s

Φ
t 〉 ≤ 0,

which is guaranteed by playing the fixed point (23) (see
appendix for details), we have the following bound on F .

Theorem 4. An optimistic Lagrangian hedging+ algorithm
playing a fixed point of M̃Φ+

t , with a convex potential func-
tion F that is positive invariant and smooth and satisfying
condition (3), with positive decreasing stepsizes 0 < ηt ≤
ηt−1, ensures

F (ηT s
Φ+
1:T ) ≤ L

2

T∑
t=1

ηT ηt
∥∥sΦ
t −mt

∥∥2
.

Φ Regret Examples
Inspired by Lagrangian hedging, Greenwald, Li, and Marks
present different potential functions that are appropriate to
minimizing Φ regret. The functions include a polynomial
family of algorithms, with regret-matching as special case,
and an exponential variant which amounts to the hedge al-
gorithm when external regret is minimized.

Polynomial

F (x) =
∥∥x+

∥∥2

p
p ≥ 2, (24)

F is smooth with L = 2(p − 1), and with respect to
the p-norm ‖·‖p. Greenwald, Li, and Marks showed that
an upper bound on F (s1:T ) ≤ K amounts to the regret
bound RTΦ ≤

√
K. In the case of when an algorithm is

using the modified regret vector sΦ+
1:T it is easy to show

maxφ∈Φ(sΦ+
1:t )φ ≤

√
F (sΦ+

1:t ) ≤
√
K, since F is positive

invariant and smooth because F (x+) = F (x).
When p = 2 and Φ is taken to be equivalent to external

regret, we have the gradient of F (x) is x+, which gives the
regret-matching algorithm when if mt = 0, and the regret-
matching+ algorithm if sΦ+

1:t is used with mt = 0. Notice
that we exactly recover the regret-matching bound (15) in
this case by applying the upper bound from Theorem 3 and
with no stepsize (ηt = 1).

Greenwald, Li, and Marks also showed that the polyno-
mial case can be extended to 1 < p < 2 with the potential
function

F (x) =
∥∥x+

∥∥p
p

1 < p < 2.

However, the smoothness condition (4) must be modified by
replacing ‖·‖2 with ‖·‖p. This does not change the analy-
sis but the bounds need to be changed accordingly. More
importantly the regret bound degrades as p approaches 1,
RTΦ ≤ K1/p.

Similar to the case of p ≥ 2, if 1 < p < 2 bounds on
maxφ∈Φ(sΦ+

1:t )φ are attainable since F (x+) = F (x) and
hence is positive invariant and smooth.6

Exponential In addition to the polynomial family, we can
pick the exponential variant with potential function

F (ηx) = ln
∑
i

eηxi − ln(d).

Where x ∈ Rd, L = 1, and ‖·‖2 = ‖·‖2∞ for the smoothness
condition. It can also be shown that maxi xi for some vector

6See (D’Orazio 2020) for more details.



x ∈ Rd is upper bounded by 1
η (F (ηx) + ln(d)), therefore

the bound on F from Theorem 3 gives an upper bound on
maxφ(sΦ

1:t)φ with d = |Φ|.
The gradient of F (x) is the softmax function and gives the

hedge algorithm if Φ is chosen to correspond with external
regret.

Related Work
An important instance of Lagrangian hedging is regret-
matching, an algorithm typically used within the game the-
ory community (Hart and Mas-Colell 2000; Zinkevich et al.
2008), and is a special case of Blackwell’s algorithm (Black-
well et al. 1956). At the same time of writing Farina,
Kroer, and Sandholm have also analyzed an optimistic
variant of regret-matching and its popular variant regret-
matching+, named predictive regret-matching and predictive
regret-matching+, respectively (Farina, Kroer, and Sand-
holm 2020). On the surface, our analysis provides more gen-
erality as it includes both of their variants of regret-matching
and more. However, it is conceivable that the main tool used
in their paper, the equivalence of Blackwell approachabil-
ity and online linear optimization (Abernethy, Bartlett, and
Hazan 2011), provides generality to analyze other optimistic
Blackwell style algorithms. More importantly, we do not be-
lieve that the tools from Abernethy, Bartlett, and Hazan to
be equivalent to Lagrangian hedging. Further investigation
is left to future work.

Conclusion
In this paper we extend Lagrangian hedging to include op-
timism, a guess mt of how the regret vector will change,
and adaptive stepsizes. The regret bounds attained for opti-
mistic and adaptive Lagrangian hedging lead to a path length
bound in constrained smooth convex optimization. Further-
more, we devise optimistic and adaptive algorithms to min-
imize Φ regret, a generalization of external regret that in-
cludes internal regret, and include a new class of algorithms
that generalizes regret-matching+.

The analysis in this paper provides new algorithms, ex-
perimental evaluation is left to future work. For example, do
the new optimistic and adaptive algorithms for internal re-
gret provide better convergence to correlated equilibria then
their non-optimistic counterparts? Additionally, in this work
the step size scheme (16) is prescribed for potential func-
tions with parameter p = 1, which amounts to a new step
size scheme for the well-known hedge algorithm, with many
preexisting adaptive variants, does this scheme provide any
benefits over other adaptive schemes in practice?
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Appendix

Proof of Lemma 2
Let a0 ≥ 0 and 0 ≤ ai ≤ C for i > 0 f . If f is a non-
negative decreasing function then

T∑
t=1

atf(a0 +

t−1∑
i=1

ai) ≤ (C − a0)f(a0) +

∫ sT−1

a0

f(x)dx

Proof. Let st =
∑t
i=0 ai.

atf(a0 +

t−1∑
i=1

ai) = atf(st−1) = (at − at−1)f(st−1) + at−1f(st−1)

= (at − at−1)f(st−1) +

∫ st−1

st−2

f(st−1)dx

≤ (at − at−1)f(st−1) +

∫ st−1

st−2

f(x)dx

So we have that

T∑
t=1

atf(a0+

t−1∑
i=1

ai) ≤
T∑
t=1

(at−at−1)f(st−1)+

∫ sT−1

a0

f(x)dx.

Now we will apply the summation by parts formula to ana-
lyze the first sum.

T∑
t=1

(at − at−1)f(st−1)

= f(sT−1)aT − f(a0)a0 −
T∑
t=2

at−1(f(st−1)− f(st−2))

= f(sT−1)aT − f(a0)a0 +

T−1∑
t=1

at(f(st−1)− f(st))

≤ f(sT−1)aT − f(a0)a0 +

T−1∑
t=1

C(f(st−1)− f(st))

= f(sT−1)aT − f(a0)a0 + Cf(a0)− Cf(sT−1)

≤ (C − a0)f(a0)

The first inequality is due to f being a decreasing function,
hence f(st−1) − f(st) ≥ 0, and because 0 ≤ ai ≤ C. The
last inequality also follows because aT ≤ C.



Proof of Theorem 2
An optimistic Lagrangian hedging algorithm with a convex
potential function F satisfying conditions (1-3), with p = 1
and stepsizes

ηt =
1√

1
η21

+
∑t−1
k=1 ‖sk −mk‖2

t > 1,

and η1 ≤
√

3
C , attains the following regret bound

RTX ≤
D

B

(L+A)

√√√√ 1

η2
1

+

T−1∑
t=1

‖st −mt‖2
 .

Proof. Recall assumption (5) with p = 1, and inequality
(2), then a non-negative upperbound on F (ηT s1:T ) ≤ K
translates into the regret bound

RTX ≤ D
(

K

BηT
+

A

BηT

)
.

From Theorem 1 we have that

0 ≤ K =
L

2

T∑
t=1

ηT ηt ‖st −mt‖2 ,

is a valid upper bound. Therefore

RTX ≤
D

B

(
L

2

T∑
t=1

ηt ‖st −mt‖2 +
A

ηT

)
.

We now apply Lemma 2 on the sum across T rounds
by noticing that ηt = f(a0 +

∑t−1
i=1 ai), where ai =

‖si −mi‖2, f(x) = 1√
x

, and a0 = 1
η21

. By assumption we

also have that 0 ≤ ai = ‖si −mi‖2 ≤ C.
Therefore, by Lemma 2
T∑
t=1

ηt ‖st −mt‖2 ≤

(
C − 1

η2
1

)
η1 + 2


√√√√ 1

η2
1

+

T∑
t=1

‖st −mt‖2 −
1

η1


= Cη1 −

3

η1
+ 2

√√√√ 1

η2
1

+

T∑
t=1

‖st −mt‖2

≤ 2

√√√√ 1

η2
1

+

T∑
t=1

‖st −mt‖2 if η1 ≤
√

3

C
.

Proof of Theorem 4
An optimistic Lagrangian hedging+ algorithm playing a
fixed point of M̃Φ+, with a convex potential function that
is positive invariant and smooth F and satisfying conditions
(3-4), with positive decreasing stepsizes 0 < ηt ≤ ηt−1,
ensures

F (ηT s
Φ+
1:T ) ≤ L

2

T∑
t=1

ηT ηt
∥∥sΦ
t −mt

∥∥2
.

Proof. The proof resembles closely to that of Theorem 1.

F (ηts
Φ+
1:t ) = F (ηt(s

Φ+
1:t−1 + sΦ

t +mt −mt)
+)

≤ F (ηt(s
Φ+
1:t−1 +mt)) + 〈∇F (ηt(s

Φ+
1:t−1 +mt)), ηt(s

Φ
t −mt)〉

+ η2
t

L

2

∥∥sΦ
t −mt

∥∥2

≤ F (ηt(s
Φ+
1:t−1 +mt))− F (ηts

Φ+
1:t−1) + F (ηts

Φ+
1:t−1)

+ 〈∇F (ηt(s
Φ+
1:t−1 +mt)),−ηtmt〉+ η2

t

L

2

∥∥sΦ
t −mt

∥∥2
.

The rest follows from the same arguments as Theorem 1.

The Φ Regret Fixed Point
Greenwald, Li, and Marks showed that xt that is a fixed
point of Mt is guaranteed to satisfy the generalized Black-
well condition

〈∇F (sΦ
1:t−1), sΦ

t 〉 ≤ 0.

Our results reuse this observation by modifiying the regret
vector sΦ

1:t−1 with a prediction and possibly using the mod-
ified sΦ+

1:t−1 vector. More generally, we use the following re-
sult that follows directly from Greenwald, Li, and Marks;
the following inequality holds

〈∇F (z), sΦ
t 〉 ≤ 0,

if the operator used to construct the fixed point is defined to
be

MΦ
t (x) =

∑
φ∈Φ(∇F (z))φφ(x)

〈∇F (z),1〉
.


