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Abstract

Online game playing algorithms in imperfect-information
games (IIG) keep track of a set of states they consider pos-
sible, given the encountered situations, to compute a strategy.
Due to exponential branching of the opponent’s private infor-
mation, a large portion, or even all, of the tracked states may
suddenly become incompatible with a received observation.
In that case, new compatible states quickly need to be iden-
tified. This problem is called information set generation. Our
contributions include (1) introducing a domain-independent
way to encode both an agent’s sequence of actions and obser-
vations (AOH) as well as the corresponding uncertainty over
the opponent’s information (OPI). (2) A neural network ar-
chitecture capable of learning the mapping from AOH to a
heuristic for efficient generation of OPI. (3) Algorithms for
generating the data for training the neural network using a
game simulator. In our empirical evaluation on three large
domains, we show that with time budgets suitable for online
game playing, our algorithm significantly outperforms a base-
line both in the number of states generated and in the ability
to find states where the baseline is unable to find any.

Introduction
To assess the performance of game playing algorithms, it
has become increasingly popular to let them compete against
humans. This is especially of interest for games where it is
infeasible to find exact solutions due to their sizes. Com-
puting strategies for game playing can be performed in two
ways. Offline approaches find strategies for all possible sit-
uations that can occur prior to playing the game, which en-
sures that an agent will never encounter an unknown state.
The drawbacks of this approach are the computational re-
quirements to optimally solve large games and being able
to store the full game in memory, which can be infeasi-
ble. Online game playing algorithms, which are the focus
of this work, in contrast, compute strategies only for ac-
tually encountered situations while playing the game and
have proven to be able to beat humans in large perfect-
and imperfect-information games (Hsu 2004; Silver et al.
2017; Moravčı́k et al. 2017; Brown et al. 2020). In IIG, an
agent only knows about his information set, a set of possible
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states given his actions and observations. Online game play-
ing algorithms optimize strategies for both players, even in
parts of the game where they are not actually playing. How-
ever, the branching of the opponent’s private information is
often exponential in the number of opponent actions, i.e.,
Kriegspiel, whereas in poker the opponent’s private infor-
mation does not change. Hence, while keeping track of a
constant size set of states an agent considers possible, he
might end up in a situation where all tracked states become
inconsistent with a newly received observation. In that case,
the agent needs to quickly assess which opponent actions are
compatible with his own actions and observations. In liter-
ature this is referred to as information set generation (ISG)
(Richards and Amir 2012). Traditionally, games are repre-
sented as extensive form games (EFG) (Morgenstern and
Von Neumann 1953) and state-of-the-art solutions address
the problem of information set generation by implement-
ing the domain in a logic-based game description language
(GDL), e.g.(Thielscher 2010). When asking for nodes in
an information set, a constraint satisfaction problem is con-
structed using the GDL. Its solution are all states compatible
with the sequences of observations in that information set
(Richards and Amir 2012). The GDL description however,
requires expert human effort to encode and is a major speed
limitation when used during online game play. In addition to
that, EFGs lack any notion of observations. Factored obser-
vation stochastic games (FOSG)(Kovařı́k et al. 2019), a vari-
ant of partially observable stochastic games (Hansen, Bern-
stein, and Zilberstein 2004), in contrast describe informa-
tion in games in terms of sequences of actions and private as
well as public information, where players receive subsets of
each . For any state in the game, a FOSG maintains a ’mem-
ory’ of sequences of actions and observations that lead to it.
Hence, the uncertainty in a game can be viewed strictly in
terms of actions and observations, rather than just abstract
information-partitioning used by EFGs. This enables us to
ask which opponent actions and observations are compati-
ble with what the player did and observed. Recent results
on Atari games (Mnih et al. 2013) were solely based on an
agent having access to a simulator in order to train. Having
to express every single game concisely in a description lan-
guage would be expensive. In this work we provide a solu-
tion to the problem of information set generation in large IIG
focused on online game playing. In this setting, agents only



have access to a simulator which provides observations from
the environments. To encode them, we use FOSG which is
easier to attain when applied to a large set of games.

Contributions Our contributions are the following: (1)
We show how to use FOSG to encode which opponent’s pri-
vate information (OPI) is compatible with a player’s action-
observation-history (AOH). We extend this encoding to dis-
tributions over possible opponent private information. (2)
We present a domain-independent neural network architec-
ture capable of learning a heuristic, which speeds up the effi-
cient generation of OPI. (3) We provide algorithms for gen-
erating the data for training the neural network using a game
simulator. (4) In our empirical evaluation on three large
domains, we show that with time budgets suitable for on-
line game playing, our algorithm significantly outperforms
a baseline both in terms of the number of valid states gen-
erated and in the ability to find states where the baseline is
unable to find any.

The purpose of our algorithm is first and foremost to gen-
erate states, not to explicitly model the opponent. Our frame-
work, however, allows for this as well, as it is possible to use
any (e.g., near-optimal) opponent strategy to generate the
training data. The goal of this paper is to show that even us-
ing arbitrary (uniform) strategies, we are able to find nodes
anywhere in the tree, even when training only from a small
fraction of all information sets in domains with non-trivial
properties. This shows that the neural network is able to
learn the logic of an arbitrary game just by training on a
relatively small number of example matches and give mean-
ingful estimations about possible opponent information.

Background
Factored-observation stochastic games (FOSG), a variant of
partially-observable stochastic games, describes information
in games in terms of sequences of actions and private as
well as public observations (Kovařı́k et al. 2019). A two-
player zero-sum factored-observation stochastic game is a
tuple G = 〈W,wo, A, T,R,O〉; W is the set of world
states; w0 ∈ W denoting the initial state; A = A1 × A2

is the space of joint actions, with subsets Ap(w) ⊂ Ap de-
noting the actions available to each player p ∈ {1, 2} at
w ∈ W . If players perform a joint action a = (a1, a2)
at w, player 1 is awarded (but doesn’t observe) the re-
ward R1(w, a). In contrast, player 2 receives its opposite
R2(w, a) = −R1(w, a). Afterwards, the transition function
T determines the next world state w′, drawn from the proba-
bility distribution T (w, a) ∈ ∆(W ). The observation func-
tion O = (Opriv(1), Opriv(2), Opub) yields the factorized ob-
servations, the private part (for each player) and the public
part (for both of them). Upon reaching w′, each player re-
ceives Op(w, a,w′) =

(
Opriv(p)(w, a,w

′), Opub(w, a,w′)
)
.

A history in FOSG is a finite sequence h =
(w0, a0, w1, a1, . . . , wt), where wk ∈ W , ak ∈ A(wk),
and T (wk, ak, wk+1) > 0. The game always ends after a
finite number of transitions, whereas the set of terminal his-
tories is denoted Z . A particular history can be viewed from
both players’ perspectives in terms of their knowledge or

uncertainty about the current state. This is referred to as an
information-state (info-state) or action-observation history
(AOH) and describes the sequence of actions performed by
a particular player and the observations received along the
way. It is defined as

sp(h) :=
(
Op(−,−, w0), a0

p, Op(w
0, a0, w1), a1

p, . . .

. . . , at−1
p , Op(w

t−1, at−1, wt)
)
,

where O0
p(−,−, w0) denotes the initial observation at the

start of the game. The corresponding information set (in-
foset) Ip(sp) := {h ∈ H | sp(h) = sp}, is the set of all
histories compatible with a information-state. We will refer
to histories as trajectories τ interchangeably throughout the
paper.

Example of an Information Set Consider a variant of
Goofspiel where two players and a referee each hold Jack,
Queen and King. The referee publicly shows one of his
three cards, both players then privately bet one of their cards
to win the public card. The public card is then awarded
to the player with the higher private bet. Hence, the play-
ers learn who won which card, but they do not know with
which private card. Now, consider the public state after the
first round where the King was shown and player one won.
If player one played King, his action-observation-history is
s1(h) := (Opub(King), a1(King), Opub(Win)). The infor-
mation set s1(h) contains both the world state where player
two played ”Jack” and one where he played ”Queen”.

Figure 1 showcases the above described game using
FOSG. We only show the sub-tree where player one bet
”King”. It has three children, two with a ”win” and one with
a ”draw” public observation. Note that through the course
of the game FOSG keeps track of sequences of actions and
observations, for example shown by ”K,P1 Win”, a descen-
dant of the public state which contains only ”K”. The figure
contains two world states compatible with that particular se-
quence of public observations. One where player two bet
”Jack” and one where he bet ”Queen”.

Encoding Action-Observation Sequences
Figure 1 demonstrates that one player’s action-observation-
history (AOH) determines a set of compatible opponent
action-observation-histories. We refer to this set as opponent
private information (OPI) which defines a player’s uncer-
tainty over both private actions as well as private observa-
tions of his opponent. We established that the correspond-
ing infoset for some info-state si is the set of all histories
compatible with it. In this paper we want to learn a function
histories(Si) 7→ P(H) such that histories(si) := I(si) =
{h ∈ H | si(h) = si}. To implement it, there are three
ingredients necessary: The first is to encode the AOH and
the corresponding OPI, which will be shown in this section.
The second is to acquire training data necessary for approx-
imating such a function and the third is to create and train
a model which is able to learn such a function in a domain-
independent manner.

In this section, we will present a way of encoding both
AOH and OPI in a domain-independent way using FOSG.



opub: ∅

a1: ∅
a2: ∅

{King(K)}
∅
∅

{K,Win}
{King}
{Jack}

{K,Win}
{King}
{Queen}

{K,Draw}
{King}
{King}

Figure 1: We show a FOSG representation of world states
of the card game described in the text. Each node is divided
in three parts. The top part denotes the public observation,
middle part player one’s private action and the lower part
player two’s private action. The root state contains the public
observation that the referee announced the King. We display
only the states where player one privately bet ”King”. The
two states where player one won are in the same information
set (dotted).

We will first show how this encoding can convey if oppo-
nent information is possible, given a player’s observations.
Furthermore, we will extend this encoding such that it can
be used to reflect how likely some opponent information is,
assuming a strategy profile σ. We need this representation to
efficiently search for plausible opponent actions and private
observations.

Encoding a Turn Assuming all information in a FOSG
gets revealed once some player observes it, a world state
can be uniquely identified by the sequences of public and
both players’ private information. To make notation eas-
ier to understand, we will assume a game with only pub-
lic observations throughout the coming sections. However,
our framework supports private observations as well by, in-
stead of considering each opponent action a, representing
the opponent information by pairs of (a−i, Opriv(-i)) given
by the cartesian product of the opponent’s private obser-
vations and actions. We will use the term turn to refer to
each pair of (ap, Opub) ∈ Ap × Opub, as in ”the player
did something” and received an observation 1. We will now
describe how these sequences of actions and observations
can be encoded using one-hot encoding. We will reuse the
example in Figure 1. After the first round of this game,
there are three possible public observations that can occur
(Loss,Draw,Win). To identify them, we can just enumerate
the possibilities and assign indices to each outcome. Now,
we are able to encode the public observation by allocat-
ing a vector of zeroes with length 3 and assigning 1 to
the position which corresponds to the received public ob-
servation, i.e., Opub = {Win} → [0, 0, 1]. Analogously,

1The term ”turn” is generally used to describe ”full” events hap-
pening in a game., i.e. a public state with both players info states

we consider all possible actions and perform the same for
the private information part, i.e., a1 = {King} → [0, 0, 1]
(Jack,Queen,King). Concatenating the two, we get one vec-
tor containing the encoded AOH of one player.

Encoding an Action-Observation History Viewing an
AOH as a sequence of pairs of public and private ob-
servation, we can perform the above described procedure
for every element in the AOH. Doing so encodes a full
AOH for one player. Using the vectorized representation the
full action-observation history hence becomes a sequence,
where each element contains a pair of public and private in-
formation.

Win,King

Draw,Queen

Loss,Jack

[0,0,1],[0,0,1]
[0,1,0],[0,1,0]
[1,0,0],[1,0,0]

Figure 2: Encoding of a full AOH

Encoding Opponent’s Private Information We estab-
lished how we can encode one player’s action-observation-
history, where the player knows exactly what he did and ob-
served. We now want to encode his knowledge about what
the opponent might have done or observed. Since an infor-
mation set can have more than one history, we extend our
representation by allowing multiple entries of 1 per turn.
Figure 3 shows how to encode the opponent’s private infor-
mation in the ”Win” public state from player one’s perspec-
tive.

[Win] [King] [Jack,Queen]

[0,0,1] [0,0,1] [1, 1, 0]

Figure 3: Encoding the player’s AOH (left) and the corre-
sponding opponent’s private information for the ”win” pub-
lic state (on the right). Since from the player’s perspective
the opponent could have played both Jack and Queen we as-
sign a 1 for each of them, however the opponent could not
have played King.

Encoding Sampled Opponent’s Private Information
The above encoding reflects if a certain piece of OPI is
possible (0 or 1) with an AOH, however we can also use
it to represent a sampled subset of the infoset. Also, un-
der some strategy σ, a certain history might be more likely
than others. We will now show how the above encoding can
be further extended to reflect this. Let σ denote a strategy.
Let s1 := (Opub(King), a1(King), Opub(Win)) (from the
above example). Assume we tried to reach s1 by choosing
actions according to σ from the root. Every time we hit s1 ei-
ther by a2(Jack) or a2(Queen), we track their occurrence.
After 10 samples, we can normalize over the occurrences
and get an intuition of how ”likely” they are, assuming σ.



Figure 4 shows an example where a2(Jack) and a2(Queen)
have both been observed 5 times.

[5× Jack, 5×Queen, 0×King]

[0.5, 0.5, 0]

Figure 4: Encoding sampled opponent private information
for the ’Win’ (P2 loss) public state. We sample 10 times into
s1 using σ. We receive 5xJack and 5xQueen. We normal-
ize over the number of occurrences and receive 0.5 each.

This encoding is lossy since it does not directly enable for
an exact recovery of the original information set. However,
encoding private information for each turn individually al-
lows us to represent opponent private information which is
possibly exponential in the number of actions. Furthermore,
the encoding shown in this section is just an example imple-
mentation of a general encoding procedure. In the remainder
of the sections, we will assume a general encoding func-
tion which encodes the player’s action-observation history
as Πin and the opponent’s private information as Πout.

Learning to Guess Opponent’s Information
We introduced the notion of opponent private information
for a given player’s information set and showed how to en-
code both an information set’s AOH as well as OPI. Now we
will define the function which maps from AOH to OPI. As-
sume a FOSG G with some deterministic transition function
and a chance player. Let si denote the information-state of
player i with Ii(si) denoting its information set. The goal of
the paper is to implement an approximation of the function:

hist : s̄i ∈ Si 7→ Ii(s̄i) = {h ∈ H : si(h) = s̄i} (1)

This is usually not provided in a game definition and ex-
pensive to get in a domain-independent way. In practice, for
some info-state s̄i, we want to sample elements of hist(s̄i).
A naive approach would randomly sample actions for both
players and chance and compare the received observations
with s̄i and continue the search if compatible, backtrack and
choose different actions if otherwise.

We propose Heuristic Rejection Sampling (HRS) (Algo-
rithm 1), which receives a heuristic γ which induces an or-
dering of actions at each decision point of the opponent. In
the case where γ is equal for all actions, it coincides with
(Parker, Nau, and Subrahmanian 2005), i.e. naive search and
takes random actions and compares the received observation
with the one in the requested s̄i. If it is compatible, it con-
tinues as such. If incompatible, it returns to the parent state
and takes the next action. Let n =| s̄i | denote the length
of s̄i in turns, where s̄i = a1

i o
1
i , . . . a

n
i o
n
i . A full trajectory

τ with t =| τ | is given by τ = a1
i a

1
−io

1
i . . . a

t
ia
t
−io

t
i. We

will use τ ⊕ a to denote the concatenation of τ and a. By
w(τ) we denote the last world state in τ . We denote Aγ−i as
the set of opponent actions ordered in decreasing order by γ.
We describe HRS in Algorithm 1.

We propose learning the search heuristic γ where:

γσ : Si → RN×(O−i×A−i) (2)

Algorithm 1 Heuristic Rejection Sampling (HRS)

1: Input: τ {Current Trajectory}
2: t =| τ | {Current length of τ}
3: if si(τ) = s̄i then
4: output(τ )
5: else
6: (ai, oi) = s̄i[t] {(ai, oi) in s̄i at depth t}
7: A−i = {a−i ∈ Aγ−i} {Aγ−i ordered by γ}
8: for a−i ∈ A−i do
9: w′ ∼ T (w(τ), (ai, a−i)) {Sample w′ using a−i}

10: o′i = Oi(w, (ai, a−i), w
′) {Receive o′i}

11: if o′i = oi then
12: si(τ ⊕ (ai, a−i)) @ s̄i {is prefix of}
13: HRS(τ ⊕ (ai, a−i, o

′
i)) {Recursive call}

such that

γσ(s̄i)[d, (a−i, o−i)] ∈ [0, 1] (3)

refers to γσ(s̄i) indexed2 at depth d and action-observation
pair (a−i, o−i). It denotes the probability that opponent and
chance perform action a−i and yielding observation oi 3 at
depth d while playing strategy σ−i and reaching s̄i. Suppose
the opponent has actions ak=1

−i , a
2
−i . . . a

K=|A−i|
−i at depth d

then it holds that:

K∑
k=1

γσ(s̄i)[d, (a
k
−i, oi)] = 1

When γ is used in Algorithm 1 to order the set of oppo-
nent actions at each turn, a−i are then chosen in a decreasing
order, taking actions with the highest values first. If two val-
ues are equal, the action is chosen which is higher in the
original enumeration.

We will use Πin(si) to denote the encoding of si, where
Πin(si)[d] will refer to turn d. Analogously, we encode the
corresponding OPI as γ(si) = Πout(si) and index opponent
action a−i at depth d by Πout(si)[d, (a−i, o−i)]. The map-
ping is then given by Πin −→

γ
Πout.

There are several procedures to effectively obtain training
data for approximating γ.

Single trajectory sampling STS samples a terminal tra-
jectory z ∈ Z by taking random actions a′i, a

′
−i and receiv-

ing corresponding observations o′i. At each depth, the cur-
rent trajectory is encoded such that for each z we generate a
training sample Πin,Πout as shown in Algorithm 2.
Proposition 1. The function which minimizes L2-loss on
samples constructed by Algorithm 2 approximates the pre-
sented γσ(s̄i)[d, (a−i, o−i)] ∈ [0, 1].

Proof sketch. Let s1 :=
Opub(King), a1(King), Opub(Win). Its corresponding

2From now on, we will use the [] operator to denote indexing
into an object.

3In our example oi coincides with o−i



Algorithm 2 Single Trajectory Sampling (STS)

Input: τ {Current Trajectory}
t =| τ | {Current length of τ}
while τ /∈ Z do

Πin[t] = Πin(τ [t]) {Encode AOH of τ}
Πout[t] = Πout(τ [t]) {Encode OPI of τ}
ai, a−i ∼ σ(τ [t]) {Sample new actions}
w′ ∼ T (w(τ [t]), (ai, a−i)) {Receive new world state}
oi = Oi(w, (ai, a−i), w

′) {Receive observation}
STS(τ ⊕ (ai, a−i, oi)) {Recursive call}

Return Πin,Πout {Training sample}

information set contains two histories, one where the oppo-
nent plays a2(Jack) and one where a2(Queen) under some
strategy σ2. We refer to the encoding of s1 as Πin(s1) and
the encoding of the corresponding opponent information as
Πout(s1) with d denoting the depth. We encode the corre-
sponding opponent information for the history containing
a2(Jack) as Πout[d, a2(Jack)] = 1 and 0 for the case of
Queen. Now let p = γσ(s1)[d, a2(Jack)] denote the proba-
bility of a2(Jack) being in s1 assuming the opponent plays
σ2. Suppose we sample using Algorithm 2 and hit s1 N
times yielding k pairs of (Πin(s1),Πout(s1)[d, a2(Jack)]).
Let Πn denote the nth sampled pair and let γ̂ denote a
function γ̂ : RN×(O1×A1) 7→ [0, 1]. We minimize the MSE
on each sample given by:

LNγ̂ =
1

N

N∑
n=1

(γ̂(Πn
in)−Πn

out)
2

Since the input to γ̂ is always Πn
in, but the target is ei-

ther [0, 1], γ̂(Πn
in) approximates the mean of the N sam-

ples which is k
N , i.e., the expected value ofN Bernoulli coin

tosses with k successes. We converge to p if:

lim
N→∞

γ̂(Πn
in)[d, a2(Jack)] −→ p

Since we minimize the MSE on each element of Πout indi-
vidually, this holds for each element of Πout.

Batch trajectory sampling (BTS) samples a terminal
state z ∈ Z by taking a trajectory τ with random actions and
receiving corresponding observations. However, whenever
an unseen info-state si is encountered which was reached by
a1
i , a

1
−i, o

1
i , . . . a

n
i , a

n
−i, o

t
i (t =| τ |), we sample trajectories

τs using ai, oi but choosing actions a−i from strategy σ−i at
depth t− 1. We sample until we hit si S times and we com-
pute the average over the S samples Π̄out. For each such
z generate a training sample Πin,Πout such that for every
depth t =| τ | we generate the input/output pairs as shown
in Algorithm 3:
Proposition 2. The function which minimizes L2-loss on
samples constructed using BTS approximates the presented
γ(s̄i)[d, (a−i, o−i)] = [0, 1] for each element in Πout.

Proof sketch. Analogous to STS, the same properties hold
for BTS. Instead of sampling Πout(s̄i)[d, a2(Jack)] = 1

Algorithm 3 Batch Trajectory Sampling (BTS)

1: Input: τ , S {Current Trajectory, Num Samples/Depth}
2: t =| τ | {Current length of τ}
3: while τ /∈ Z do
4: (a, o) = τ [t]
5: Πin[t] = Πin(τ [t]) {Input sample}
6: while s < S do
7: a−i ∼ σ−i(τ [t− 1])
8: w′ ∼ T (w(τ [t− 1]), (ai, a−i))
9: o′i = Oi(w, (ai, a−i), w

′) {Receive o′i}
10: τs = τ [t− 1]⊕ (ai, a−i, o

′
i)

11: if o′i = oi then
12: Πsum

out (τ)[t]+ = Πout(τ
s) {Add τs to the sum}

13: s+ = 1 {Increment}
14: Π̄out[t] =

Πsum
out

S {Output sample}
15: a′i, a

′
−i ∼ σ(τ [t]) {Sample actions to extend τ}

16: w′ ∼ T (w(τ [t]), (a′i, a
′
−i)) {New world state}

17: o′i = Oi(w, (ai, a−i), w
′) {New observation}

18: BTS(τ ⊕ (a′i, a
′
−i, o

′
i), S) {Recursive call}

19: Return (Πin, Π̄out)

and 0 otherwise, we can sample Πout(s̄i)[d, a2(Jack)] ∈
(0, 1). However in each of the N samples, a2(Jack) ∈
(0, 1). Hence, overN samples we approximate the average p
over all sampled values for Πout(a2(Jack)), similar to STS.

Function Approximator Both Algorithms 2 and 3 gen-
erate a training sample in the form a pair of sequences.
The AOH consists of pairs of (action,observation), i.e., the
action-observation history and the OPI of the correspond-
ing opponent private information,i.e., distributions over op-
ponent action-observation histories. A suitable function ap-
proximator needs to (1) be able to perform sequence to se-
quence mapping (2) be able to process variable-length in-
put/output sequences and (3) needs to be able to model de-
pendencies of elements in a sequence. Hence, we chose to
approximate the function γ using a LSTM neural network
(Hochreiter and Schmidhuber 1997) Figure 5 shows our en-
coder/decoder sequence to sequence architecture.

Neural Information Set Generation (NISG) Our algo-
rithm NISG represents an extension of Algorithm 1 where
γ̂ is provided by a neural network of the shape shown in
Figure 5. γ̂ predicts the corresponding OPI sequence with
orderings for each pair a−i, o−i at each turn. The algorithm
then operates just like HRS (Algorithm 1) by choosing op-
ponent actions/ private observations according to γ̂.

Experiments
We test our algorithm on Imperfect-Information Goofspiel
(GS) (Lisý, Lanctot, and Bowling 2015; Lanctot et al. 2009),
Stratego (STR) (Ismail 2004) and Phantom Tic-Tac-Toe
(PTTT) (Lanctot et al. 2012). We chose these domains to
showcase the domain-independent capability of our frame-
work. Goofspiel has private actions and public observations
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. . . . . .

Figure 5: We map a sequence of encoded action-observation
pairs to a sequence of distributions over opponent action-
observation histories. Each element of the sequence Πin is
processed into a hidden state as one timestep tnin in the red
encoder resulting in one hidden state hn which is then used
to construct the full output Πout turn by turn. Each timestep
tnout of the blue decoder has k features given by the number
of opponent actions.

with no early terminal states. PTTT has private actions, al-
lows early terminal states, illegal moves, and has sparse pub-
lic observations early into the game. Stratego has public ac-
tions, its imperfect information stems from the initial board
setup, it also has sparse public observations and early ter-
minal states. We will examine (1) which algorithm is more
suitable to generate training data, (2) which hyperparameter
setting to choose for the number of samples in BTS (Algo-
rithm 3) and then show our main experiment in which we
perform random trajectories τ from the root to a terminal
state, at each info-state in τ , we sample histories using ran-
dom HRS and NISG within a certain time budget. We track
how many nodes have been identified by both algorithms.

Choice of Training Data Algorithm We introduced both
single trajectory (STS) and batch trajectory sampling (BTS)
to generate training data. We are now interested in how well
the function γ can be learned using either STS or BTS data.
We trained neural networks on 2000 trajectories of each data
type and observe that STS and BTS networks have very sim-
ilar validation loss on unseen BTS generated data in GS30,
while networks trained on BTS data outperforming STS in
STR and PTTT. When used in NISG , they are able to find
a similar amount of nodes with BTS outperforming STS in
deeper games. Due that we decided to show our main results
using BTS networks.

Sufficient BTS Samples per Depth Now we are inter-
ested in how many samples per depth we should perform
when generating training data using BTS which is controlled
by the hyperparameter S in Algorithm 3. We ran a sweep
over S = 500, 1000, 2000, 10000 samples per depth in each
domain for randomly chosen information sets. We observe
that the distribution in the OPI matrices converges around
500− 1000 in all three domains.

Generating States under a Time Budget Our main ex-
periment consists of generating histories in a time budget
of 500ms. The reason for that is that it is adjusted to cur-
rent ”thinking times” of online game playing algorithms. If

an information set is reached where the agent lacks knowl-
edge, gathering compatible states is an important element,
however the agent should be able to allocate as much of the
given time budget as possible to compute a strategy.

We perform 2000 test trajectories in each domain. At each
depth, we generate states and maintain statistics over how
many histories have been found. Note that our testing pro-
cedure ensures that trajectories are chosen which have not
been used as training data.

NISG used networks trained on just 500 BTS trajectories
(S = 500). In Figure 6 (top and middle), we report the sum
of nodes generated (y-axis) within the time budget of 500ms
at each depth (x-axis). The y-axis is furthermore divided by
the number of samples which have been performed at each
depth (some trajectories terminate early). In the bottom sub-
figure, we display the percentage of tested information sets
at each depth for which no state could be found for GS15,20
and 304.

We observe that, while only having been trained on 500
trajectories, NISG is able to outperform random HRS in the
number of generated states. Note that not all of the 500 train-
ing as well as the 2000 test trajectories reached to the maxi-
mum depth displayed for Stratego and PTTT, since they con-
tain early terminal states. In PTTT and Stratego, games with
large branching factor and sparse observations, the number
of generated states significantly exceeds the baseline. In all
GS variants, NISG is able to find nodes for a significantly
larger amount of infosets compared to the baseline as shown.

Summary of Other Empirical Results We also per-
formed an analysis on how the amount of training trajec-
tories influences the ability to find states. We observe that in
all domains the number of states increases with the number
of training trajectories. Despite the small number of train-
ing trajectories, the networks are able to generalize well to
unseen opponent’s private information shown by validation
losses close to training losses. While we clarified our mo-
tivation to use 500ms time budgets at the start of this sec-
tion, we did also experiment with higher time budgets and
concluded that there were no significant relative changes be-
tween the algorithm’s performances. Apart from Goofspiel,
we deliberately chose two domains (PTTT and Stratego)
where a large portion of infosets might contain only very
sparse observations. Despite this sparsity, the neural net-
works are able to learn having only been trained on a small
fraction of the tree. We observed (training,validation) MSE
losses of GS30 = (0.001, 0.002),PTTT = (0.02, 0.04)
and Stratego = (0.02, 0.03).

Conclusion
We addressed the problem of information set generation fo-
cused on online game playing where agents only have access
to a simulator. We introduced a domain-independent way
based on FOSG to encode an agent’s action-observation-
history and the opponent’s private information. We extended

4Note that in GS the number of samples per depth is constant
since there are no early terminal states



Figure 6: We performed 2000 test trajectories on Stratego
(top) and PTTT (middle) with a time budget of 500ms. We
generated nodes at each depth with random HRS (blue) and
NISG using a neural networks trained on 500 training BTS
trajectories (orange). The x-axis denotes the game depth.
The y-axis shows the overall sum of nodes divided by the
number of samples at each depth which have been per-
formed during the 2000 test trajectories. The bottom plot
shows GS15,20,30. The y-axis shows the percentage of in-
fosets at each depth for which no state could be identified
within 500ms by each algorithm. The x-axis denotes game
depth. NISG in GS15 is shown in yellow with the corre-
sponding HRS result in blue(triangle facing up), for GS20
in NISG is marked red/ HRS green(triangle facing down),
and GS30 brown/purple(dots).
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this encoding such that it can be used to provide distribu-
tions over possible opponent action-observation histories.
We provided algorithms to generate training data for learn-
ing a function which maps from AOH to OPI. We presented
a neural network architecture capable of learning this func-
tion. We introduced an algorithm which uses this neural net-
work as a heuristic during search. In our empirical evalua-
tion on three large non-trivial domains, we showed that our
algorithm is able to generate significantly more states than
the baseline. It is also able to identify nodes in depths where
a depth-first search baseline is unable to do so.

References
Brown, N.; Bakhtin, A.; Lerer, A.; and Gong, Q.
2020. Combining deep reinforcement learning and
search for imperfect-information games. arXiv preprint
arXiv:2007.13544 .
Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic programming for partially observable stochastic
games. In AAAI, volume 4, 709–715.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8): 1735–1780.
Hsu, F.-H. 2004. Behind Deep Blue: Building the computer
that defeated the world chess champion. Princeton Univer-
sity Press.
Ismail, M. 2004. Multi-agent stratego. Ph.D. thesis, B. Sc
thesis, Rotterdam University, The Netherlands.[2].
Kovařı́k, V.; Schmid, M.; Burch, N.; Bowling, M.; and
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