
Gradient Descent-Ascent Provably Converges to Strict Local Minmax Equilibria
with a Finite Timescale Separation

Tanner Fiez, Lillian Ratliff
University of Washington

fiezt@uw.com, ratliffl@uw.edu

Abstract
We study the role that a finite timescale separation parameter
τ has on gradient descent-ascent in non-convex, non-concave
zero-sum games where the learning rate of player 1 is de-
noted by γ1 and the learning rate of player 2 is defined to be
γ2 = τγ1. We show there exists a finite timescale separation
parameter τ∗ such that x∗ is a stable critical point of gra-
dient descent-ascent for all τ ∈ (τ∗,∞) if and only if it is a
strict local minmax equilibrium. Moreover, we provide an ex-
plicit construction for computing τ∗ along with correspond-
ing convergence rates. The convergence results we present
are complemented by a non-convergence result: given a crit-
ical point x∗ that is not a strict local minmax equilibrium,
there exists a finite timescale separation τ0 such that x∗ is
unstable for all τ ∈ (τ0,∞). Finally, we extend the results
to gradient penalty regularization methods for generative ad-
versarial networks and empirically demonstrate on CIFAR-10
and CelebA the significant impact timescale separation has on
training performance.

1 Introduction
In this paper we study learning in zero-sum games of the
form

min
x1∈X1

max
x2∈X2

f(x1, x2)

where the objective function of the game f is assumed to
be sufficiently smooth and potentially non-convex and non-
concave in the strategy spaces X1 and X2 respectively with
each Xi a precompact subset of Rni . This general prob-
lem formulation has long been fundamental in game the-
ory (Başar and Olsder 1998) and recently it has become
central to machine learning with applications in generative
adversarial networks (Goodfellow et al. 2014), robust su-
pervised learning (Madry et al. 2018; Sinha, Namkoong,
and Duchi 2018), reinforcement and multi-agent reinforce-
ment learning (Rajeswaran, Mordatch, and Kumar 2020;
Zhang, Yang, and Başar 2019), imitation learning (Ho and
Ermon 2016), constrained optimization (Cherukuri, Ghare-
sifard, and Cortes 2017), and hyperparameter optimiza-
tion (MacKay et al. 2019; Lorraine, Vicol, and Duvenaud
2020).

The gradient descent-ascent learning dynamics are widely
studied as a potential method for efficiently computing
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equilibria in such problems. However, in non-convex, non-
concave zero-sum games, a number of past works highlight
issues of convergence to critical points devoid of game theo-
retic meaning, where common notions of ‘meaningful’ equi-
libria include the local Nash and local minmax/Stackelberg
concepts.1 Indeed, it has been shown gradient descent-ascent
with a shared learning rate is prone to reaching critical points
that are neither a differential Nash equilibrium nor a dif-
ferential Stackelberg equilibrium (Daskalakis and Panageas
2018; Mazumdar, Ratliff, and Sastry 2020; Jin, Netrapalli,
and Jordan 2020). While an important negative result, it does
not rule out the prospect that gradient descent-ascent may be
able to guarantee equilibrium convergence as it fails to ac-
count for a key structural parameter of the dynamics, namely
the ratio of learning rates between the players.

Motivated by the observation that the order of play be-
tween players is fundamental to the definition of the game,
the role of timescale separation in gradient descent-ascent
has recently been explored theoretically (Heusel et al. 2017;
Chasnov et al. 2019; Jin, Netrapalli, and Jordan 2020). On
the empirical side, it has been widely demonstrated that
timescale separation in gradient descent-ascent is crucial to
improving the solution quality when training generative ad-
versarial networks (Goodfellow et al. 2014; Arjovsky, Chin-
tala, and Bottou 2017; Heusel et al. 2017). Denoting γ1 as
the learning rate of the player 1, the learning rate of player
2 can be redefined as γ2 = τγ1 where τ = γ2/γ1 > 0
is the learning rate ratio. Toward understanding the effect
of timescale separation, Jin, Netrapalli, and Jordan (2020)
show the stable critical points of gradient descent-ascent co-
incide with the set of differential Stackelberg equilibrium
as τ → ∞. In other words, all ‘bad critical points’ (criti-
cal points lacking game-theoretic meaning) become unstable
and all ‘good critical points’ (game-theoretically meaning-
ful equilibria) remain or become stable as τ → ∞. While
a promising theoretical development, it does not lead to a
practical, implementable learning rule or necessarily provide
an explanation for the satisfying performance in applications
of gradient descent-ascent with a finite timescale separation.
Importantly, it leaves open the problem of fully character-

1Following past works, we refer to strict local Nash equilib-
rium and strict local minmax/Stackelberg equilibrium as differen-
tial Nash equilibrium and differential Stackelberg equilibrium from
here on, respectively.



izing gradient descent-ascent as a function of the timescale
separation.

Contributions. We show that gradient descent-ascent
converges to a critical point for a range of finite learning rate
ratios if and only if the critical point is a differential Stack-
elberg equilibrium. Furthermore, we show that all other crit-
ical points are unstable for a range of finite learning rate
ratios. To our knowledge, this is the first guarantee of its
kind for an implementable first-order method. Moreover, the
technical results in this work rely on tools that have not ap-
peared in the machine learning and optimization commu-
nities analyzing games. Finally, we extend these results to
gradient penalty regularization methods in generative adver-
sarial networks, thereby providing theoretical guarantees for
a common combination of heuristics used in practice, and
empirically demonstrate the benefits and trade-offs of regu-
larization and timescale separation on image datasets.

This paper is a condensed version of Fiez and Ratliff
(2020). The proofs of the results we present along with fur-
ther experimental results and comparison to related work
with discussion can be found in full form within Fiez and
Ratliff (2020).

2 Preliminaries
A two–player zero-sum continuous game is defined by a col-
lection of costs (f1, f2) where f1 ≡ f and f2 ≡ −f with
f ∈ Cr(X,R) for some r ≥ 2 and where X = X1 × X2

with each Xi a precompact subset of Rni for i ∈ {1, 2} and
n = n1 +n2. Each player i ∈ I seeks to minimize their cost
fi(xi, x−i) with respect to their choice variable xi where
x−i is the vector of all other actions xj with j 6= i. We de-
note Difi as the derivative of fi with respect to xi, Dijfi as
the partial derivative of Difi with respect to xj , and D2

i fi
as the partial derivative of Difi with respect to xi.

Equilibrium. There are natural equilibrium concepts de-
pending on the order of play: the (local) Nash equilibrium
concept in the case of simultaneous play and the (local)
Stackelberg (equivalently minmax in zero-sum games) equi-
librium concept in the case of hierarchical play (Başar and
Olsder 1998). Formal local equilibrium definitions are pro-
vided by Fiez and Ratliff (2020) in Definitions 1 and 2,
while here we characterize the different equilibrium notions
in terms of sufficient conditions on player costs as is typi-
cal in the machine learning and optimization literature (see,
e.g., Daskalakis and Panageas 2018; Mazumdar, Ratliff, and
Sastry 2020; Jin, Netrapalli, and Jordan 2020; Goodfellow
2016; Fiez, Chasnov, and Ratliff 2020; Wang, Zhang, and
Ba 2020; Berard et al. 2020).

The following definition is characterized by sufficient
conditions for a local Nash equilibrium.
Definition 1 (Differential Nash Equilibrium, (Ratliff, Bur-
den, and Sastry 2013)). The joint strategy x ∈ X is a dif-
ferential Nash equilibrium if D1f(x) = 0, −D2f(x) = 0,
D2

1f(x) > 0, and D2
2f(x) < 0.

The Jacobian of the vector of individual gradients g(x) =
(D1f(x),−D2f(x)) is defined by

J(x) =

[
D2

1f(x) D12f(x)
−D>12f(x) −D2

2f(x)

]
. (1)

Let S1(·) denote the Schur complement of (·) with respect to
the n2 × n2 block in (·). The following definition is charac-
terized by sufficient conditions for a local Stackelberg equi-
librium.
Definition 2 (Differential Stackelberg Equilibrium (Fiez,
Chasnov, and Ratliff 2020)). The joint strategy x ∈ X
is a differential Stackelberg equilibrium if D1f(x) = 0,
−D2f(x) = 0, S1(J(x)) > 0, D2

2f(x) < 0.

Learning Dynamics. We study agents seeking equilib-
ria of the game via a learning algorithm and consider ar-
guably the most natural learning rule in zero-sum contin-
uous games: gradient descent-ascent (GDA). Moreover, we
investigate this learning rule with timescale separation be-
tween the players. Let τ = γ2/γ1 be the learning rate
ratio and define Λτ = blockdiag(In1

, τIn2
) where Ini

is a ni × ni identity matrix. The τ -GDA dynamics with
g(x) = (D1f(x),−D2f(x)) are given by

xk+1 = xk − γ1Λτg(xk). (2)

3 Stability of Continuous Time GDA with
Timescale Separation

To characterize the convergence of τ -GDA, we begin by
studying its continuous time limiting system

ẋ = −Λτg(x). (3)

The Jacobian of the system from (3) is given by Jτ (x) =
ΛτJ(x) where J(x) is defined in (1). Observe that criti-
cal points (x such that g(x) = 0) are shared between τ -
GDA and (3). Thus, by analyzing the stability of the con-
tinuous time system around critical points as a function of
the timescale separation τ using the Jacobian Jτ (x), we can
draw conclusions about the stability and convergence of the
discrete time system τ -GDA. Recall that a critical point x∗
is locally exponentially stable for ẋ = −Λτg(x) if an only
if spec(−Jτ (x∗)) ⊂ C◦− (Khalil 2002, Theorem 4.15), (or,
equivalently, spec(Jτ (x∗)) ⊂ C◦+) where C◦− and C◦+ de-
note the open left-half and right-half complex plane, respec-
tively. In what follows, we show that differential Stackelberg
equilibria are the only critical points which are stable for a
range of finite learning rate ratios,2 whereas the remainder
of critical points are unstable for a range of finite learning
rate ratios.

3.1 Necessary and Sufficient Conditions for
Stability

To motivate our main stability result, the following example
shows the existence of a differential Stackelberg which is
unstable for τ = 1, but is stable all for τ ∈ (τ∗,∞) where
τ∗ is finite.
Example 1. Consider the quadratic zero-sum game defined
by the cost

f(x1, x2) = v
2 (−x211+ 1

2x
2
12−2x11x21− 1

2x
2
21+x12x22−x222)

2Note that differential Nash are a subset of differential Stackel-
berg (Jin, Netrapalli, and Jordan 2020; Fiez, Chasnov, and Ratliff
2020).



where v > 0 and x1, x2 ∈ R2. The unique critical point
x∗ = (0, 0) is a differential Stackelberg equilibrium since
g(x∗) = 0, S1(J(x∗)) = diag(v, v4 ) > 0, and D2

2f(x∗) =

−diag(v2 , v) < 0. Moreover, spec(−Jτ (x∗)) = {−v4 (2τ +

1 ±
√

4τ2 − 8τ + 1), −v4 (τ − 2 ±
√
τ2 − 12τ + 4)}. Ob-

serve that for any v > 0, x∗ is unstable for τ = 1 since
spec(−Jτ (x∗)) 6⊂ C◦−, but x∗ is stable for a range of learn-
ing rates since spec(−Jτ (x∗)) ⊂ C◦− for all τ ∈ (2,∞).

In other words, GDA fails to converge to the equilibrium
but a finite timescale separation is sufficient to remedy this
problem. We now fully characterize this phenomenon. To
provide some background, we remark it is known (see Ap-
pendix F of Fiez and Ratliff (2020) and Kokotovic, O’Reilly,
and Khalil (1986, Chap. 2)) that the spectrum of −Jτ (x∗)
asymptotically splits as τ → ∞ such that n1 eigenval-
ues tend to fixed positions defined by the eigenvalues of
−S1(J(x∗)), while the remaining n2 eigenvalues tend to
infinity at a linear rate τ along asymptotes defined by the
eigenvalues ofD2

2f(x∗). This fact directly results in the con-
nection between critical points of ∞–GDA and differential
Stackelberg equilibrium. In contrast, we determine exactly
the range of τ such that the spectrum of −Jτ (x) remains in
C◦−.

Theorem 1. Consider a zero-sum game (f1, f2) = (f,−f)
defined by f ∈ Cr(X,R) for some r ≥ 2. Suppose that
x∗ is such that g(x∗) = 0 and S1(J(x∗)) and D2

2f2(x∗)
are non-singular. There exists a τ∗ ∈ (0,∞) such that
spec(−Jτ (x∗)) ⊂ C◦− for all τ ∈ (τ∗,∞) if and only if
x∗ is a differential Stackelberg equilibrium.

As a direct consequence of Theorem 1, τ -GDA converges
locally asymptotically for any sufficiently small γ(τ) and
for all τ ∈ (τ∗,∞) if and only if x∗ is a differential Stack-
elberg equilibrium; for a formal statement, see Corollary 2
of Fiez and Ratliff (2020). To our knowledge, this is the only
result showing τ -GDA converges to differential Stackelberg
equilibria for a range of finite learning rate ratios. We now
give an outline of the proof technique as it requires technical
tools novel to this community.

Proof Sketch of Theorem 1. The full proof is contained in
Appendix E of Fiez and Ratliff (2020). The key tools used
in this proof are a combination of Lyapunov stability and the
notion of a guard map (cf. Saydy, Tits, and Abed (1990)), a
new tool to the learning community. Recall that a matrix is
exponentially stable if and only if there exists a symmet-
ric positive definite P = P> > 0 such that PJτ (x∗) +
J>τ (x∗)P > 0 (Khalil 2002, Thm 4.15). Hence, given a pos-
itive definite Q = Q> > 0, −Jτ (x∗) is stable if and only if
there exists a unique solution P = P> to

vec(Q) = (J>τ (x∗)⊕ J>τ (x∗))vec(P )

= ((J>τ (x∗)⊗ I) + (I ⊗ J>τ (x∗)))vec(P )
(4)

where ⊗ and ⊕ denote the Kronecker product and Kro-

necker sum, respectively.3 The existence of a unique solu-
tion P occurs if and only if J>τ and −J>τ have no eigenval-
ues in common. Hence, using the fact that eigenvalues vary
continuously, if we vary τ and examine the eigenvalues of
the map J>τ (x∗) ⊕ J>τ (x∗), this tells us the range of τ for
which spec(−Jτ (x∗)) remains in C◦−. This method of vary-
ing parameters and determining when the roots of a poly-
nomial (or correspondingly, the eigenvalues of a map) cross
the boundary of a domain uses a guard map; it provides a
certificate that the roots of a polynomial lie in a particular
guarded domain for a range of parameter values.

Formally, let X be the set of all n × n real matrices or
the set of all polynomials of degree n with real coefficients.
Consider S an open subset of X with closure S̄ and bound-
ary ∂S. The map ν : X → C is said to be a guardian map
for S if for all x ∈ S̄ , ν(x) = 0 ⇐⇒ x ∈ ∂S. Ele-
ments of S(C◦−) = {A ∈ Rn×n : spec(A) ⊂ C◦−} are
(Hurwitz) stable. Given a pathwise connected set U ⊆ R,
the family {A(τ) : τ ∈ U} is stable if and only if (i) it is
nominally stable—i.e., A(τ0) ∈ S(C◦−) for some τ0 ∈ U—
and (ii) ν(A(τ)) 6= 0 for all τ ∈ U (Saydy, Tits, and Abed
1990, Prop. 1). The map ν(τ) = det(2(−Jτ (x∗) � I)) =
det(−(Jτ (x∗) ⊕ Jτ (x∗))) guards S(C◦−) where � is the
bialternate product and is defined by A � B = 1

2 (A ⊕ B)
for matrices A and B (cf. Govaerts (2000, Sec. 4.4.4)). For
intuition, consider the case where each x1, x2 ∈ R so that

Jτ (x∗) =

[
a b
−τb τd

]
∈ R2×2.

It is known that spec(−Jτ (x∗)) ⊂ C◦− if
det(−Jτ (x∗)) > 0 and tr(−Jτ (x∗)) < 0 so that
ν(τ) = det(−Jτ (x∗)) tr(−Jτ (x∗)) is a guard map
for the 2 × 2 stable matrices S(C◦−). Since the bial-
ternate product generalizes the trace operator and
det(−Jτ (x∗)) = τn2 det(D2

2f(x∗)) det(−S1(J(x∗))) 6= 0
for τ 6= 0 by the assumptions (det(S1(J(x∗))) 6= 0 and
det(D2

2f(x∗)) 6= 0), a guard map in the general n× n case
is ν(τ) = det(−(Jτ (x∗)⊕ Jτ (x∗))).

This guard map in τ is closely related to the vectorization
in (4): for any symmetric positive definite Q = Q> > 0,
there will be a symmetric positive definite solution P =
P> > 0 of −(J>τ (x∗) ⊕ J>τ (x∗))vec(P ) = vec(−Q) if
and only if det(−(Jτ (x∗) ⊕ Jτ (x∗))) 6= 0. Hence, to find
the range of τ for which, given any Q = Q> > 0, the solu-
tion P = P> is no longer positive definite, we need to find
the value of τ such that ν(τ) = det(−(Jτ (x∗)⊕Jτ (x∗))) =
0—that is, where it hits the boundary ∂S(C◦−). Through
algebraic manipulation, this problem reduces to an eigen-
value problem in τ , giving rise to an explicit construction of
τ∗.

3.2 Sufficient Conditions for Instability
To motivate our main instability result, the following exam-
ple shows a non-equilibrium critical point that is stable for
τ = 1, but is unstable for all τ ∈ (τ0,∞) where τ0 is finite.

3See Magnus (1988); Lancaster and Tismenetsky (1985) for
more detail on the definition and properties of these mathemati-
cal operators, and Appendix E of Fiez and Ratliff (2020) for more
detail directly related to their use in this paper.



Example 2. Consider the quadratic zero-sum game defined
by the cost

f(x1, x2) = v
4 (x211− 1

2x
2
12+2x11x21+ 1

2x
2
21+2x12x22−x222)

where x1, x2 ∈ R2 and v > 0. The unique critical
point x∗ = (0, 0) is not a differential Stackelberg (nor
Nash) equilibrium since D2

1f(x∗) = diag(v/2,−v/4) ≯
0, D2

2f(x∗) = diag(v/4,−v/2) ≮ 0. Moreover,
spec(−Jτ (x∗)) = {−v8 (2τ−1±

√
4τ2 − 12τ + 1), −v8 (2−

τ±
√
τ2 − 12τ + 4)}. Observe that for any v > 0, x∗ is sta-

ble for τ = 1 since spec(−Jτ (x∗)) ⊂ C◦−, but x∗ is unsta-
ble for a range of learning rates since spec(−Jτ (x∗)) 6⊂
C◦− for all τ ∈ (2,∞). This is not an artifact of the
quadratic example: games can be constructed in which sta-
ble critical points lacking game-theoretic meaning become
unstable for all τ > τ0 even in the presence of multiple equi-
libria.

This example demonstrates a finite timescale separation
can prevent convergence to critical points lacking game-
theoretic meaning. We now characterize this behavior gen-
erally. Note that Theorem 1 implies that for any critical
point which is not a differential Stackelberg equilibrium,
there is no finite τ∗ such that spec(−Jτ (x∗)) ⊂ C◦− for
all τ ∈ (τ∗,∞). In particular, there exists at least one finite,
positive value of τ such that spec(−Jτ (x∗)) 6⊂ C◦−. We can
extend this result to answer the question of whether there
exists a finite learning rate ratio τ0 such that −Jτ (x∗) has
at least one eigenvalue with strictly positive real part for all
τ ∈ (τ0,∞), thereby implying that x∗ is unstable.

Theorem 2. Consider a zero-sum game (f1, f2) = (f,−f)
defined by f ∈ Cr(X,R) for some r ≥ 2. Suppose that x∗ is
such that g(x∗) = 0 and it is not a differential Stackelberg
equilibrium. There exists a finite learning rate ratio τ0 ∈
(0,∞) such that spec(−Jτ (x∗)) 6⊂ C◦− for all τ ∈ (τ0,∞).

Proof Sketch. The full proof is provided in Appendix G of
Fiez and Ratliff (2020). The key idea is to leverage the Lya-
punov equation and Lemma 5 of Fiez and Ratliff (2020)
to show that −Jτ (x∗) has at least one eigenvalue with
strictly positive real part. Indeed, Lemma 5 of Fiez and
Ratliff (2020), which is from Lancaster and Tismenetsky
(1985), states that if S1(−J(x∗)) has no zero eigenvalues,
then there exists matrices P1 = P>1 and Q1 = Q>1 > 0
such that P1S1(−J(x∗)) + S1(−J(x∗))P1 = Q1 where P1

and S1(−J(x∗)) have the same inertia—that is, the num-
ber of eigenvalues with positive, negative and zero real
parts, respectively, are the same. An analogous statement
applies to −D2

2f(x∗) with some P2 and Q2. Since x∗ is
a non-equilibrium critical point, without loss of generality,
let S1(−J(x∗)) have at least one strictly positive eigen-
value so that P1 does as well. Next, we construct a ma-
trix P that is congruent to blockdiag(P1, P2) and a ma-
trix Qτ such that −PJτ (x∗) − J>τ (x∗)P = Qτ . Since P
and blockdiag(P1, P2) are congruent, Sylvester’s law of in-
ertia implies that they have the same number of eigenval-
ues with positive, negative, and zero real parts, respectively.
Hence, P has at least one eigenvalue with strictly positive

real part. We then construct τ0 via an eigenvalue problem
such that for all τ > τ0,Qτ > 0. Applying Lemma 5 of Fiez
and Ratliff (2020) again, for any τ > τ0, −Jτ (x∗) has at
least one eigenvalue with strictly positive real part so that
spec(−Jτ (x∗)) 6⊂ C◦−.

Unlike τ∗ in Theorem 1, τ0 in Theorem 2 is not tight in the
sense that −Jτ (x∗) may become unstable for τ < τ0 since,
e.g., there are potentially many matrices P1 and Q1 that
satisfy S1(J(x∗))P1 + P1S1(J(x∗)) = Q1 and S1(J(x∗))
and P1 have the same inertia (and analogously for P2, Q2).
The choice of these matrices impact the value of τ0. Hence,
the question of finding the exact value of τ beyond which
a spurious critical point of GDA is unstable remains open.
Nonetheless, no result has appeared previously showing that
GDA with a finite timescale separation avoids such critical
points.

3.3 Regularization with Applications to
Adversarial Learning

In this section, we focus on generative adversarial networks
with regularization and using the theory developed so far ex-
tend the results to provide a stability guarantee for a range of
regularization parameters and learning rate ratios. Consider
the training objective

f(θ, ω) = Ep(z)[`(D(G(z; θ);ω))] + EpD(x)[`(−D(x;ω))]
(5)

where Dω(x) and Gθ(z) are discriminator and generator
networks, pD(x) is the data distribution while p(z) is the
latent distribution, and ` ∈ C2(R) is some real-value func-
tion.4 Nagarajan and Kolter (2017) show, under suitable as-
sumptions, that gradient-based methods for training gener-
ative adversarial networks are locally convergent assuming
the data distributions are absolutely continuous. However, as
observed by Mescheder, Geiger, and Nowozin (2018), such
assumptions not only may not be satisfied by many prac-
tical generative adversarial network training scenarios such
as natural images, but often the data distribution is concen-
trated on a lower dimensional manifold. The latter charac-
teristic leads to highly ill-conditioned problems and nearly
purely imaginary eigenvalues.

Gradient penalties ensure that the discriminator cannot
create a non-zero gradient which is orthogonal to the data
manifold without suffering a loss. Introduced by Roth et al.
(2017) and refined in Mescheder, Geiger, and Nowozin
(2018), we consider training generative adversarial networks
with one of two fairly natural gradient-penalties used to reg-
ularize the discriminator:

R1(θ, ω) =
µ

2
EpD(x)[‖∇xD(x;ω)‖2] and

R2(θ, ω) =
µ

2
Epθ(x)[‖∇xD(x;ω)‖2],

where, by a slight abuse of notation, ∇x(·) denotes the par-
tial gradient with respect to x of the argument (·) when the
argument is the discriminator D(·;ω) in order prevent any

4For example, `(x) = − log(1 + exp(−x)) gives the original
formulation of Goodfellow et al. (2014).



conflation between the notation D(·) elsewhere for deriva-
tives. Let h1(θ) = Epθ(x)[∇ωD(x;ω)|ω=ω∗ ] and h2(ω) =

EpD(x)[|D(x;ω)|2 + ‖∇xD(x;ω)‖2]. Define reparameter-
ization manifolds MG = {θ : pθ = pD} and MD =
{ω : h2(ω) = 0} and let Tθ∗MG and Tω∗MD denote their
respective tangent spaces at θ∗ and ω∗. As in Mescheder,
Geiger, and Nowozin (2018), we make the following as-
sumption.
Assumption 1. Consider a zero-sum game of the form given
in (5) where f ∈ C2(Rn1×Rn2 ,R) and G(·; θ) and D(·;ω)
are the generator and discriminator networks, respectively,
and x = (θ, ω) ∈ Rn1 × Rn2 . Suppose that x∗ = (θ∗, ω∗)
is an equilibrium. Then, (a) at (θ∗, ω∗), pθ∗ = pD and
D(x;ω∗) = 0 in some neighborhood of supp(pD), (b) the
function ` ∈ C2(R) satisfies `′(0) 6= 0 and `′′(0) < 0,
(c) there are ε–balls Bε(θ∗) and Bε(ω∗) centered around
θ∗ and ω∗, respectively, so thatMG ∩ Bε(θ∗) andMD ∩
Bε(ω

∗) define C1-manifolds. Moreover, (i) if w /∈ Tθ∗MG,
then w>∇wh1(θ∗)w 6= 0, and (ii) if v /∈ Tω∗MD, then
v>∇2

ωh2(ω∗)v 6= 0.
We note that as explained by Mescheder, Geiger, and

Nowozin (2018), Assumption 1.c(i) implies that the discrim-
inator is capable of detecting deviations from the generator
distribution in equilibrium, and Assumption 1.c(ii) implies
that the manifold MD is sufficiently regular and, in par-
ticular, its (local) geometry is captured by the second (di-
rectional) derivative of h2. Proposition 5 of Fiez and Ratliff
(2020) provides necessary conditions on the network param-
eter dimensions for Assumption 1 to hold. Under Assump-
tion 1, we show that x∗ is a differential Stackelberg equi-
librium, and characterize the learning rate ratio and regular-
ization parameter range for which x∗ is (locally) stable with
respect to τ -GDA.
Theorem 3. Consider training a generative adversarial net-
work via a zero-sum game with generator network Gθ, dis-
criminator network Dω , and loss f(θ, ω) with regulariza-
tion Rj(θ, ω) (for either j = 1 or j = 2) and any regu-
larization parameter µ ∈ (0,∞) such that Assumption 1
is satisfied for an equilibrium x∗ = (θ∗, ω∗) of the reg-
ularized dynamics. Then, x∗ = (θ∗, ω∗) is a differential
Stackelberg equilibrium. Furthermore, for any τ ∈ (0,∞),
spec(−J(τ,µ)(x∗)) ⊂ C◦−.

4 Provable Convergence of GDA with
Timescale Separation

In this section, we characterize the asymptotic convergence
rate for τ -GDA to differential Stackelberg equilibria, and
provide a finite time guarantee for convergence to an ε–
approximate equilibrium. The asymptotic convergence rate
result uses Theorem 1 to construct a finite τ∗ ∈ (0,∞) such
that x∗ is stable, meaning spec(−Jτ (x∗)) ⊂ C◦−, and then
for any τ ∈ (τ∗,∞), Lemmas 1 and 2 from Fiez and Ratliff
(2020) imply a local asymptotic convergence rate.
Theorem 4. Consider a zero-sum game (f1, f2) = (f,−f)
defined by f ∈ Cr(X,R) for r ≥ 2 and let x∗ be
a differential Stackelberg equilibrium of the game. There
exists a τ∗ ∈ (0,∞) such that for any τ ∈ (τ∗,∞)

and α ∈ (0, γ), τ -GDA with learning rate γ1 = γ −
α converges locally asymptotically at a rate of O((1 −
α/(4β))k/2) where γ = minλ∈spec(Jτ (x∗)) 2Re(λ)/|λ|2,
λm = arg minλ∈spec(Jτ (x∗)) 2Re(λ)/|λ|2, and β =

(2Re(λm)−α|λm|2)−1. Moreover, if x∗ is a differential Nash
equilibrium, τ∗ = 0 so that for any τ ∈ (0,∞) and
α ∈ (0, γ), τ -GDA with γ1 = γ − α converges with a rate
O((1− α/(4β))k/2).

To build some intuition, consider a differential Stack-
elberg equilibrium x∗ and its corresponding τ∗ obtained
via Theorem 1 so that for any fixed τ ∈ (τ∗,∞),
spec(−Jτ (x∗)) ⊂ C◦−. For the discrete time system xk+1 =
xk − γ1Λτg(xk), if γ1 is chosen such that the spectral ra-
dius of the local linearization of the discrete time map is
a contraction, then xk locally (exponentially) converges to
x∗ (cf. Proposition 6, Appendix A, Fiez and Ratliff (2020)).
With this in mind, we formulate an optimization problem
to find the upper bound γ on the learning rate γ1 such that
for all γ1 ∈ (0, γ), ρ(I − γ1Jτ (x∗)) < 1; indeed, let
γ = minγ>0

{
γ : maxλ∈spec(Jτ (x∗)) |1− γλ| ≤ 1

}
. The

intuition is as follows. The inner maximization problem
is over a finite set spec(Jτ (x∗)) = {λ1, . . . , λn} where
Jτ (x∗) ∈ Rn×n. As γ increases away from zero, each
|1−γλi| shrinks in magnitude. The last λi such that 1−γλi
hits the boundary of the unit circle in the complex plane
gives us the optimal γ and the λm ∈ spec(Jτ (x∗)) that
achieves it. Examining the constraint, we have that for each
λi, γ(γ|λi|2 − 2Re(λi)) ≤ 0 for any γ > 0. As noted
this constraint will be tight for one of the λ, in which case
γ = 2Re(λ)/|λ|2 since γ > 0. Hence, by selecting γ =
minλ∈spec(Jτ (x∗)) 2Re(λ)/|λ|2, we have that |1− γ1λ| < 1
for all λ ∈ spec(Jτ (x∗)) and any γ1 ∈ (0, γ). From here,
one can use standard arguments from numerical analysis to
show that for the choice of α and β, the claimed asymptotic
rate holds.

Theorem 4 directly implies a finite time convergence
guarantee for obtaining an ε-differential Stackelberg equi-
librium, that is, a point with an ε-ball around a differential
Stackelberg equilibrium x∗.

Corollary 1. Given ε > 0, under the assumptions of The-
orem 4, τ -GDA obtains an ε–differential Stackleberg equi-
librium in d(4β/α) log(‖x0 − x∗‖/ε)e iterations for any
x0 ∈ Bδ(x∗) with δ = α/(4Lβ) where L is the local Lips-
chitz constant of I − γJτ (x∗).

Moreover, the convergence rates and finite time guaran-
tees extend to the gradient penalty regularized generative
adversarial network described in the preceeding section.

Corollary 2. Under the assumptions of Theorems 3 and 4,
for any fixed µ ∈ (0,∞) and τ ∈ (0,∞), τ -GDA converges
locally asymptotically at a rate of O((1−α/(4β))k/2), and
achieves an ε-equilibrium in d(4β/α) log(‖x0−x∗‖/ε)e it-
erations for any x0 ∈ Bδ(x∗).

In Fiez and Ratliff (2020), the convergence analysis is ex-
tended to the stochastic setting in which agents have an un-
biased estimator of their individual gradients.



(a) Trajectories of τ -GDA (b) Distance to equilibrium (c) spec(Jτ ), µ = 0.3 (d) spec(Jτ ), µ = 1

(e) Trajectories of τ -GDA overlayed on vector fields generated by choices of τ and µ.

Figure 1: Figure 1a shows trajectories of τ -GDA for τ ∈ {1, 4, 8, 16} with regularization µ = 0.3 and τ = 1 with regularization
µ = 1. Figure 1b shows the distance from the equilibrium along the learning paths. Figures 1c and 1d show the trajectories of
the eigenvalues for Jτ (θ∗, ω∗) as a function of τ with regularization set to µ = 0.3 and µ = 1, respectively where (θ∗, ω∗) is
the unique critical point of the game. Figure 1e shows the trajectories of τ -GDA overlayed on the vector field generated by the
respective timescale separation and regularization parameters. The shading of the vector field is dictated by its magnitude so
that lighter shading corresponds to a higher magnitude and darker shading corresponds to a lower magnitude.

5 Experiments

We now present numerical experiments examining gradient
descent-ascent with timescale separation. Fiez and Ratliff
(2020) contains more experimental results and details.

Dirac-GAN: Regularization, Timescale Separation,
and Convergence Rate. The Dirac-GAN (Mescheder,
Geiger, and Nowozin 2018) consists of a univariate gen-
erator distribution pθ = δθ and a linear discriminator
D(x;ω) = ωx, where the real data distribution pD is given
by a Dirac-distribution concentrated at zero. The resulting
zero-sum game is defined by the cost f(θ, ω) = `(θω)+`(0)
and the unique critical point (θ∗, ω∗) = (0, 0) is a local Nash
equilibrium. However, the eigenvalues of the Jacobian are
purely imaginary regardless of the choice of timescale sep-
aration so that τ -GDA oscillates and fails to converge. This
behavior is expected since the equilibrium is not hyperbolic
and corresponds to neither a differential Nash equilibrium
nor a differential Stackelberg equilibrium but it is undesir-
able nonetheless. The zero-sum game corresponding to the
Dirac-GAN with regularization can be defined by the cost
f(θ, ω) = `(θω) + `(0) − µ

2ω
2. The unique critical point

remains unchanged, but for all τ ∈ (0,∞) and µ ∈ (0,∞)
the equilibrium of the unregularized game is stable and cor-
responds to a differential Stackelberg equilibrium of the reg-

ularized game.
From Figures 1a and 1e, we observe that the impact of

timescale separation with regularization µ = 0.3 is that the
trajectory is not as oscillatory since it moves faster to the
zero line of−D2f(θ, ω) and then follows along that line un-
til reaching the equilibrium. We further see from Figure 1b
that with regularization µ = 0.3, τ -GDA with τ = 8 con-
verges faster to the equilibrium than τ -GDA with τ = 16,
despite the fact that the former exhibits some cyclic behavior
in the dynamics while the latter does not. The eigenvalues of
the Jacobian with regularization µ = 0.3 presented in Fig-
ure 1c explains this behavior since the imaginary parts are
non-zero with τ = 8 and zero with τ = 16, but the eigen-
value with the minimum real part is greater at τ = 8 than
at τ = 16. This highlights that some oscillatory behavior in
the dynamics is not always harmful for convergence and it
can even speed up the rate of convergence. For µ = 1 and
τ = 1, Figures 1a and 1b show that even though τ -GDA fol-
lows a direct path toward the equilibrium and does not cycle
since the eigenvalues of the Jacobian are purely real, the tra-
jectory converges slowly to the equilibrium. Indeed, for each
regularization parameter, the eigenvalues of Jτ (θ∗, ω∗) split
after becoming purely real and then converge toward the
eigenvalues of S1(J(θ∗, ω∗)) and −τD2

2f(θ∗, ω∗). Since
S1(J(θ∗, ω∗)) ∝ 1/µ and −τD2

2f(θ∗, ω∗) ∝ τµ, there is



Figure 2: CIFAR-10 FID Figure 3: CelebA FID

µ\τ 1 2 4 8
10 26.29 22.36 21.62 22.52
1 24.6/22.4 21.05/18.5 19.49/17.72 20.27/18.45

Figure 4: CIFAR-10 FID at 150k/300k mini-batch updates.

µ\τ 1 2 4 8
10 7.07 6.05 5.93 6.43
1 7.01/5.72 5.86/5.0 5.59/4.95 5.7/5.21

Figure 5: CelebA FID at 150k/300k mini-batch updates.

a trade-off between the choice of regularization µ and the
timescale separation τ on the conditioning of the Jacobian
matrix that dictates the convergence rate.

Generative Adversarial Networks: Image Datasets.
We build our experiments based on the methods and imple-
mentations of Mescheder, Geiger, and Nowozin (2018) and
train with the non-saturating objective function and the R1

gradient penalty. The network architectures for the generator
and discriminator are both based on the ResNet architecture.
The initial learning rate for the generator in all of our experi-
ments is fixed to be γ1 = 0.0001 and we decay the stepsizes
so that at update k the learning rate of the generator is given
by γ1,k = γ1/(1 + ν)k where ν = 0.005 and the learning
rate of the discriminator is γ2,k = τγ1,k. The batch size is
64, the latent data is drawn from a standard normal distribu-
tion of dimension 256, and the resolution of the images is
32 × 32 × 3. We run RMSprop with parameter α = 0.99
and retain an exponential moving average of the generator
parameters to produce the model that is evaluated with pa-
rameter β = 0.9999.

The FID scores (Heusel et al. 2017) along the learning
path and in numeric form at 150k/300k mini-batch updates
for CIFAR-10 and CelebA with regularization parameters
µ = 10 and µ = 1 are presented in Figures 2–5. We repeated
each experiment 3 times and report the mean scores. For
CIFAR-10 and with each regularization parameter, τ = 4
converges fastest, followed by τ = 8, then τ = 2, and fi-
nally τ = 1. For CelebA and regularization µ = 10, the
timescale parameters of τ = 2 and τ = 4 outperform τ = 1
and τ = 8 by a wide margin. A similar trend can be ob-
served for regularization µ = 1, but with τ = 8 performing
closer to τ = 2 and τ = 4.

The performance with regularization µ = 1 is far superior
to that with regularization µ = 10 for each timescale pa-
rameter and with each dataset. Moreover, we generally see
that timescale separation improves convergence until hitting
a limiting value. Interestingly, these conclusions agree with

the insights from the simple Dirac-GAN experiment. This
experiment reinforces that timescale separation is an impor-
tant hyperparameter worth careful consideration in conjunc-
tion with regularization since the interplay between them
can significantly impact convergence speed and final perfor-
mance.

6 Conclusion
We prove gradient descent-ascent converges to a critical
point for a range of finite learning rate ratios if and only if
the critical point is a differential Stackelberg equilibrium.
This answers a standing open question about the conver-
gence of first order methods to local minimax equilibria. A
key component of the proof is the construction of a (tight)
finite lower bound on the learning rate ratio τ for which sta-
bility is guaranteed, and hence local asymptotic convergence
of τ -GDA. This being said, the question of the size of the
region of attraction remains open. Related, but distinct tech-
niques handle the nonlinear system directly. The downside
of this technique is that one needs to be able to construct
Lyapunov functions for both the boundary layer model (the
system that arises from treating the choice variable of the
slow player as being ‘static’) and the reduced order model
(the system that arises from plugging in the implicit map-
ping from the fast player’s action to the slow player’s action
into the slow player’s dynamics). A convex combination of
these functions provides a Lyapunov function for the origi-
nal system ẋ = −Λτg(x). The level sets of this combined
Lyapunov function then give a sense of the region of attrac-
tion. In fact, one can optimize over the weighting in the con-
vex combination in order to obtain improved estimates of the
region of attraction. This is an interesting avenue to explore
in the context of learning in games with intrinsic structure
that can potentially be exploited to improve both the rate of
convergence and the region on which convergence is guar-
anteed.
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