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Abstract

The existence of simple, uncoupled no-regret dynamics that
converge to correlated equilibria in normal-form games is
a celebrated result in the theory of multi-agent systems.
Specifically, it has been known for more than 20 years
that when all players seek to minimize their internal regret
in a repeated normal-form game, the empirical frequency
of play converges to a normal-form correlated equilibrium.
Extensive-form (that is, tree-form) games generalize normal-
form games by modeling both sequential and simultaneous
moves, as well as private information. Because of the sequen-
tial nature and presence of partial information in the game,
extensive-form correlation has significantly different proper-
ties than the normal-form counterpart, many of which are still
open research directions. Extensive-form correlated equilib-
rium (EFCE) has been proposed as the natural extensive-form
counterpart to normal-form correlated equilibrium. However,
it was currently unknown whether EFCE emerges as the re-
sult of uncoupled agent dynamics. In this paper, we give the
first uncoupled no-regret dynamics that converge to the set of
EFCEs in n-player general-sum extensive-form games with
perfect recall. First, we introduce a notion of trigger regret in
extensive-form games, which extends that of internal regret
in normal-form games. When each player has low trigger re-
gret, the empirical frequency of play is close to an EFCE.
Then, we give an efficient no-trigger-regret algorithm. Our
algorithm decomposes trigger regret into local subproblems
at each decision point for the player, and constructs a global
strategy of the player from the local solutions at each decision
point.

Introduction
The Nash equilibrium (NE) (Nash 1950) is the most com-
mon notion of rationality in game theory, and its compu-
tation in two-player, zero-sum games has been the flagship
computational challenge in the area at the interplay between
computer science and game theory (see, e.g., the landmark
results in heads-up no-limit poker by Brown and Sandholm
(2017) and Moravčı́k et al. (2017)). The assumption under-
pinning NE is that the interaction among players is fully de-
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centralized. Therefore, an NE is a distribution on the un-
correlated strategy space (i.e., a product of independent dis-
tributions, one per player). A competing notion of ratio-
nality is the correlated equilibrium (CE) proposed by Au-
mann (1974). A correlated strategy is a general distribution
over joint action profiles and it is customarily modeled via
a trusted external mediator that draws an action profile from
this distribution, and privately recommends to each player
her component. A correlated strategy is a CE if no player
has an incentive to choose an action different from the me-
diator’s recommendation, because, assuming that all other
players also obey, the suggested strategy is the best in ex-
pectation.

Many real-world strategic interactions involve more than
two players with arbitrary (i.e., general-sum) utilities. In
these settings, the notion of NE presents some weaknesses
which render the CE a natural solution concept: (i) com-
puting an NE is an intractable problem, being PPAD-
complete even in two-player games (Chen and Deng 2006;
Daskalakis, Goldberg, and Papadimitriou 2009); (ii) the NE
is prone to equilibrium selection issues; and (iii) the social
welfare than can be attained via an NE may be significantly
lower than what can be achieved via a CE (Koutsoupias and
Papadimitriou 1999; Roughgarden and Tardos 2002). More-
over, in normal-form games, the notion of CE arises from
simple learning dynamics in senses that NE does not (Hart
and Mas-Colell 2000; Cesa-Bianchi and Lugosi 2006).

The notion of extensive-form correlated equilibrium
(EFCE) by von Stengel and Forges (2008) is a natural exten-
sion of the CE to the case of sequential strategic interactions.
In an EFCE, the mediator draws, before the beginning of the
sequential interaction, a recommended action for each of the
possible decision points (i.e., information sets) that players
may encounter in the game, but she does not immediately re-
veal recommendations to each player. Instead, the mediator
incrementally reveals relevant individual moves as players
reach new information sets. At any decision point, the act-
ing player is free to defect from the recommended action,
but doing so comes at the cost of future recommendations,
which are no longer issued if the player deviates.



Original contributions We focus on general-sum
extensive-form games with an arbitrary number of players
(including the chance player). In this setting, the problem
of computing a feasible EFCE can be solved in polynomial
time in the size of the game tree (Huang and von Stengel
2008) via a variation of the Ellipsoid Against Hope algo-
rithm (Papadimitriou and Roughgarden 2008; Jiang and
Leyton-Brown 2015). However, in practice, this approach
cannot scale beyond toy problems. Therefore, the following
question remains open: is it possible to devise simple
dynamics leading to a feasible EFCE? In this paper, we
show that the answer is positive. To do so, we define an
EFCE via the notion of trigger agent (Gordon, Greenwald,
and Marks 2008; Dudı́k and Gordon 2009). Then, we
define the notion of trigger regret, i.e., a notion of internal
regret suitable for extensive-form games. We provide an
algorithm, which we call ICFR, that minimizes trigger
agent regrets via the decomposition of these regrets locally
at each information set. In order to do so, ICFR instantiates
an internal regret minimizer and multiple external regret
minimizers for each information set. We show that it is
possible to orchestrate the learning procedure so that, for
each information set, employing one regret minimizer per
round does not compromise the overall convergence of the
algorithm. The empirical frequency of play generated by
ICFR converges to an EFCE almost surely in the limit.
These results generalize the seminal work by Hart and
Mas-Colell (2000) to the sequential case via a simple and
natural framework.

Preliminaries
In this section, we provide some groundings on sequential
games and regret minimization (see the books by Shoham
and Leyton-Brown (2008) and Cesa-Bianchi and Lugosi
(2006), for additional details).

Extensive-form games
We focus on extensive-form games (EFGs) with imperfect
information. We denote the set of players as P ∪ {c},
where c is a chance player that selects actions according to
fixed known probability distributions, representing exoge-
nous stochasticity. An EFG is usually defined by means of a
game tree, whereH is the set of nodes of the tree, and a node
h ∈ H is identified by the ordered sequence of actions from
the root to the node. Z ⊆ H is the set of terminal nodes,
which are the leaves of the tree. For every h ∈ H \ Z, we
let P (h) ∈ P ∪ {c} be the unique player who acts at h and
A(h) be the set of actions she has available. For each player
i ∈ P , we let ui : Z → R be her payoff function. More-
over, we denote by pc : Z → (0, 1) the function assigning
each terminal node z ∈ Z to the product of probabilities of
chance moves encountered on the path from the root of the
game tree to z.

Imperfect information is encoded by using information
sets (infosets). Given i ∈ P , a player i’s infoset I groups
nodes belonging to player i that are indistinguishable for her,
i.e., A(h) = A(k) for any pair of nodes h, k ∈ I . Ii denotes
the set of all player i’s infosets. Moreover, we let A(I) be

the set of actions available at infoset I ∈ Ii. As customary,
we assume that the game has perfect recall, i.e., the infosets
are such that no player forgets information once acquired.
In EFGs with perfect recall, the infosets Ii of each player
i ∈ P are partially ordered. We write I � J whenever in-
foset I ∈ Ii precedes J ∈ Ii according to such ordering,
i.e., formally, there exists a path in the game tree connect-
ing a node h ∈ I to some node k ∈ J . For the ease of
notation, given I ∈ Ii, we let C?(I) be the set of player
i’s infosets that follow infoset I (this included), defined as
C?(I) := {J ∈ Ii | I � J}. Moreover, given I ∈ Ii and
a ∈ A(I), we let C(I, a) ⊆ Ii be the set of player i’s infos-
ets that immediately follow I by playing action a, i.e., those
reachable from at least one node h ∈ I by following a path
that includes a and does not pass through another infoset of
i.

Normal-form plans and strategies A normal-form plan
for player i ∈ P is a tuple πi ∈ Πi :=×I∈Ii A(I) which
specifies an action for each player i’s infoset, where πi(I)
represents the action selected by πi at infoset I ∈ Ii. We
denote with π ∈ Π :=×i∈P Πi a joint normal-form plan,
defining a plan πi ∈ Πi for each player i ∈ P . Moreover, a
tuple defining normal-form plans for the opponents of player
i ∈ P is denoted as π−i ∈ Π−i :=×j 6=i∈P Πj . A normal-
form strategy µi ∈ ∆Πi is a probability distribution over Πi,
where µi[πi] denotes the probability of selecting a plan πi ∈
Πi according to µi. Moreover, µ ∈ ∆Π is a joint probability
distribution defined over Π, with µ[π] being the probability
that the players end up playing the plans prescribed by π ∈
Π.

Sequences For any player i ∈ P , given an infoset I ∈ Ii
and an action a ∈ A(I), we denote with σ = (I, a) the
sequence of player i’s actions reaching infoset I and ter-
minating with a. Notice that, in EFGs with perfect recall,
such sequence is uniquely determined, as paths that reach
nodes belonging to the same infoset identify the same se-
quence of player i’s actions. We let Σi := {(I, a) | I ∈
Ii, a ∈ A(I)} ∪ {∅i} be the set of player i’s sequences,
where ∅i is the empty sequence of player i (representing
the case in which she never plays). Additionally, given an
infoset I ∈ Ii, we let σ(I) ∈ Σi be the sequence of player
i’s actions that identify infoset I .

Subsets of (joint) normal-form plans We now define a
few useful subsets of Πi. The reader is encouraged to refer
to Figure 1 for a simple example. For every player i ∈ P
and infoset I ∈ Ii, we let Πi(I) ⊆ Πi be the set of player
i’s normal-form plans that prescribe to play so as to reach
infoset I whenever possible (depending on the opponents’
actions up to that point) and any action whenever reaching I
is not possible anymore. Moreover, for every sequence σ =
(I, a) ∈ Σi, we let Πi(σ) ⊆ Πi(I) ⊆ Πi be the set of
player i’s plans that reach infoset I and recommend action
a at I . Similarly, given a terminal node z ∈ Z, we denote
with Πi(z) ⊆ Πi the set of normal-form plans by which



player i plays so as to reach z, while Π(z) :=×i∈P Πi(z)
and Π−i(z) :=×j 6=i∈P Πj(z).

z

a b

c d e f g h g h

A

B C D

A B C D
π1 a c e g
π2 a c e h
π3 a c f g
π4 a c f h
π5 a d e g
π6 a d e h
π7 a d f g
π8 a d f h

A B C D
π9 b c e g
π10 b c e h
π11 b c f g
π12 b c f h
π13 b d e g
π14 b d e h
π15 b d f g
π16 b d f h

Π1(A) = {π1, . . . , π16}
Π1(B) = {π1, . . . , π8}
Π1(C) = {π1, . . . , π8}
Π1(D) = {π9, . . . , π16}

Π1((C, f)) = {π3, π4, π7, π8}
Π1((D, g)) = {π9, π11, π13, π15}

Π1(z) = {π1, π2, π3, π4}

Figure 1: (Left) Sample game tree. Black round nodes be-
long to Player 1, white round nodes belong to Player 2, and
white square nodes are leaves. Rounded, gray lines denote
information sets. (Center) Set Π1 of normal-form plans for
Player 1. Each plan identifies an action at each information
set. (Right) Examples of certain subsets of Π1 defined in this
subsection.

Additional notation For every i ∈ P and I ∈ Ii, we
let Z(I) ⊆ Z be the set of terminal nodes that are reach-
able from infoset I ∈ Ii of player i. Moreover, Z(I, a) ⊆
Z(I) ⊆ Z is the set of terminal nodes reachable by play-
ing action a ∈ A(I) at infoset I , whereas Zc(I, a) :=
Z(I) \ Z(I, a) is the set of terminal nodes which are reach-
able by playing an action different from a at I . For any
player i ∈ P , normal-form plan πi ∈ Πi, infoset I ∈ Ii, and
terminal node z ∈ Z, we define ρπi

I→z as a function equal to
1 if z is reachable from I when player i plays according to
πi, and 0 otherwise. Finally, we define a notion of reach such
that, for each normal-form plan π = (πi, π−i) ∈ Π, infoset
I ∈ Ii, and terminal node z ∈ Z, we have ρ(πi,π−i)

I→z :=
ρπi

I→z · 1[π−i ∈ Π−i(z)].

External and internal regret minimization
In the regret minimization framework (Zinkevich 2003),
each player i ∈ P plays repeatedly against the others by
making a series of decisions from a set Xi. A regret min-
imizer for player i ∈ P is a device that, at each iteration
t = 1, . . . , T , supports two operations: (i) RECOMMEND,
which provides the next decision xt+1

i ∈ Xi on the basis
of the past history of play and the observed utilities up to
iteration t; and (ii) OBSERVE, which receives a utility func-
tion uti : Xi → R that is used to evaluate decision xti. A
regret minimizer is evaluated in terms of its cumulative re-
gret. Two types of regret minimizers are commonly studied,
depending on the adopted notion of regret, either external or
internal regret.

External regret An external-regret minimizer REXT for
player i ∈ P is a device minimizing the cumulative exter-
nal regret of player i up to iteration T , which is defined as:

RTi := max
x̂i∈Xi

{
T∑
t=1

uti(x̂i)

}
−

T∑
t=1

uti(x
t
i). (1)

RTi represents how much player i would have gained by al-
ways taking the best decision in hindsight, given the history
of utilities observed up to iteration T .

Internal regret An internal-regret minimizer RINT for
player i ∈ P is a device minimizing the cumulative inter-
nal regret of player i up to iteration T , which is defined as:

max
xi,x̂i∈Xi

RTi,(xi,x̂i)
:=

max
xi,x̂i∈Xi

{
T∑
t=1

1[xi = xti]
(
uti(x̂i)− uti(xi)

)}
. (2)

Intuitively, player i has small internal regret if, for each
pair of decisions (xi, x̂i), she does not regret of not having
played x̂i each time she selected xi. The notion of internal
regret is strictly stronger than the notion of external regret:
any algorithm with small internal regret also has small ex-
ternal regret, but the converse does not hold (see Stoltz and
Lugosi (2005) for an example).

Regret minimizers show an interesting connection with
games when the decision sets Xi are the sets of normal-
form plans Πi and the observed utilities uti are obtained by
playing the game according to the selected plans πti . Let-
ting πt := (πti)i∈P be the joint normal-form plan resulting
at each iteration t = 1, . . . , T , we denote with {πt}Tt=1 the
overall sequence of plays made by the players. Then, the em-
pirical frequency of play µ̄T ∈ ∆Π generated by {πt}Tt=1 is
such that for every π ∈ Π:

µ̄T (π) :=
|{1 ≤ t ≤ T | πt = π}|

T
. (3)

If all the players play according to some external-regret min-
imizers, then µ̄T approaches the set of (normal-form) coarse
correlated equilibria, even in EFGs (see Cesa-Bianchi and
Lugosi (2006) and Celli et al. (2019) for further details).
Moreover, Foster and Vohra (1997) and Hart and Mas-Colell
(2000) established that the empirical frequency of play gen-
erated by any no-internal-regret algorithm (see Cesa-Bianchi
and Lugosi (2006) and Blum and Mansour (2007) for some
examples) converges to the set of correlated equilibria in re-
peated games with simultaneous moves (i.e., normal-form
games).

Extensive-form correlated equilibria
The definition of EFCE requires the following notion of trig-
ger agent, which, intuitively, is associated to each player and
each of her sequences of action recommendations.

Definition 1 (Trigger agent for EFCE). Given a player
i ∈ P , a sequence σ = (I, a) ∈ Σi , and a probability



distribution µ̂i ∈ ∆Πi(I), an (σ, µ̂i)-trigger agent for player
i is an agent that takes on the role of player i and commits
to following all recommendations unless she reaches I and
gets recommended to play a. If this happens, the player stops
committing to the recommendations and plays according to
a plan sampled from µ̂i until the game ends.

It follows that joint probability distribution µ ∈ ∆Π is an
EFCE if, for every i ∈ P , player i’s expected utility when
following the recommendations is at least as large as the ex-
pected utility that any (σ, µ̂i)-trigger agent for player i can
achieve (assuming the opponents’ do not deviate).

For any µ ∈ ∆Π, sequence σ = (I, a) ∈ Σi, and (σ, µ̂i)-
trigger agent, we define the probability of the game ending
in a terminal node z ∈ Z(I) as:

pσµ,µ̂i
(z) :=

 ∑
πi∈Πi(σ)π−i∈Π−i(z)

µ(πi, π−i)


 ∑
π̂i∈Πi(z)

µ̂i(π̂i)

 pc(z), (4)

which accounts for the fact that the agent follows recom-
mendations until she receives the recommendation of play-
ing a at I , and, thus, she ‘gets triggered’ and plays accord-
ing to π̂i sampled from µ̂i from I onwards. Moreover, the
probability of reaching a terminal node z ∈ Z(I, a) when
following the recommendations is defined as follows:

qµ(z) :=

 ∑
π∈Π(z)

µ(π)

 pc(z). (5)

The definition of EFCE reads as follows (see (Celli et al.
2020) or the work by Farina et al. (2019a) for details):
Definition 2 (Extensive-form correlated equilibrium). An
EFCE of an EFG is a joint probability distribution µ ∈ ∆Π

such that, for every i ∈ P and (σ, µ̂i)-trigger agent for
player i, with σ = (I, a) ∈ Σi, it holds:∑

z∈Z(I,a)

qµ(z)ui(z) ≥
∑

z∈Z(I)

pσµ,µ̂i
(z)ui(z). (6)

A joint probability distribution µ ∈ ∆Π is said to be an
ε-EFCE when the maximum deviation δ(µ) under µ is such
that:

δ(µ) :=

max
i∈P

max
σ=(I,a)∈Σi

{
max

µ̂i∈∆Πi(I)

{ ∑
z∈Z(I)

pσµ, µ̂i
(z)ui(z)

}
−

∑
z∈Z(I,a)

qµ(z)ui(z)

}
≤ ε. (7)

Trigger regret and relationships with EFCE
In this section, we introduce the notion of trigger regret. In-
tuitively, it measures the regret that each trigger agent has for

not having played the best-in-hindsight strategy. As we will
show, when each trigger agent has low trigger regret, then
the empirical frequency of play is close to being an EFCE.

Given a sequence {πt}Tt=1, the vector of immediate util-
ities uti observed by player i ∈ P after any iteration t =
1, . . . , T is defined as follows. For every infoset I ∈ Ii and
action a ∈ A(I) we have:

uti[I, a] := ∑
z∈Z(I,a)\

⋃
J∈C(I,a) Z(J)

1[πt−i ∈ Π−i(z)] pc(z)ui(z),

which represents the utility experienced by player i if the
game ends after playing action a at infoset I , without go-
ing through other player i’s infosets and assuming that the
other players play as prescribed by the plans πt−i ∈ Π−i at
iteration t. Notice that the summation is over the terminal
nodes immediately reachable from I by playing a and the
payoff of each terminal node is multiplied by the probability
of reaching it given chance probabilities.

For i ∈ P , the following recursive formula defines player
i’s utility attainable at infoset I ∈ Ii when a normal-form
plan πi ∈ Πi is selected:

V tI (πi) := uti[I, πi(I)] +
∑

J∈C(I,πi(I))

V tJ (πi). (8)

Definition 3 (Trigger regret). For every player i ∈ P and
sequence σ = (I, a) ∈ Σi, we let RTσ be the trigger regret
for sequence σ, which we define as follows:

RTσ := max
π̂i∈Πi(I)

{
T∑
t=1

1[πti ∈ Πi(σ)]
(
V tI (π̂i)− V tI (πti)

)}
.

The trigger regret for σ = (I, a) represents the regret
experienced by the trigger agent that gets triggered on se-
quence σ, i.e., when infoset I is reached and action a is rec-
ommended. Notice that RTσ only accounts for those itera-
tions in which πti ∈ Πi(σ), i.e., intuitively, when the actions
prescribed by the normal-form plan πti trigger the agent as-
sociated to sequence σ.

The following theorem shows that minimizing the trigger
regrets for each player i ∈ P and sequence σ ∈ Σi allows to
approach the set of EFCEs. Complete proofs can be found
in the extended version of the paper (Celli et al. 2020).

Theorem 1. At all times T , the empirical frequency of play
µ̄T (Equation 3) is an ε-EFCE, where

ε := max
i∈P

max
σ∈Σi

RTσ
T
.

Corollary 1. If lim sup
T→∞

max
i∈P

max
σ∈Σi

RTσ
T

≤ 0, then

lim sup
T→∞

δ(µ̄T ) ≤ 0, that is, for any ε > 0, eventually the

empirical frequency of play µ̄T becomes an ε-EFCE.



Laminar regret decomposition for trigger
regret

In order to design an algorithm minimizing trigger regrets,
we first develop a new regret decomposition that extends the
laminar regret decomposition framework introduced by Fa-
rina, Kroer, and Sandholm (2019). Our decomposition ex-
ploits the structure of the EFG to show that trigger regrets
can be minimized by minimizing other suitably defined re-
gret terms which are local at each infoset.

First, for each player i ∈ P , sequence σ = (J, a) ∈ Σi,
and infoset I ∈ C?(J) (i.e., any infoset following from J ,
this included), we define the notion of subtree regret as fol-
lows:

RTσ,I := max
π̂i∈Πi(I)

{
T∑
t=1

1[πti ∈ Πi(σ)]
(
V tI (π̂i)− V tI (πti)

)}
.

Each term RTσ,I represents the regret at infoset I experi-
enced by the trigger agent that gets triggered on sequence
σ = (J, a). Differently from the trigger regret RTσ , which is
defined only for the infoset J of σ, the subtree regrets RTσ,I
are defined for all the infosets I ∈ Ii such that J � I .
Remark 1. Given player i ∈ P , it is immediate to see that,
if RTσ,I = o(T ) for each σ = (J, a) ∈ Σi and I ∈ C?(J),
then RTσ = o(T ) for every σ ∈ Σi. Therefore, we can safely
focus on the problem of minimizing subtree regrets, as this
will automatically guarantee convergence to an EFCE.

Next, we need to introduce, for every player i ∈ P and
infoset I ∈ Ii, the following parameterized utility function
defined at each iteration t = 1, . . . , T :

ûtI : A(I) 3 a 7→ uti[I, a] +
∑

J∈C(I,a)

V tJ (πti), (9)

which represents the utility that player i gets, at iteration t,
by playing action a at I and following the actions prescribed
by πti at the subsequent infosets. Then, for each sequence
σ = (J, a′) ∈ Σi, infoset I ∈ C?(J), and action a ∈ A(I),
the laminar subtree regret of action a is defined as:

R̂Tσ,I,a :=

T∑
t=1

1[πti ∈ Πi(σ)]
(
ûtI(a)− ûtI(πti(I))

)
, (10)

while, for σ = (J, a′) ∈ Σi and I ∈ C?(J), the laminar
subtree regret is:

R̂Tσ,I := max
a∈A(I)

R̂Tσ,I,a. (11)

The following two lemmas show that the subtree regrets
can be minimized by minimizing the laminar subtree regrets
at all the infosets of the game.
Lemma 1. The subtree regret for each player i ∈ P , se-
quence σ = (J, a′) ∈ Σi, and infoset I ∈ C?(J) can be
decomposed as:

RTσ,I = max
a∈A(I)

R̂Tσ,I,a +
∑

I′∈C(I,a)

RTσ,I′

.

The lemma is proved by recursively applying the defini-
tions of RTσ,I and V tI (π̂i), and by exploiting Equation (9).
Then, Lemma 1 is used to show the following.
Lemma 2. For every player i ∈ P , sequence σ = (J, a′) ∈
Σi, and infoset I ∈ C?(J), it holds:

RTσ,I ≤ max
π̂i∈Πi(I)

∑
I′∈Ii

1[π̂i ∈ Πi(I
′)] R̂Tσ,I′ . (12)

Internal counterfactual regret minimization
We propose the internal counterfactual regret minimization
algorithm (ICFR) as a way to minimize the laminar subtree
regrets described in the previous section. At each iteration
t, ICFR builds a normal-form plan πti in a top-down fash-
ion by sampling an action locally at each infoset, following
a simple rule: if the current infoset can be reached through
πti , then an action is sampled according to an internal-regret
minimizer; otherwise, an external-regret minimizer is em-
ployed.

Algorithm 1 ICFR (for Player i)
1: function ICFR(i)
2: Initialize the regret minimizers
3: t← 1
4: while t < T do
5: πti ← SAMPLEINTERNAL
6: Observe uti (i.e., uti[I, a] for each pair (I, a))
7: UPDATEINTERNAL(πti , u

t
i)

8: t← t+ 1
9: function SAMPLEINTERNAL

10: for I ∈ Ii in a top-down order do
11: if πti ∈ Πi(I) then
12: πti(I)←RINT

I .RECOMMEND()
13: else
14: σtI ← Σci (I) ∩ {(J, πti(J)) | J � I}
15: πti(I)←REXT

σt
I
,I .RECOMMEND()

16: function UPDATEINTERNAL(πti , u
t
i)

17: for I ∈ Ii do
18: RINT

I .OBSERVE(1[πti ∈ Πi(I)] · ûtI)
19: for σ ∈ Σci (I) do
20: REXT

σ,I .OBSERVE(1[πti ∈ Πi(σ)] · ûtI)

In order to minimize the laminar subtree regrets,
ICFR needs to instantiate different regret minimizers for
each infoset. For every infoset I ∈ Ii, the algorithm instan-
tiates an internal-regret minimizer RINT

I employing an arbi-
trary no-internal-regret algorithm. Moreover, let Σci (I) ⊆
Σi be the set of sequences of player i that do not allow to
reach I and whose last action is played at an infoset preced-
ing I . Formally,

Σci (I) := {(J, a) ∈ Σi | J � I, a /∈ σ(I)}.
ICFR instantiates an additional external-regret minimizer
REXT
σ,I for each sequence σ ∈ Σci (I). The internal-regret

minimizer RINT
I is responsible for the minimization of the

laminar subtree regrets R̂Tσ,I associated to trigger sequences
σ = (I, a) ∈ Σi for each a ∈ A(I). Instead, the external-
regret minimizers REXT

σ,I are responsible for the laminar sub-
tree regrets of sequences σ ∈ Σci (I).
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Figure 2: (Left) EFG with two infosets I and J of player i.
(Right) The laminar subtree regrets.

Algorithm 1 provides a description of the procedures
adopted by ICFR. At iteration t and for each I ∈ Ii,
an action is sampled as follows: if the (possibly partial)
normal-form plan πti sampled up to this point allows I to
be reached (i.e., it is still possible that πti ∈ Πi(I)), then
an action is selected according to the internal-regret min-
imizer RINT

I (Line 12). Otherwise, if I cannot be reached
through the (possibly partial) plan πti , then we let σtI be
the unique sequence in Σci (I) whose actions are prescribed
by πti (Line 14). In this case, the player follows the strat-
egy recommended by the external-regret minimizer REXT

σt
I ,I

(Line 15). As for the regret updates, for each I ∈ Ii, the
internal-regret minimizer RINT

I is fed with the utility vector
ûtI only if the sampled plan πti allows to reach infoset I ,
while each external-regret minimizer REXT

σ,I is updated only
if πti prescribes all the actions in the corresponding sequence
σ (Line 12 and Line 15, respectively).

The crucial insight is that for each infoset I ∈ Ii, no mat-
ter the action selected at I , only one of the regret minimizers
will receive a non-zero utility. Consequently, only one of the
regret minimizers can cumulate regret at time t, and that is
the regret whose recommendation we follow. Therefore, it
is possible to show that the empirical frequency of play µ̄T
obtained via ICFR converges almost surely to an EFCE. We
start with the following auxiliary result.

Lemma 3. For any I, J ∈ Ii : I � J , if R̂Tσ,J = o(T ) for
all σ = (I, a) ∈ Σi then R̂Tσ(I),J = o(T ).

Then, our main result reads as follows:

Theorem 2. When all the players play according to ICFR,
µ̄T converges almost surely to an EFCE.

Example We provide a simple example illustrating the key
ideas of ICFR. Figure 2–Left describes an EFG with two in-
fosets I, J of the same player (player i). Even in such a sim-
ple setting ICFR has to ensure that six laminar subtree re-
grets are properly minimized (see Figure 2–Right). To sim-
plify the notation, throughout the example we write R̂Ta,I in
place of R̂T(I,a),J (the remaining regrets are treated analo-
gously). ICFR instantiates one internal-regret minimizer for
each infoset of player i. We denote them by RINT

I and RINT
J ,

respectively. Then, we observe that Σci (J) = {(I, b)}, be-
cause b is the only action of player i satisfying the following
conditions: (i) it departs from an infoset which is on the path
from the root node to J and (ii) if player i selected b at in-

foset I , she would no longer be able to reach J . Therefore,
ICFR instantiates the external-regret minimizerREXT

b,J .
Suppose to be at iteration t of ICFR. The sampling pro-

cedure starts from infoset I . Being the root of the EFG, I is
always reached by player i. Therefore, an action is selected
following the recommendation of the internal-regret mini-
mizer RINT

I . During the update procedure, RINT
I is provided

with the utility resulting from the normal-form plan πti ob-
tained from the sampling procedure. Intuitively, this ensures
that R̂Ta,I and R̂Tb,I are small. Now, there are two possibili-
ties:

Case πti(I) = a. The partial plan πti allows J to be
reached. Therefore, at J , an action is chosen according to
the strategy recommended byRINT

J . Then, in the update pro-
cedure, the internal-regret minimizer RINT

J is provided with
the observed utility, while the external-regret minimizer is
not updated. This ensures that R̂Tc,J and R̂Td,J are managed
properly. By Equation 11, the choice at t does not impact
R̂Tb,J since πti /∈ Πi(b), while R̂Ta,J is affected by the choice
at J because a ∈ σ(J). The internal-regret minimizer RINT

J

guarantees that R̂Tc,J = o(T ) and R̂Td,J = o(T ). Then, by
using Lemma 3, we have that R̂Ta,J = o(T ) holds as well.

Case πti(I) = b. We have that σtJ = (I, b). An action
at J is sampled according to the external-regret minimizer
REXT
b,J , which is then provided with the observed utility (the

internal-regret minimizerRINT
J is not updated). This ensures

that the increase in R̂Tb,J is small. The other regret terms are
not impacted by the choice at t.

Experimental evaluation
We evaluate the convergence of ICFR on the standard bench-
mark games for the computation of correlated equilibria. We
use parametric instances from four different multi-player
games: Kuhn poker (Kuhn 1950), Leduc poker (Southey
et al. 2005), Goofspiel (Ross 1971), and Battleship (Farina
et al. 2019a). Instances of the Kuhn, Leduc, and Goofspiel
games are parametric in the number of players p and in the
number of card ranks r. To increase the readability, we de-
note by Kp.r the Kuhn poker instance with p players and r
ranks (the other instances are treated analogously). Our Bat-
tleship instance (denoted by BS) has a grid of size 2 × 2
and maximum number of rounds per player equal to 3. A
detailed description of the games is provided in (Celli et al.
2020). We use Regret matching (Hart and Mas-Colell 2000)
for external-regret minimizers, and the no-internal-regret al-
gorithm by Blum and Mansour (2007) for internal-regret
minimizers. All experiments are run on a 64-core machine
with 512 GB of RAM.

Convergence of ICFR Figure 3–Center displays the max-
imum deviation δ(µ̄T ) as a function of the number of rounds
T . According to Equation (7), the strategy µ̄T is guaran-
teed to be a δ(µ̄T )-EFCE. We set a maximum number of
104 iterations and, for each instance, we provide the average
and the standard deviation computed over 50 different seeds.
First, we notice that ICFR attains roughly an empirical con-
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Figure 3: (Left) Dimension of the game instances in terms of number of players and infosets/sequences for each player. (Center)
Convergence of ICFR. (Right) Social welfare attained at different ε-EFCEs computed via ICFR (black dots corresponds to
different seeds).

vergence rate of O(1/T ). The performance over the Bat-
tleship instance suggests that equilibria with large support
size are significantly more challenging to be computed. Sec-
ond, we remark that, unlike recent algorithms for computing
EFCEs by Farina et al. (2019a,b), ICFR can be applied to
games with more than two players including chance. More-
over, since EFCE ⊆ EFCCE ⊆ NFCCE, ICFR also pro-
vides a flexible way to compute ε-EFCCEs and ε-NFCCEs.
In the former case, the only known algorithm can only han-
dle games with two players and no chance (Farina, Bianchi,
and Sandholm 2020). In the latter case, the recent algorithms
by Celli et al. (2019) are significantly outperformed. For ex-
ample, previous algorithms cannot reach a 0.1-NFCCE in
less than 24h on a Leduc instance with 1200 total infosets
and a one-bet maximum per bidding round. ICFR reaches
ε = 0.1 in around 9h on an arguably more complex Leduc
instance (i.e., more than 9k total infosets and a two-bet maxi-
mum per round). Further details on the computation of EFC-
CEs and NFCCEs are provided in (Celli et al. 2020), to-
gether with the plots of the decoupled EFCE deviations of
each player.

Social Welfare Figure 3–Right provides a visual depiction
of the quality of the solutions attained by ICFR in terms of
their social welfare. The figure displays the payoffs obtained
for 100 different seeds in a two-player Goofspiel instance
without chance (i.e., the prize deck is sorted).

Broader Impact
Correlated equilibria provide an appropriate solution con-
cept for coordination problems in which agents have arbi-
trary utilities, and may work towards different objectives.
The study of uncoupled dynamics converging to correlated
equilibria in problems with sequential actions and hidden in-
formation lays new theoretical foundations for multi-agent
reinforcement learning problems. Most of the work in the
multi-agent reinforcement learning community either stud-
ies fully competitive settings, where agents play selfishly to
reach a Nash equilibrium, or fully cooperative scenarios in
which agents have the exact same goals. Our work could
enable techniques that are in-between these two extremes:

agents have arbitrary objectives, but coordinate their actions
towards an equilibrium with some desired properties.

As we argued in the paper, the social welfare that can be
attained via a Nash equilibrium (that is, by playing selfishly)
may be significantly lower than what can be achieved via
a correlated equilibrium. We provided some empirical evi-
dences that ICFR computes equilibria which attain a social
welfare ‘not too far’ from the optimal one. This could have
an arguably positive societal impact when applied to real
economic problems. However, further research in this di-
rection is required to prevent ‘winner-takes-all’ scenarios in
problems with an unbalanced reward structure where equi-
libria with high social welfare may just award players with
the largest utilities at the expense of the others. This could
provide a way to reach fair equilibria both in theory and in
practice.
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