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Abstract

In Bayesian persuasion, an informed sender has to design a
signaling scheme that discloses the right amount of informa-
tion so as to influence the behavior of a self-interested re-
ceiver. This kind of strategic interaction is ubiquitous in real-
world economic scenarios. However, the seminal model by
Kamenica and Gentzkow makes some stringent assumptions
that limit its applicability in practice. One of the most lim-
iting assumptions is, arguably, that the sender is required to
know the receiver’s utility function to compute an optimal
signaling scheme. We relax this assumption through an on-
line learning framework in which the sender repeatedly faces
areceiver whose type is unknown and chosen adversarially at
each round from a finite set of possible types. We are inter-
ested in no-regret algorithms prescribing a signaling scheme
at each round of the repeated interaction with performances
close to that of a best-in-hindsight signaling scheme. First,
we prove a hardness result on the per-round running time re-
quired to achieve no-a-regret for any o« < 1. Then, we pro-
vide algorithms for the full and partial feedback models with
regret bounds sublinear in the number of rounds and polyno-
mial in the size of the instance.

Introduction

Bayesian persuasion was first introduced by Kamenica and
Gentzkow (2011) as the problem faced by an informed
sender trying to influence the behavior of a self-interested
receiver via the strategic provision of payoff-relevant infor-
mation. In Bayesian persuasion, the agents’ beliefs are in-
fluenced only by controlling ‘who gets to know what’. This
‘sweet talk’ is ubiquitous among all sorts of economic activ-
ities, and it was famously attributed to a quarter of the GDP
in the United States by McCloskey and Klamer (1995). !
The computational study of Bayesian persuasion has been
largely driven by its application in domains such as auc-
tions and online advertisement (Badanidiyuru, Bhawalkar,
and Xu 2018; Emek et al. 2014; Bro Miltersen and Sheffet

“An extended version of this paper has been accepted at
NeurIPS 2020.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A more recent estimate by Antioch et al. (2013) places this
figure at 30%.

2012), voting (Alonso and Camara 2016; Castiglioni, Celli,
and Gatti 2020; Cheng et al. 2015), traffic routing (Bhaskar
et al. 2016; Vasserman, Feldman, and Hassidim 2015), rec-
ommendation systems (Mansour et al. 2016), security (Ra-
binovich et al. 2015; Xu et al. 2016), and product market-
ing (Babichenko and Barman 2017; Candogan 2019).

In the model by Kamenica and Gentzkow (2011), the
sender’s and receiver’s payoffs are determined by the re-
ceiver’s action and a set of parameters collectively termed
the state of nature. Unlike the receiver, the sender observes
the realized state of nature drawn from a shared prior dis-
tribution. The sender uses this private information to deter-
mine a signal for the receiver according to a publicly known
signaling scheme, i.e., a mapping from states of nature to
probability distributions over signals.

In this paper, we focus on arguably one of the most se-
vere limitations of the basic model: the sender must know
exactly the receiver’s utility function to compute an optimal
signaling scheme.

Our model and results We deal with uncertainty about
the receiver’s type by framing the Bayesian persuasion prob-
lem in an online learning framework. We study a repeated
Bayesian persuasion problem where, at each round, the re-
ceiver’s type is adversarially chosen from a finite set of
types. Our goal is the design of an online algorithm that rec-
ommends a signaling scheme at each round, guaranteeing
an expected utility for the sender close to that of the best-
in-hindsight signaling scheme. We study this problem un-
der two models of feedback: in the full information model,
the sender selects a signaling scheme and later observes the
type of the best-responding receiver; in the partial informa-
tion model, the sender only observes the actions taken by the
receiver.

First, we provide a negative result that rules out, even in
the full information setting, the possibility of designing a no-
regret algorithm with polynomial per-round running time.
Furthermore, the same hardness result holds when adopt-
ing the notion of no-a-regret (in the additive sense) for any
o < 1. Then, we focus on the problem of designing no-
regret algorithms by relaxing the running time constraint.
We show that it is possible to achieve a regret polynomial in



the size of the problem instance and sublinear in the num-
ber of rounds 7" under both full (with O(T~'/2)) and partial
feedback (with O(T—1/%)).

Related works The closest line of research to ours is
the one studying online learning problems in Stackelberg
games. In these games, a leader commits to a probability
distribution over a set of actions, and a follower plays an
action maximizing her/his utility given the leader’s commit-
ment (Von Stengel and Zamir 2010). In this setting, Letch-
ford, Conitzer, and Munagala (2009) and Blum, Haghta-
lab, and Procaccia (2014) study the problem of computing
the best leader’s strategy against an unknown follower us-
ing a polynomial number of best-response queries. Marecki,
Tesauro, and Segal (2012) study the problem with a single
follower with type drawn from a Bayesian prior.

Balcan et al. (2015) study how to minimize the leader’s
regret in an online setting in which the follower’s type is un-
known and chosen adversarially from a finite set. Although
the problem is conceptually similar to ours, the Bayesian
persuasion framework presents a number of additional chal-
lenges: the solution to a Stackelberg game consists of a
point in a finite-dimensional simplex, while the solution to
a Bayesian persuasion problem is a probability distribution
with potentially infinite support size. This probability distri-
bution is subject to additional consistency constraints, which
(under partial feedback) rule out the possibility of exploiting
unbiased estimators of the sender’s expected utility.

Finally, it is worth mentioning that known online learning
algorithms (for either the full or partial feedback setting) do
not provide any guarantee in the case of Bayesian persua-
sion. Indeed, the regret bounds of those algorithms depend
linearly or sublinearly in the number of actions, but the ac-
tion space in Bayesian persuasion is infinite. A large body of
previous works in other fields resolves the issue of dealing
with an infinite action space by requiring specific assump-
tions (e.g., linear or convex utility function (Awerbuch and
Kleinberg 2008; Bubeck, Cesa-Bianchi et al. 2012; Kalai
and Vempala 2005; Zinkevich 2003)). However, in the on-
line Bayesian persuasion setting, these assumptions do not
hold as the sender’s utility depends on the receiver’s best re-
sponse, which yields a function that is not linear nor convex
(or even continuous in the space of signaling schemes).

Preliminaries

The receiver has a finite set of m actions A := {a;}!", and a
set of n possible types K := {k;}"_,. For each type k € K,
the receiver’s payoff function is u* : A x © — [0, 1], where
O := {;}%_, is a finite set of d states of nature. For nota-
tional convenience, we denote by uk(a) € [0, 1] the utility
observed by the receiver of type k € K when the realized
state of nature is § € © and she/he plays action a € A.
The sender’s utility when the state of nature is 8 € © is de-
scribed by the function uf : A — [0,1]. As it is customary
in Bayesian persuasion, we assume that the state of nature
is drawn from a common prior distribution g € int(Ag),
which is explicitly known to both the sender and the re-

ceiver. > Moreover, the sender can commit to a signaling
scheme ¢, which is a randomized mapping from states of
nature to signals for the receiver. Formally ¢ : © — Ag,
where S is a finite set of signals. We denote by ¢y the prob-
ability distribution employed by the sender when the state of
nature is § € O, with ¢y(s) being the probability of sending
signal s € S.

A one-shot interaction between the sender and the re-
ceiver goes on as follows: (i) the sender commits to a pub-
licly known signaling scheme ¢ and the receiver observes
the commitment; (ii) the sender observes the realized state
of nature § ~ p; (iii) the sender draws a signal s ~ ¢y and
communicates it to the receiver; (iv) the receiver observes s
and rationally updates her/his prior beliefs over © according
to the Bayes rule; (v) the receiver selects an action maximiz-
ing her/his expected utility.

Let Z := Ag be the set of receiver’s posterior beliefs over
the states of nature. In step (iv), after observing s € S, the
receiver performs a Bayesian update and infers a posterior
belief £ € = over the states of nature such that the compo-
nent of £ corresponding to state of nature 6 € O is:

. 1o Po(s)
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After computing &, the receiver solves a decision problem
to find an action maximizing her/his expected utility given
the current posterior. Letting a € A be the receiver’s choice,
the receiver observes payoff uf (a), where k € K is the re-
ceiver’s type, while the sender observes payoff uj(a).

Working in the space of posterior distributions

It is oftentimes useful to represent signaling schemes as con-
vex combinations of posterior beliefs they can induce. First,
we describe such interpretation (see (Kamenica 2019) for
further details). Then, we define the receiver’s best response
given an arbitrary posterior belief.

Representing signaling schemes Given a signaling
scheme ¢, each signal realization s € & leads to a pos-
terior belief £° € =, whose components are defined as in
Equation (1). Accordingly, each signaling scheme leads to a
distribution over posterior beliefs. We denote a distribution
over posteriors by w € Az. We say that a signaling scheme
¢ : © = Ag induces w € Ag if, for every £ € =, the
component of w corresponding to £ is defined as follows:

wei= Y > g de(s). )
SES:E5=¢ €O

Intuitively, if ¢ induces w, then w¢ represents the probabil-
ity that ¢ induces the posterior £ € =. We let supp(w) =
{€ € Z | weg > 0} be the set of posteriors induced with
strictly positive probability. We say that a distribution over
posteriors w € Ag is consistent (i.e., intuitively, there ex-
ists a valid signaling scheme ¢ inducing w) if the following

hods:
Z we Ep = g, foralld € O©. 3)
£esupp(w)
%int(X) is the interior of set X and Ax is the set of all prob-

ability distributions over X. Vectors are denoted by bold symbols.
For any vector x, the value of its ¢-th component is denoted by x;.



We let W C Az be the set of distributions over posteriors
that are consistent according to Equation (3). In the remain-
der of the paper, we equivalently employ ¢ or w to denote
an arbitrary signaling scheme.

Receiver’s best-response set After observing a signal s €
S that induces a posterior £ € E, the receiver best responds
by choosing an action that maximizes her/his expected util-
ity (step (v)). The set of actions maximizing the receiver’s
expected utility given posterior £ is defined as follows:

Definition 1 (BR-set). Given posterior € € = and type k €
KC, the best-response set (BR-set) is:

B¢ := arg max Z Eoub(a).
acA  poo

We denote by b’g the action belonging to the BR-set B}g
played by the receiver. When the receiver is indifferent
among multiple actions for a given posterior £, we assume
that the receiver breaks ties in favor of the sender, i.e., she/he
chooses an action bf € arg max,epr Yy o Uh(a)- 3

We conclude the section by introducing some additional
notation. We denote by w*(§, k) = > ,& uz(bg) the
sender’s expected utility when she/he induces a posterior
& € = and the receiver is of type k € K. Moreover,
we use u®(¢, k) to denote the sender’s expected utility
achieved with the signaling scheme ¢. Formally, u*(¢, k) :=
2 eesupp(w) We u5(€, k), where w € Az is the distribu-
tion over posteriors induced by ¢. Analogously, we write
us(w, k).

Finally, letting OPT be the sender’s optimal expected
utility, we say that a signaling scheme is a-optimal (in the
additive sense) if it provides the sender with a utility at least
as large as OPT — a.

Example

We illustrate the key notion of signaling scheme in a sim-
ple example with a single receiver type (i.e., |[K| = 1) in-
spired by Kamenica and Gentzkow (2011): a prosecutor (the
sender) is trying to convince a rational judge (the receiver)
that a defendant is guilty. The judge has two available ac-
tions: to acquit or to convict the defendant (denoted by A
and C, respectively). There are two possible states of na-
ture: the defendant is either guilty (denoted by G) or inno-
cent (denoted by I). The prosecutor and the judge share a
prior belief ug = .3. Moreover, the prosecutor gets utility 1
if the judge convicts the defendant and O otherwise, regard-
less of the state of nature. The prosecutor gets to observe
the realized state of nature (i.e., whether the defendant is
guilty or innocent). The she/he can exploit this information
to select a signal from set S = {s1, s2} and send it to the
judge. The judge has a unique type and she/he gets utility 1
for choosing the just action (convict when guilty and acquit
when innocent) and utility O for choosing the unjust action
(see Figure 1-Left).

3This assumption is customary in settings involving commit-
ments, such as Stackelberg games (Conitzer and Korzhyk 2011;
Conitzer and Sandholm 2006; Paruchuri et al. 2008).

Figure 1-Center depicts a sender-optimal signaling

scheme ¢* obtained via the following LP:

argmax u®(¢, k) s.t. Z do(s) =1 VO e 0O,
$20 sES

where k is the unique type of the judge. When the sender acts
according to ¢*, signal sy (resp., s3) originates posterior &
(resp., &5; see Figure 1-Right). Applying Equation (3) yields
the equivalent representation of ¢* as a convex combination
of posteriors, i.e., wgl = 2/5 and wg2 = 3/5.

By unpacking the objective function of the above LP (and
dropping the dependency on k) we have: B¢, = {A} and
Be, = {A,C}. Therefore, if the posterior is &, the judge
will acquit the defendant, i.e., bgl = A. Otherwise, if the
posterior is £,, we have bEz = C since the receiver breaks
ties in favor of the sender. This highlights an intuitive inter-
pretation of the signaling problem: the two signals may be
interpreted as action recommendations. Signal s; (resp., S2)
is interpreted by the judge as a recommendation to play A
(resp., C). Then, our definition of best-response set (Defi-
nition 1) implies that it is in the receiver’s best interest to
follow the action recommendations. The best-response con-
ditions can be formulated in terms of linear constraints on
¢g as follows:

> 1o da(s1) (uo(A) ~ ug(@)) >0 and

0€©

3 no qﬁg(Sg)(ug(C) - ug(a)) >0 Vac{A,C}.

0€©

The online Bayesian persuasion framework

We consider the following online setting. The sender plays
a repeated game in which, at each round ¢ € [T, she/he
commits to a signaling scheme ¢!, observes a state of na-
ture 0 ~ p, and she/he sends signal s' ~ ¢}, to the re-
ceiver. * Then, a receiver of unknown type updates her/his
prior distribution and selects an action a' maximizing her/his
expected reward (in the one-shot interaction at round t). We
focus on the problem in which the sequence of receiver’s
types k := {k'},c[q) is selected beforehand by an adver-
sary. After the receiver plays a’, the sender receives a feed-
back on her/his choice at round t. In the full information
feedback setting, the sender observes the receiver’s type k.
Therefore, the sender can compute the expected payoff for
any signaling scheme she/he could have chosen other than
¢t. Instead, in the partial information feedback setting, the
sender only observes the action a’ played by the receiver at
round ¢.

We are interested in algorithms computing ¢! at each
round ¢. The performance of one such algorithm is measured
using the average per-round regret computed with respect to

the best signaling scheme in hindsight. Formally:
T

1
T s t st 1.t
R* :=m = E k') —E k
(?’X{T pt (U (¢) ) [u (d) ) )])}a
where the expectation is on the randomness of the online al-

*Throughout the paper, the set {1, ...,z} is denoted by [z].
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Figure 1: Left: The prosecutor/judge game. Rows represent the judge’s actions. For each possible state of nature {G, I}, the
first column is the prosecutor’s payoff while the second is the judge’s payoff. Center: The optimal signaling scheme ¢*. Each
column describes the probability with which the two signals are drawn given the realized state of nature. Right: Representation

of ¢* as the convex combination of posteriors w*.

gorithm (i.e., the probability distribution which is used by
the sender to draw the signaling scheme at round ¢) and T'
is the number of rounds. Ideally, we would like to find an
algorithm that generates a sequence {qﬁt}tem with the fol-
lowing properties: (i) the regret is polynomial in the size of
the problem instance, i.e., poly(n,m,d), and goes to zero
as a polynomial of T'; (ii) the per-round running time is
poly(t,n,m,d). An algorithm satisfying property (i) is usu-
ally called a no-regret algorithm.

In the case in which requiring no-regret is too limiting,
we use the following relaxed notion of regret. An algorithm
has no-a-regret if there exists a constant ¢ > 0 such that:
RT < a + zzpoly(n, m,d). The idea of no-a-regret is that
the regret approaches « after a sufficiently large number of
rounds (polynomial in the size of the game).

Hardness of sub-linear regret

Our first result is negative: for any o < 1, it is unlikely (i.e.,
technically, it is not the case unless NP C RP) that there
exists a no-a-regret algorithm for the online Bayesian per-
suasion problem requiring a per-round running time polyno-
mial in the size of the instance. In order to prove the result,
we provide an intermediate step, showing that the problem
of approximating an optimal signaling scheme is computa-
tionally intractable even in the offline Bayesian persuasion
problem in which the sender knows the probability distribu-
tion over the receiver’s types (see Theorem 1 below).

Definition 2 (OPT-SIGNAL). Given an offline Bayesian per-
suasion problem in which the distribution over the receiver’s
types p € Ax is uniform, ie., pr = % forall k € K, we
call OPT-SIGNAL the problem of finding an optimal signal-
ing scheme ¢ : © — Ag, i.e., one maximizing the sender’s
expected utility % D opex w(d, k).

Then, we can prove the following result (the omitted
proofs can be found in (Castiglioni et al. 2020)).

Theorem 1. Forevery 0 < a < 1, it is NP-hard to compute
an a-optimal solution to OPT-SIGNAL.

Now, we use the approximation-hardness of the offline
Bayesian persuasion problem to provide lower bounds on
the a-regret in the online setting. In order to do this, we
employ a set of techniques introduced by Roughgarden and
Wang (2016), which lead to the following result. >.

>Theorem 2 can be obtained as a corollary of Theorem 6.2
by Roughgarden and Wang (2016).

Theorem 2. For every o < 1, there is no polynomial-time
algorithm for the online Bayesian persuasion problem pro-
viding no-a-regret, unless NP C RP.

Full information feedback setting

The negative result of the previous section (Theorem 2) rules
out the possibility of designing an algorithm which satisfies
the no-regret property and requires a poly(¢,n,m,d) per-
round running time. A natural question is whether it is pos-
sible to devise a no-regret algorithm for the online Bayesian
persuasion problem by relaxing the running-time constraint.
This is not a trivial problem because, at every round ¢, the
sender has to choose a signaling scheme among an infinite
number of alternatives and her/his utility depends on the re-
ceiver’s best response, which yields a function that is not
linear nor convex (or even continuous in the space of the
signaling schemes). However, we show that it is possible to
provide a no-regret algorithm for the full information set-
ting by restricting the sender’s action space to a finite set of
posteriors. All the omitted proofs are in (Castiglioni et al.
2020).

First, we show that it is always possible to design a
sender-optimal signaling scheme defined as a convex com-
bination of a specific finite set of posteriors. For each type
k € K and action a € A, we define E’; C Ag as the set
of posterior beliefs in which a is a receiver’s best response.
Formally, ZF = {5 €EZ|ac B’g} Leta = (a¥)ex €
Xex A be a tuple specifying one action for each receiver’s
type k. Then, for each tuple a, let =, C Ag be the (poten-
tially empty) polytope such that each action a* is optimal
for the corresponding type k, i.e., Za = [\ E’;k. The
polytope =, has a simple interpretation: a probability distri-
bution over posteriors in =, yields a signaling scheme such
that, for every type k, the receiver has no interest in deviat-
ing from a” in the induced posteriors Z, (i.e., the constraints
analogous to those of the example in Section are satisfied).

Then, let = C Z= be the set of posteriors defined as
= UankEKA V(Z,). ¢ Finally, we define the follow-
ing set of consistent (according to Equation (3)) distributions
over posteriors in =:

[1p

We=SweAz| > welp=po, WO (4

ge=

(1)

8V (X) denotes the set of vertices of polytope X.
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Figure 2: Left: Subdivision of the space of posteriors = in
the two best-response regions. If £ € E, (resp., £ € E¢)
then the judge’s best response under £ is acquitting (resp.,
convicting) the defendant. When £ = &,, the judge is in-

different among her/his available actions. We have
{&1,€5,&3}. Right: Visual depiction of Az, W C Ag, an
W* = V(W). The set W comprises of the distributions over
posteriors in = consistent with the prior g = (.3,.7) " and it
is obtained by intersecting Az with [§; | &5 | &3] - w > p.
As a result, we obtain W = conv{(.3,0,.7)7,(0,.6,.4) T }.
Finally, W* = V(W) = {(.3,0,.7)T, (0, .6,.4)T}.

(1]

By letting M be a suitably defined |©] x |Z|-dimensional
matrix with one column for each ¢ € =, then the affine hy-
perplanes defined by Equation (3) are in the form M -w = p.
Since w € Az, we can safely rewrite the consistency con-
straints as M - w > p (see the example below for a better
intuition). Then, W can be seen as the intersection between
the simplex Az and a finite number of half-spaces. There-

fore, W is a convex polytope, whose vertices compose the
finite action space that will be employed by the no-regret
algorithm. Specifically, let

W* == V(W). )

Example Consider the game of Section (see Figure 1-
Left) where the receiver has a single type (type I). We ob-
tain = by partitioning the space of posteriors in different
best response regions and by taking the vertices of the re-
sulting polytopes (see Figure 2-Left). Then, we provide a

visual depiction of W and W*, which are obtained, respec-
tively, by intersecting Ag with the hyperplanes correspond-
ing to consistency constraints (see Equation (4)), and then
taking the vertices of the resulting polytope (see Figure 2—
Right). Another example, with two receiver’s types, is pro-
vided in (Castiglioni et al. 2020).

For an arbitrary sequence of receiver’s types, we show that
there exists w* &€ W™ guaranteeing to the sender an ex-
pected utility that is equal to the best-in-hindsight signaling
scheme.

Lemma 1. For every sequence of receiver’s types k =
{k‘t}te[T], it holds
T T
max Y uS(w,k') = max us(w*, k).

w reWw*
wEe — w*re )

The size of the sender’s finite action space grows expo-
nentially in the number of states of nature d.

Lemma 2. The size of W* is [W*| € O ((nm? + d)?).

Now, by letting ) € [0, 1] be the maximum absolute pay-
off value, we can employ any algorithm satisfying R? <

O(n 10g|A\/T) as a black box (see, e.g., Polynomial

Weights (Cesa-Bianchi and Lugosi 2006) and Follow the
Lazy Leader (Kalai and Vempala 2005)). By taking W™* as
the sender action space, we obtain the following.

Theorem 3. Given an online Bayesian persuasion prob-
lem with full information feedback, there exists an online
algorithm such that, for every sequence of receiver’s types

k = {kt}tE[T].'
2
R < d log(nm —|—d)>.

Notice that any no-regret algorithm working on W™* re-
quires a per-round running time polynomial in n, m and ex-
ponential in d (see the bound in Lemma 2). This shows that
the source of the hardness result in Theorem 2 is the number
of states of nature d, while achieving no-regret in polyno-
mial time is possible when the parameter d is fixed.

Partial information feedback setting

In this setting, at every round ¢, the sender can only observe
the action a® played by the receiver. Therefore, the sender
has no information on the utility u®(w, k*) that she/he would
have obtained by choosing any signaling scheme w € W*
other than w?. We show how to design no-regret algorithms
with regret bounds that depend polynomially in the size of
the problem instance by exploiting a reduction from the par-
tial information setting to the full information one. 7 The
main idea is to use a full-information no-regret algorithm in
combination with a mechanism to estimate the sender’s util-
ities corresponding to signaling schemes different from the
one recommended by the algorithm. In particular, the overall
time horizon 7 is split into a given number of equally-sized
blocks, each corresponding to a window of time simulat-
ing a single round of a full information setting. During this
window, the strategy suggested by the full-information al-
gorithm is played in most of the rounds (exploitation phase),
while only few rounds are chosen uniformly at random and
used by the mechanism that estimates the utilities provided
by other signaling schemes (exploration phase). Algorithm 1
provides a sketch of the overall procedure, where Z (Line 1)
denotes the number of blocks, which are the intervals of
consecutive rounds {/; },¢[z defined in Line 4. The FULL-
INFORMATION(-) sub-procedure is a black box representing

"The reduction is an extension of those proposed by Balcan
et al. (2015) and Awerbuch and Mansour (2003).



a no-regret algorithm for the full information setting, work-
ing on a subset W° C W™ of signaling schemes. After the
execution of all the rounds of each block 7 € [Z], it takes
as input the utility estimates computed during I, and returns
a recommended strategy q" ! € Ao for the next block
I, (see Line 14).

Algorithm 1 ONLINE BAYESIAN PERSUASION WITH PAR-
TIAL INFORMATION FEEDBACK
Input: Full-information =~ no-regret  algorithm  FULL-
INFORMATION(-) working on W° C W™; subset of signaling
schemes W® C W* used for exploration > See (Castiglioni et al.
2020) for the definitions of W ° and W®
1: Let Z be defined as in Theorem 3
2: Let q1 € Awo be the uniform distribution over W°
3:forr=1,...,Zdo
4: L« {(r-1)%Z+1,....,7Z}
S: Choose a random permutation 7 :
t1,...,twe  rounds at random from I-

[W®|] — W® and

6: fort=(r—1)Z+1,...,7Z do

7: if t = t; for some j € [|[WW®|] then

8: q’ + q € Aw-~ such that ¢ = 1 for the signaling
scheme w = 7(5) > Exploration phase

9: else

10 q'+—q” > Exploitation phase

11: Play a signaling scheme w' € WW* randomly drawn
from q°

12: Observe sender’s utility u®(w’, k") and receiver’s ac-
tiona’ € A

13: Compute  estimators 47 _(w) of uy_(w) =
ﬁ Sieirpier W(W,EY) forallw € W°

14: q T« FULL—INFORMATION({@SIT (W)}wewo)

During each block I, with 7 € [Z], Algorithm 1 alter-
nates between two tasks: (i) exploration (Line 8), trying all
the signaling schemes in a subset W@ C TW* given as input,
so as to compute the required estimates of the sender’s ex-
pected utilities; and (ii) exploitation (Line 10), playing strat-
egy q” recommend by FULL-INFORMATION(-) for .

Our main result is the proof that Algorithm 1 achieves the
no-regret property. Formally:

Theorem 4. Given an online Bayesian persuasion problem
with partial feedback, there exist W° C W*, W® C W,
and estimators Uy _(w) such that Algorithm 1 provides the
following regret bound:

BT <0 <nm2/3d10g1/3 (mn + d)) .

T1/5

In order to prove this result, we show that Algorithm 1
provides a regret bound that depends on the number |W©®|
of signaling schemes used for exploration, the logarithm of
|W°], and the range and bias of the estimators @3 (w). To
do this, we extend a result shown by Balcan et al. (2015,
Lemma 6.2) to the more general case in which only biased
utility estimators are available, rather than unbiased ones.
This result can be generalized to any partial information set-
ting (beyond online Bayesian persuasion).

In any block I, with 7 € [Z], for every w € W?°,
we assume that Algorithm 1 has access to an estima-
tor 47 (w) of the sender’s average utility uj (w) =
ﬁ Doteryier W(W, k') obtained by committing to w dur-
ing the block I, with the following properties:

(i) the bias is bounded by a given constant ¢ € (0, 1), i.e., it
holds |u§ (w) — E[a5 (w)]| <

(ii) the range is limited, i.e., there exists a 7 € R such that
a3 (w) € [=n,+n).

Lemma 3. Suppose that Algorithm [ has access to esti-
mators Uy _(w) with properties (i) and (ii) for some con-
stants ¢ € (0,1) and n € R, for every signaling scheme
w € W?° and block I, with 7 € [Z]. Moreover, let Z =
T2/3|W®@|~2/302/310g'/3 |W°|. Then, Algorithm 1 guar-
antees regret:

. |W®|1/3’I’]2/3 logl/S |Wo‘
R SO( T3 +0().

Lemma 3 shows that even if utility estimators have small
bias, we can still hope for a no-regret algorithm. However,
we have to guarantee that W© has a polynomial size, and
that the estimator has a limited range. These requirements
can be achieved by estimating sender’s utilities indirectly by
means of other related estimates, at the cost of giving up on
the unbiasedness of the estimators.

The key observation that allows to get the desired estima-
tors @5_(w) by only exploring a polynomially-sized set we
is that the utilities u_(w) that we wish to estimate are not
independent, but they all depend on the frequency of each
receiver’s type during block I.. Thus, only these (polyno-
mially many) quantities need to be estimated. In order to do
so, we use the concept of barycentric spanners (Awerbuch
and Kleinberg 2008) (see (Castiglioni et al. 2020) for the de-
tails). A direct application of barycentric spanners to our set-
ting would require being able to induce any receiver’s poste-
rior during the exploration phase. Unfortunately, this is not
possible as the sender is forced to play consistent signaling
schemes (see Equation (2)), which could prevent her from
inducing certain posteriors. We achieve the goal of keeping
the bias and the range of the estimators small by adopting
the following two technical caveats:

(i) we focus on posteriors that can be induced by a signaling
scheme with at least some (‘not too small’) probability,
which ensures that the resulting estimators have a limited
range; and

(i) we restrict the full-information algorithm to signaling
schemes W° C W™ inducing a small number of poste-
riors, which guarantees to have estimators with a small
bias.

We provide our complete technical results in (Castiglioni
et al. 2020).

Discussion and future works

We proposed the online Bayesian persuasion framework as
a natural extension of the original model by Kamenica and



Gentzkow (2011). This is, to the best of our knowledge, the
first work relaxing the assumption that the sender has a per-
fect knowledge of the receiver’s utility function. We proved
that any no-regret algorithm for this setting has to require
an exponential per-round running time, and we designed no-
regret algorithms for the partial and full information feed-
back settings with adversarially chosen sequences of types.
In the future, it would be interesting to study what happens
if the receiver can play, at each round, an approximate best
response (e-best response) to the sender signal. We conjec-
ture that in this case it should be possible to build a no-regret
algorithm with quasi-polynomial per-round running time.
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