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Abstract

In many game settings, the game is not explicitly given but is1

only accessible by playing it. While there have been impres-2

sive demonstrations in such settings, prior techniques have3

not offered safety guarantees, that is, guarantees on the game-4

theoretic exploitability of the computed strategies. In this pa-5

per we introduce an approach that shows that it is possible to6

provide exploitability guarantees in such settings without ever7

exploring the entire game. We introduce a notion of a certifi-8

cate of an extensive-form approximate Nash equilibrium. For9

verifying a certificate, we give an algorithm that runs in time10

linear in the size of the certificate rather than the size of the11

whole game. In zero-sum games, we further show that an op-12

timal certificate—given the exploration so far—can be com-13

puted with any standard game-solving algorithm (e.g., using a14

linear program or counterfactual regret minimization). How-15

ever, unlike in the cases of normal form or perfect informa-16

tion, we show that certain families of extensive-form games17

do not have small approximate certificates, even after mak-18

ing extremely nice assumptions on the structure of the game.19

Despite this difficulty, we find experimentally that very small20

certificates, even exact ones, often exist in large and even in21

infinite games. Overall, our approach enables one to try one’s22

favorite exploration strategies while offering exploitability23

guarantees, thereby decoupling the exploration strategy from24

the equilibrium-finding process.25

1 Introduction26

Recent years have witnessed AI breakthroughs in games27

such as poker (Bowling et al. 2015; Moravčı́k et al. 2017;28

Brown and Sandholm 2017b, 2019b) where the rules are29

given. In many important applications—such as many war30

games and finance simulations—the rules are only given via31

black-box access, that is, via playing the game (Wellman32

2006; Lanctot et al. 2017), and one can try to construct good33

strategies by self play. In such settings, deep reinforcement34

learning techniques are typically used today (Heinrich and35

Silver 2016; Silver et al. 2016; Lanctot et al. 2017; Srini-36

vasan et al. 2018; Vinyals et al. 2019; Berner et al. 2019).37

However, such methods lack the guarantee of low (or zero)38

exploitability that game-theoretic solving techniques offer.39

Prior to our paper, to compute exploitability of a strat-40

egy, one needed to compute the other player’s best response41
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to it, which relies on the game being known. Sampling ap- 42

proaches to equilibrium finding have been suggested, but 43

their regret guarantees are vacuous unless the algorithms 44

touch at least as many information sets as there are in the 45

game (Lanctot et al. 2009; Srinivasan et al. 2018; Zhou, 46

Li, and Zhu 2020). A recent PAC-learning algorithm has 47

logarithmic sample complexity for pure maxmin strategies 48

in normal-form games; it extends to some infinite games, 49

but not effectively to mixed strategies in extensive-form 50

games Marchesi, Trovò, and Gatti (2020). 51

Game abstraction is commonly used to reduce the size of 52

a game tree prior to solving Billings et al. (2003); Gilpin and 53

Sandholm (2006); Brown and Sandholm (2015b); Čermák, 54

Bošansky, and Lisý (2017). Practical abstraction techniques 55

were fundamental to achieving superhuman performance 56

in no-limit Texas hold’em poker in the Libratus (Brown 57

and Sandholm 2017b) and Pluribus (Brown and Sandholm 58

2019b) agents. However, these techniques do not have ex- 59

ploitability guarantees. There has been recent work on ab- 60

straction algorithms with exploitability guarantees for spe- 61

cific settings (Sandholm and Singh 2012; Basilico and Gatti 62

2011) and for general extensive-form games (e.g., (Kroer 63

and Sandholm 2014, 2018)), but these are not scalable for 64

large games such as no-limit Texas hold’em, and the guar- 65

antees depend on the difference between the abstracted game 66

and the real game being known. 67

We introduce an approach that can provide exploitabil- 68

ity guarantees (even zero exploitability) in black-box games 69

without ever exploring the entire game tree. We introduce 70

a notion of certificate that is often much smaller than the 71

full game. We show that a certificate can be verified in 72

time linear in the size of the certificate, without expand- 73

ing the remainder of the game tree. For zero-sum games, 74

we give an algorithm that computes an optimal certificate 75

given the current set of explored nodes using any zero-sum 76

game solver as a subroutine. Leveraging prior results, we 77

show that perfect-information (Knuth and Moore 1975) and 78

normal-form (Lipton, Markakis, and Mehta 2003) games 79

have short certificates. We prove that extensive-form games 80

do not always have such, but under a certain informational 81

assumption they do. We also show that it is NP-hard to ap- 82

proximate to within a logarithmic factor the smallest certifi- 83

cate of a game, even in the zero-sum setting, and give an 84

exponential lower bound for the time complexity of solving 85



a black-box game as a function of the size of its smallest86

certificate. Despite these hardness results, we give a game-87

solving algorithm that expands nodes incrementally until a88

certificate is found. It often terminates while only exploring89

a small fraction of the tree, and works even when the game90

tree is infinite and payoffs may be unbounded. Our experi-91

ments show that large and even infinite games can be solved92

exactly while expanding only a small fraction of the game93

tree.94

2 Preliminaries95

We study extensive-form games, hereafter simply games. An96

extensive-form game consists of the following:97

(1) a set of players P , usually identified with positive inte-98

gers 1, 2, . . . n. Nature, a.k.a. chance, will be referred to99

as player 0. For a given player i, we will often use −i to100

denote all players except i and nature.101

(2) a finite tree H of histories, rooted at some initial state102

∅ ∈ H . The set of leaves, or terminal states, in H will be103

denoted Z. The edges connecting any node h ∈ H to its104

children are labeled with actions.105

(3) a map P : H → P ∪ {0}, where P (h) is the player who106

acts at node h (possibly nature).107

(4) for each player i, a utility function ui : Z → R. 5) for108

each player i, a partition of player i’s decision points, i.e.,109

P−1(i), into information sets. In each information set I ,110

every pair of nodes h, h′ ∈ I must have the same set of111

actions. 6) for each node h at which nature acts, a distri-112

bution σ0(·|h) over the actions available to nature at node113

h.114

We will use (G, u), or simply G when the utility func-115

tion is clear, to denote a game. G contains the tree and in-116

formation set structure, and u = (u1, . . . , un) is the profile117

of utility functions. For any history h ∈ H and any player118

i ∈ P , the sequence of player i at node h is the sequence of119

information sets observed and actions taken by player i on120

the path from the root node to h. In this paper, all games are121

assumed to have perfect recall.122

A behavior strategy (hereafter simply strategy) σi for123

player i is, for each information set I ∈ Ji at which player124

i acts, a distribution σi(·|I) over the actions available at that125

infoset. When an agent reaches information set I , it chooses126

action a with probability σi(a|I).127

A collection σ = (σ1, . . . , σn) of behavior strategies, one128

for each player i ∈ P , is a strategy profile. The reach prob-129

ability σi(h) is the probability that node h will be reached,130

assuming that player i plays according to strategy σi, and131

all other players (including nature) always choose actions132

leading to h when possible. Analogously, we define σ(h) =133 ∏
i∈P∪{0} σi(h) to be the probability that h is reached under134

strategy profile σ. This definition naturally extends to sets of135

nodes or to sequences by summing the reach probabilities of136

all relevant nodes. A strategy profile induces a distribution137

over the terminal nodes of the game. The value of a strategy138

profile σ for player i is ui(σ) := Ez∼σ ui(z).139

The best response value u∗i (σ−i) for player i against an140

opponent strategy σ−i is the largest achievable value; i.e. in141

a two-player game, u∗i (σ−i) = maxσi ui(σi, σ−i). A strat- 142

egy σi is an ε-best response to opponent strategy σ−i if 143

ui(σi, σ−i) ≥ u∗i (σ−i)− ε. 144

A strategy profile σ is an ε-Nash equilibrium (NE) if all 145

players are playing ε-best responses. Best responses and 146

Nash equilibria are respectively 0-best responses and 0- 147

Nash equilibria. 148

3 ε-Nash certificates via pseudogames 149

We are interested in finding small certificates of exact and 150

approximate Nash equilibria. We introduce a construct that 151

we call a pseudogame, which can be used to build small cer- 152

tificates of equilibria. 153

Definition 3.1. A pseudogame G̃ = (G̃, α, β) is a game in 154

which some terminal nodes do not have specified utility but 155

rather have only lower and upper bounds on utilities. For- 156

mally, for each player i, instead of the standard utility func- 157

tion ui : Z → R, there are lower and upper bound functions 158

αi : Z → R and βi : Z → R indicating lower and up- 159

per bounds respectively on the utility of a node. We demand 160

αi(z) ≤ βi(z) for every i and z. We call a node pseudoter- 161

minal if αi(z) < βi(z) for some i, and use terminal node to 162

refer to any leaf in a pseudogame. 163

Definition 3.2. An ε-Nash equilibrium of a pseudogame 164

(G̃, α, β) is a strategy profile σ for which, for every player 165

i, we have β∗i (σ−i)− αi(σ) ≤ ε. 166

Definition 3.3. A pseudogame (G̃, α, β) is a trunk of a game 167

(G, u) if: 168

(1) G̃ can be created by collapsing some internal nodes of G 169

into terminal nodes (and removing them from information 170

sets they are contained in), and 171

(2) if h is a pseudoterminal node of G̃, and z is a terminal 172

node ofG that is a descendant of h, then αi(h) ≤ ui(z) ≤ 173

βi(h) for every i. That is, the bounds α and β are correct. 174

It is possible for information sets of a game G to be par- 175

tially or totally removed in a trunk game. 176

Definition 3.4. An ε-certificate for a game G is a pair 177

(G̃, σ), where G̃ is a trunk of G and σ is an ε-Nash equi- 178

librium of G̃. 179

Importantly, the definition of a certificate is independent 180

of the original game G; that is, given (G̃, σ∗), ε can be com- 181

puted without knowing the remainder of the game tree of 182

G: by computing the best response for each player in their 183

optimistic game, it can be done in time linear in the size of 184

G̃. 185

The proposition below shows that our definition of certifi- 186

cate is reasonable. Proofs are in the appendix. 187

Proposition 3.5. Let (G̃, σ) be an ε-certificate for game G. 188

Then any strategy profile in G created by playing according 189

to σ in any information set appearing in G̃ and arbitrarily 190

at information sets not appearing in G̃ is an ε-NE in G. 191



4 Do small certificates exist?192

In this section, we study when games have small ε-193

certificates. Our general goal will be to find certificates of194

size O(N c poly(1/ε)) for some universal constant c < 1,195

where N is the number of nodes. If a game has a small cer-196

tificate, there is hope of finding such a certificate quickly,197

and thus being able to find and verify an (approximate or198

exact) Nash equilibrium while exploring only a small part199

of the game. We start by giving a connection between sparse200

equilibria and small certificates, which we will use later in201

this section.202

Proposition 4.1 (Sparse equilibria imply small certificates).203

Let σ be an ε-NE of a game G, and let G̃ be the small-204

est trunk of game G containing every node h for which205

σ−i(h) > 0 for any player i. Then (G̃, σ) is an ε-certificate206

of G.207

4.1 Perfect-information zero-sum games have208

small certificates, via alpha-beta search209

In two-player perfect-information zero-sum games, under210

certain assumptions, small certificates exist. Specifically, as-211

sume that212

(1) there is no randomness (no nature nodes),213

(2) all nodes have uniform branching factor b = O(1),214

(3) moves alternate; i.e., a player-1 decision node is always215

followed by a player-2 decision node, and216

(4) the tree has uniform depth d.217

In this case, the game has N = bd terminal nodes. Alpha-218

beta search with an optimal heuristic will search only219

O(bd/2) = O(
√
N) tree nodes before arriving at a prov-220

ably optimal strategy (Knuth and Moore 1975). Thus, the221

portion of the game tree consisting of nodes touched by222

alpha-beta search contains O(
√
N) nodes, and constitutes223

a 0-certificate.224

4.2 Normal-form games have small certificates,225

via sparse equilibria226

A normal-form game is a game in which each player has227

only a single information set. A two-player normal-form228

game with a1 player-1 moves and a2 player-2 moves (hence229

N = a1a2 terminal nodes) can thus be expressed as a pair of230

utility matrices A,B ∈ Ra1×a2 . In two-player normal-form231

games, for every ε, there is an ε-NE in which each player232

i randomizes over O(log(a−i)/ε
2) pure strategies Lipton,233

Markakis, and Mehta (2003). Let σ∗ be such an ε-Nash equi-234

librium, and let Si ⊆ [ai] be the support of σi.235

Consider the following extensive-form pseudogame:236

First, P1 chooses her strategy s1 ∈ [a1]. Then, P2 decides237

whether or not she should play a node from S2. If P2 de-238

cides not to play from S2, and P1 has not played an action239

in S1, the pseudogame terminates immediately in a pseu-240

doterminal node with trivial payoff bounds, i.e., (−∞,∞).241

Otherwise, P2 chooses some strategy s2 ∈ S2 to play,242

and the proper payoffs are given out. This pseudogame has243

O(a1|S2|+ a2|S1|) terminal nodes, and by Proposition 4.1,244

the profile σ∗ is an ε-NE in it. Thus, when a1 = Θ(a2), 245

an a1 × a2 normal-form game has an ε-certificate of size 246

O(
√
N log(N)/ε2). 247

Unlike in the case of perfect-information zero-sum 248

games, normal-form games in general do not have small 249

exact certificates: an exact certificate must necessarily in- 250

clude all strategies played in some equilibrium, and there are 251

normal-form games for which the only equilibria are fully 252

mixed. 253

4.3 Extensive-form games with low information 254

have small certificates 255

This can be generalized to extensive-form games where 256

players do not learn too much information. 257

Theorem 4.2. Let G be a two-player game with N nodes 258

and bounded payoffs, and let D be the maximum number of 259

terminal sequences in the support of any pure strategy for ei- 260

ther player. ThenG has an ε-Nash equilibrium in which both 261

players mix among O((D2/2ε2) logN) pure strategies. 262

Intuitively, D is a measure of how much information the 263

players have in the game. A player who learns no informa- 264

tion whatsoever throughout the game will have D = 1, 265

so this proposition matches the sparseness result (Lipton, 266

Markakis, and Mehta 2003) in the normal-form case. On 267

the other hand, a player with perfect information may have 268

D = Ω(
√
N) or even larger, in which case this proposition 269

is vacuous. 270

Under the assumptions of Section 4.1 except perfect in- 271

formation, any given pure strategy is supported on O(
√
N) 272

nodes. Thus, by Proposition 4.1, we have the following re- 273

sult which implies the existence of small certificates when 274

D = O(N c) for c < 1/4: 275

Corollary 4.3. Under the assumptions of Theorem 4.2 276

and Section 4.1 except perfect information, G has an ε- 277

certificate of size O(
√
N(D2/ε2) logN). 278

As in the case of normal-form games, in general, exact 279

certificates may need to include the whole game tree. How- 280

ever, in some cases, we can do better. For example, games 281

with a natural public game tree1 (Johanson et al. 2011) of- 282

ten have sparse equilibrium strategies (Schmid, Moravcik, 283

and Hladik 2014) and thus small certificates by Proposi- 284

tion 4.1. We will also show later with empirical experiments 285

that many practical games have small exact certificates. 286

4.4 Small certificates do not always exist in 287

extensive-form games 288

In light of the above results, one might hope that there 289

are sparse approximate equilibria in extensive-form games, 290

which would allow small certificates in such games: 291

Question 4.4 (Existence of small ε-certificates). Let G be 292

a two-player zero-sum game with N nodes. Suppose that G 293

satisfies the assumptions in Section 4.1. Let ε > 0. Is there 294

always an ε-certificate with O(N c poly(1/ε)) tree nodes, 295

for some universal constant c < 1? 296

1Informally, the public game tree is the game tree visible to an
observer with no knowledge of the players’ private information.



It would be nice if this had a positive answer, since that297

would interpolate between the cases of normal form and298

perfect information, which, as discussed above, both have299

Õ(
√
N/ε2)-sized certificates. We show that, unfortunately,300

the answer is negative. As a counterexample, consider play-301

ing T rounds of matching pennies. After each round, P2302

learns what P1 played, but P1 does not learn what P2 played.303

Each round is worth 1/T points, so the maximum score is 1.304

The game tree has uniform depth 2T and uniform branching305

factor 2, for a total of N := 22T terminal nodes.306

Theorem 4.5. Any ε-certificate of this game must have at307

least Ω(N1−O(ε)) nodes.308

It does not help to add the assumption that the game309

is win-loss: any zero-sum game can be made win-loss by310

adding normal-form gadget games to the terminal nodes311

which force the players to mix.312

5 Black-box setting313

For the remainder of this paper, we will assume that we are314

not given access to the full game tree. Instead, we are only315

given black-box access to the game, in the form of a function316

that, given a node h (in the form of a history of actions),317

gives us:318

(1) upper and lower bounds on the value of any terminal de-319

scendant of h,320

(2) if h is nonterminal, the player to act at that node, and a list321

of legal actions; and322

(3) if the player to act at h is nature, a single sampled action323

from nature’s action distribution.324

The game may possibly be very large, or even infinite, but325

we will assume that every node has some terminal descen-326

dant (so that (1) is well-defined), and that the game has a327

finite 0-certificate. The bounds given by (1) may be infinite,328

either because the oracle does not give optimal bounds, or329

because the game is infinite and the payoffs along a branch330

may be unbounded.331

The first challenge is approximating the true nature distri-332

butions via samples. We thus give a result regarding the sam-333

ple complexity of doing this for a given pseudogame with334

bounded payoffs2.335

Theorem 5.1 (Sample complexity of approximating a336

game). Let G be a game with N nodes and bounded pay-337

offs, and suppose that the true nature distributions are un-338

known but have been approximated by sampling at ev-339

ery nature node. Let σ̂0 be the approximated nature strat-340

egy resulting from this sampling. Fix a player i. Let ûi(σ)341

denote the expected utility of player i when the players342

play strategy σ and nature plays σ̂0. Let D be the max-343

imum support size over terminal nodes of any pure strat-344

egy profile in the perfect-information refinement of G. Sup-345

pose that, for every nature node h is sampled at least346

σ̂0(h)(D2/2ε2) log(2N/δ) times. Then, with probability 1−347

δ, for any strategy profile σ, we have |ui(σ)− ûi(σ)| ≤ ε.348

2In the unbounded payoff case, the task is hopeless, since it is
always possible for there to be a branch of infinite expectation that
is reached so rarely that it has never been sampled.

Here, D is some measure of how much randomness there 349

is in G. For example, if G has no nature nodes, D = 1. If G 350

has no player nodes, D = N . 351

Corollary 5.2. Let G̃ be a pseudogame, and consider ap- 352

proximating nature’s strategy in G̃ to precision ε as per The- 353

orem 5.1. Let σ be an ε′-equilibrium of the approximated 354

version of G̃. Then σ is also an (ε′ + 2ε)-equilibrium of G̃ 355

with probability at least 1− 2δ|P|. 356

In the above results, the (pseudo)game and sample size 357

at each nature node h are both held fixed; the probability is 358

only over the random samples themselves. Thus, if running 359

an algorithm that incrementally expands nodes in a pseu- 360

dogame, the samples should in principle be re-drawn every 361

time G̃ changes. The factor of 2|P| is not bothersome since 362

|P| ≤ N surely, so this incurs at most a constant factor in 363

the sample complexity. Importantly, the sample complexity 364

depends only on the size and structure of the pseudogame 365

G̃, not on whatever full game G that G̃ may be a trunk of. 366

In the rest of the paper, both for simplicity and to allow 367

discussion of the case of unbounded payoffs, we will not 368

deal with sampling. Instead, we will assume that the exact 369

nature action distribution is given by the black-box oracle 370

when a nature node is reached. 371

6 The zero-sum case 372

Our results so far have been valid for n-player general-sum 373

games unless otherwise stated. In this section we focus on 374

two-player zero-sum games, where one can hope3 to perhaps 375

efficiently find small certificates. A two-player game is zero- 376

sum if u1 = −u2. In this case, we refer to a single utility 377

function u; it is understood that player 2’s utility function is 378

−u. In zero-sum games, all Nash equilibria have the same 379

expected value; this is called the value of the game, and we 380

denote it by u∗. The exploitability of an opponent strategy 381

σ−i for player i is then |u∗(σ−i)− u∗|. 382

6.1 Certificates in zero-sum games 383

In the zero-sum case, we use a slightly different notion of 384

ε-equilibrium of a pseudogame, which will make the subse- 385

quent results more precise. 386

Definition 6.1. A two-player pseudogame (G̃, α, β) is zero- 387

sum if α2 = −β1 and β2 = −α1. 388

As alluded to above, in this situation, we will drop the 389

subscripts, and write α and β to mean α1 and β1. In partic- 390

ular, (G̃, α) and (G̃, β) are zero-sum games. 391

Definition 6.2. An ε-Nash equilibrium of a two-player zero- 392

sum pseudogame (G̃, α, β) is a strategy profile (x∗, y∗) for 393

which β∗(y∗)− α∗(x∗) ≤ ε. 394

In this sense, ε is the sum of the exploitabilities of both 395

players’ strategies. These are related to Definition 3.2 as fol- 396

lows: 397

3In the general-sum setting, finding an approximate Nash equi-
librium is PPAD-complete, even for two players (Rubinstein 2016),
so we do not hope to devise certificate-finding algorithms for that
case.



Proposition 6.3. Any ε-NE in the sense of Definition 6.2 is398

an ε-NE in the sense of Definition 3.2.399

Proposition 6.4. Any ε-NE in the sense of Definition 3.2 is400

a 2ε-NE in the sense of Definition 6.2.401

Let (G̃, α, β) be a pseudogame. Let (x∗, y∗) be a Nash402

equilibrium of the game (G̃, α), and (x∗, y∗) be a Nash equi-403

librium of (G̃, β). We will call the pair of strategies (x∗, y
∗)404

a pessimistic equilibrium of (G̃, α, β) since both players are405

playing as if their utilities are as bad as possible. Similarly,406

we will call (x∗, y∗) an optimistic profile4.407

By definition, the pessimistic equilibrium is an ε-NE of408

(G̃, α, β), where ε = β∗ − α∗. This gives us an algorithm409

for finding the best certificate from a given trunk, that runs410

in time polynomial in the size of the trunk: to get a strat-411

egy for P1 (the maximizer player), solve the game (G̃, α),412

and to get a strategy for P2, solve (G̃, β). Since the zero-413

sum game solver is used strictly as a subroutine, any solver414

of choice may be used: for example, a linear program (LP)415

solver with the sequence-form LP (Koller, Megiddo, and von416

Stengel 1994; Zhang and Sandholm 2020), modern variants417

of CFR (Brown and Sandholm 2019a, 2017a; Brown, Kroer,418

and Sandholm 2017; Brown and Sandholm 2015a), or first-419

order methods (Hoda et al. 2010; Kroer et al. 2020). If the420

solver only finds an ε′-equilibrium of the game it is solving,421

the result is a certificate for (ε+ 2ε′)-equilibrium.422

6.2 Lower bounds423

Since solving zero-sum games can be done efficiently, there424

is some hope that small certificates can also be found effi-425

ciently. Another goal may be to find a certificate efficiently,426

say, in time polynomial in the size of the smallest certificate427

of a given game. Unfortunately, these are both impossible:428

Theorem 6.5 (Hardness of approximating the smallest cer-429

tificate). Assuming P 6= NP, there is no poly(N, 1/ε)-time430

algorithm that, given the game tree of a zero-sum game with431

N nodes, outputs the smallest ε-certificate of the game to432

better than a Θ(logN) factor of approximation.433

Theorem 6.6. There is no algorithm for zero-sum game434

solving in the black-box setting, even assuming bounded435

branching factor, with runtime subexponential in the size of436

the smallest certificate.437

These hardness results have slightly different flavors and438

consequences. The hardness in Theorem 6.5 comes from439

the imperfect information: in the perfect-information set-440

ting, the task can be done with a variant of alpha-beta search441

in linear time. Further, in practice, we usually do not care442

about finding the smallest certificate, as long as we can ef-443

ficiently find one of reasonable size. The hardness in Theo-444

rem 6.6 is more fundamental: it comes from the fact that we445

cannot assume access to any reasonable heuristic of where446

to explore; thus, we may explore the optimal path of play447

last in the worst case, resulting in a large certificate.448

4The pessimistic equilibrium is an equilibrium of the pseu-
dogame. The optimistic profile may not be, hence the difference
in naming.

6.3 An algorithm for solving black-box games 449

Despite the difficulties presented by Theorems 6.5 and 6.6, 450

we present an algorithm for finding a certificate in a zero- 451

sum game in the black-box setting, with nontrivial provable 452

guarantees. For now, we will assume that the game G̃ has 453

bounded payoffs; later we will relax this assumption. 454

Algorithm 6.7 Finding a certificate in a two-player zero-
sum game

1: start with a pseudogame (G̃, α, β) that has only a root
node.

2: loop
3: solve (G̃, α) and (G̃, β) with an LP solver to obtain

equilibria (x∗, y∗) and (x∗, y∗).
4: expand all pseudoterminal nodes of G̃ that appear in

the support of (x∗, y∗).
5: (if there are none, stop and output G̃ and the pes-

simistic equilibrium (x∗, y
∗).)

We use LP for the game solves in Line 3, for three rea- 455

sons. First, LP5 results in an exact solution (at least up to 456

numerical tolerances), which is desirable because the sup- 457

port of the solution is relevant to Line 4; iterative solvers 458

such as CFR typically return fully mixed solutions. Second, 459

only a small number of changes are made to the LP with 460

each node expanded, so LP algorithms that can be warm 461

started, such as primal or dual simplex, can be efficient in 462

practice. Third, it will allow us to adapt this algorithm to the 463

case of unbounded payoffs, which we will see later; again, 464

CFR cannot do that. 465

From the discussion in Section 6.1, we know that this al- 466

gorithm will always output an 0-certificate. If we want an 467

ε-certificate for ε > 0, we can also simply terminate the al- 468

gorithm when β∗−α∗ < ε. We now prove an important fact 469

about Algorithm 6.7. 470

Theorem 6.8. A pseudogame has a 0-Nash equilibrium if 471

and only if it has an optimistic profile with no pseudotermi- 472

nal node in its support. 473

The “only if” direction guarantees that Line 4 does not ter- 474

minate the algorithm unless a 0-certificate has been found. 475

The “if” direction guarantees a weak form of “this algo- 476

rithm will not waste work”: modulo the uniqueness of the 477

optimistic profile6, the algorithm stops exactly when it has 478

found a 0-certificate. This is not trivial: other protocols such 479

as “expand all pseudoterminal nodes appearing in the sup- 480

port of at least one player in the pessimistic equilibrium” 481

fail to satisfy the “if” direction. 482

The algorithm has no runtime bound as a function of the 483

size of the smallest certificate of G, even assuming bounded 484

5using either an exact method such as simplex, or an interior-
point method such as barrier with crossover

6When the optimistic profile is not unique, the algorithm may
waste work: for example, there may be one equilibrium which has
support over pseudoterminal nodes and one which does not, the al-
gorithm may pick the former and continue expanding nodes, mak-
ing an unnecessarily big (but still correct) certificate.



branching factor: indeed, if G is infinite, it is even possible485

for the algorithm to run indefinitely, even when a finite-sized486

certificate exists. One way to fix this without losing more487

than a constant factor in efficiency is to, in addition to Line 4,488

also always expand the shallowest strictly pseudoterminal489

node of G̃ at each iteration. This way, a certificate with d490

nodes has depth at most d, and thus will be generated after491

at most after O(bd) expansions (where b is a bound on the492

branching factor of the game), matching the lower bound of493

Theorem 6.6.494

6.4 Handling unbounded payoffs495

In infinite games with unbounded payoffs, it is possible for496

the games (G̃, α) and (G̃, β) to have infinite-magnitude util-497

ity on some nodes. For example, (G̃, β) may have payoff498

+∞ on some nodes (but not −∞). We now show how to499

adapt Algorithm 6.7 for such situations. Assume WLOG500

that we are solving (G̃, β); i.e. it is possible for payoffs501

to be +∞ but not −∞ (for (G̃, α), swap the players).502

Call a P2-sequence bad if its support (over terminal nodes)503

contains a node of utility +∞. Assume that it is possi-504

ble for P2 to avoid all bad sequences; otherwise, the game505

has value +∞. Consider the sequence-form bilinear saddle-506

point problem (Koller, Megiddo, and von Stengel 1994)507

for (G̃, β) (Equation (6.9)) and its equivalent LP (Equa-508

tion (6.10)):509

max
x≥0

min
y≥0

xTAy s.t. Bx = b, Cy = c, x, y ≥ 0 (6.9)

max
x≥0,z

cT z s.t. Bx = b, CT z ≤ ATx. (6.10)

Here A is the payoff matrix, which may contain infinite en-510

tries. Then, the main idea is to remove any constraint cor-511

responding to bad P2-sequences, and solve the resulting LP512

(which now by construction contains no infinite entries and513

is thus well formed), for a Nash equilibrium solution x. The514

problem is that x may not be a true Nash equilibrium of515

(G̃, β), since it is possible for P1 to end up avoiding nodes516

of utility +∞, which could allow P2 to best respond by ac-517

tually playing toward a bad sequence.518

Let V ∗(s) denote the value that P2 receives by playing519

a best response to x starting at a P2 infoset or sequence s.520

Let V (s) denote the same, except while forcing P2 to avoid521

bad sequences. Obviously, V ∗ ≤ V . Consider the following522

recursive algorithm, which we run on every P2-root infoset523

I:524

Algorithm 6.11 CORRECT(I): Correcting a strategy in the
case of infinite reward

1: for each action a available to P2 do
2: if V ∗(Ia) < V (I) then
3: for every P1-sequence i such that Ai,Ia = +∞ do

xi ← xi + infinitesimal7
4: for every P2-infoset I ′ whose parent sequence is

Ia do CORRECT(I ′)

7This can be easily formalized by perturbing by ε, then taking

Call a pair of strategies a corrected optimistic profile if it 525

is the result of applying this procedure to both parts of an 526

optimistic profile. We can now make the following strength- 527

ening of Theorem 6.8: 528

Theorem 6.12. A pseudogame with possibly unbounded 529

payoffs has a 0-Nash equilibrium if and only if it has a cor- 530

rected optimistic profile with no pseudoterminal node in its 531

support. 532

Thus, to run Algorithm 6.7 in games with unbounded pay- 533

offs, it suffices to apply the correction algorithm to the opti- 534

mistic profile found in Line 3 before expanding nodes. 535

7 Experiments 536

We conducted experiments using the algorithm in Section 6 537

on the following common zero-sum benchmark games. 538

(1) A zero-sum variant of the search game Bošanskỳ and 539

Čermák (2015). 540

(2) k-rank Goofspiel. It is played as follows. At time t (for 541

t = 1, . . . , k), players place bids for a prize of value t. The 542

possible bids are the integers 1, . . . , k, and each player 543

must bid each integer exactly once. The player with the 544

higher bid wins the prize; if the bids are equal, the prize 545

is split equally. The winner of each round is made public 546

after each round, but the bids are not. The goal of each 547

player is to maximize the sum of the values of her prizes 548

won. In the perfect-information (PI) variant, P2 knows 549

P1’s bid while bidding, and bids are made public after 550

each round. This creates a perfect-information game in 551

which P2 has a large advantage, and in which we expect 552

a certificate of size O(
√
N). In the random variant, the 553

order of the prizes is randomized. 554

(3) k-rank limit Leduc poker. It is a small variant of limit 555

poker, played with one hole card and one community card, 556

and a deck with k ranks. The players are only allowed 557

to raise by a fixed amount, but can do so an unlimited 558

number of times. Thus, the possible payoffs in the game, 559

and the length of the game, are both unbounded. 560

We computed 0-certificates in all cases. For the LP solver, 561

we used Gurobi v9.0.0 (Gurobi Optimization, LLC 2019). 562

Results of experiments can be found in Table 1. In many 563

games, we found 0-certificates of size substantially smaller 564

than the number of nodes in the game, and the certificate size 565

as a fraction of the game size decreases as the game grows. 566

The results in Goofspiel align with the theoretical pre- 567

dictions: perfect-information games have very small certifi- 568

cates (basically
√
N nodes). In light of Proposition 4.1, it 569

also makes sense that certificates are smaller (relative to the 570

size of the game) when there is no randomness: randomness 571

simply increases the number of nodes in the game tree repre- 572

sented by any given pure strategy, so an equilibrium with the 573

same sparsity for the players now leads to a larger certificate. 574

ε sufficiently small. The strategy need not actually ever be con-
structed, so there is no need to formally discuss how small ε needs
to be; if coding this algorithm, we can simply store the indices of
infinitesimal entries.



Table 1: Experimental results. The minimal certificate is a certificate after removing all unnecessary nodes per Proposition 4.1.
Percentages are relative to game size. Leduc variants have infinite size; for them, “game size” reported is for the trunk with the
number of consecutive raises restricted to 12.

game size of game size of certificate size of minimal certificate
nodes infosets nodes infosets nodes infosets

search game 234,705 11,890 13,682 5.8% 532 4.5% 5,526 2.4% 379 3.2%

4-rank PI Goofspiel 2,229 1,653 275 12.3% 110 6.7% 141 6.3% 54 3.3%
5-rank PI Goofspiel 55,731 41,331 2,593 4.7% 957 2.3% 763 1.4% 288 0.7%
6-rank PI Goofspiel 2,006,323 1,487,923 21,948 1.1% 7,584 0.5% 4,438 0.2% 1,677 0.1%

4-rank Goofspiel 2,229 738 614 27.5% 117 15.9% 294 13.2% 58 7.9%
5-rank Goofspiel 55,731 9,948 11,415 20.5% 2,160 21.7% 8,518 15.3% 1,792 18.0%
6-rank Goofspiel 2,006,323 166,002 266,756 13.3% 15,776 9.5% 171,343 8.5% 12,135 7.3%

3-rank random Goofspiel 1,066 426 309 29.0% 92 21.6% 214 20.1% 65 15.3%
4-rank random Goofspiel 68,245 17,432 16,416 24.1% 3,270 18.8% 11,992 17.6% 2,335 13.4%
5-rank random Goofspiel 8,530,656 1,175,330 1,854,858 21.7% 241,985 20.6% 1,388,172 16.3% 185,946 15.8%

5-rank limit Leduc 197,736 13,920 26,306 13.3% 2,406 17.3% 12,923 6.5% 1,242 8.9%
9-rank limit Leduc 1,181,512 44,928 137,662 11.7% 6,811 15.2% 51,533 4.4% 2,891 6.4%
13-rank limit Leduc 3,578,472 93,600 337,312 9.4% 12,171 13.0% 105,769 3.0% 4,449 4.8%

In Leduc poker, no node involving more than 12 consec-575

utive raises was ever expanded in any size of game while576

searching for a certificate. This suggests that it is never op-577

timal for either player to play past this point, despite the578

fact that continuing to raise could in principle lead to an un-579

bounded payoff. This phenomenon allows our algorithm to580

find a finite-sized 0-certificate, thus completely solving the581

game in a reasonably efficient manner, even though it has582

infinite size.583

8 Conclusions and future research584

We presented a notion of certificate for general extensive-585

form games that allows verification of exact and approx-586

imate Nash equilibria without expanding the whole game587

tree. We showed that small equilibria exist in some restricted588

classes of extensive-form game, but not all. We presented589

algorithms for both verifying a certificate and computing590

the optimal certificate given the currently-explored trunk of591

a game. Our experiments showed that many large or even592

infinite games have small certificates, allowing us to find593

equilibria while exploring a vanishingly small portion of the594

game.595

This paper opens many directions for future research:596

(1) Develop further the ideas of Section 5 for the case of un-597

known nature distributions. For example, what is the best598

way to balance sampling, game tree exploration, and equi-599

librium finding?600

(2) Seek algorithms for finding certificates that give stronger601

guarantees of optimality than Theorem 6.12, especially in602

the case of infinite games with unbounded utilities.603

(3) Seek algorithms with stronger guarantees than that im-604

plied by Proposition 4.1 for verifying the Nash gap of a605

given strategy profile; for example, is it possible to eas-606

ily construct the smallest trunk for which a given σ is an 607

ε-equilibrium? 608

Broader Impacts 609

The techniques have broad applicability. Furthermore, the 610

paper opens up additional important research directions. 611

Improving the strategic capabilities of people and com- 612

panies will typically (but not always) improve systemwide 613

good as the players will be able to better reach win-win solu- 614

tions. In zero-sum games this is not the case because the size 615

of the “cake” is constant, so there are winners and losers. In 616

both the general case and the zero-sum case, AI tools like 617

the ones in this paper can help elevate less educated and less 618

experienced players up to the same level as expert players, 619

thereby making the distribution of value more fair. 620

A potential downside is that if the technology were only 621

available to the privileged, that could increase unfairness. 622
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Moravčı́k, M.; Schmid, M.; Burch, N.; Lisý, V.; Morrill, D.; 728
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A Proofs774

A.1 Proposition 3.5775

u∗i (σ−i)− ui(σ) ≤ β∗i (σ−i)− αi(σ) ≤ ε.

A.2 Proposition 4.1776

By definition, it is impossible to reach any pseudoterminal node of G̃ by changing only a single player’s strategy. Thus, for777

any player i, we have β∗i (σ−i) − α(σ) ≤ u∗i (σ−i) − u(σ) ≤ ε. (the first inequality may not be an equality, because the best778

response β∗i (σ−i) is taken in the pseudogame, and u∗i is taken in the full game, where there is more flexibility.779

A.3 Theorem 4.5780

Lemma A.1. In every ε-NE of G, the entropy of P1’s strategy is at least T (1− 2ε) bits.781

Proof. Let σ1 be any P1 strategy in ε-equilibrium, and let HT be the entropy over terminal nodes when P1 plays σ1 and P2782

plays uniformly at random. Let UT be the number of rounds that P2 loses if she best responds to P1. Since σ1 is an ε-NE783

strategy, we have UT ≥ T (1/2− ε). We will show that HT ≥ 2UT + T , which will complete the proof.784

Proceed by induction on T . For T = 1, the claim follows from the inequality h(p) ≥ 2 min(p, 1 − p), which is true for all785

p ∈ [0, 1], where h is the binary entropy function.786

In the inductive case, suppose that, at the top information set, P1 plays strategy x = [p, q] (i.e. heads with probability p, and787

tails with probability q. Let H ′ ∈ R2×2 be the matrix whose ij-entry is the conditional entropy over terminal nodes after P1788

plays i and P2 plays j in the root information set. Similarly, let U ′ be the matrix of conditional remaining expected number789

of rounds lost, not including this round, for player 2. Note that the utility matrix of the overall game, assuming that P2 plays790

correctly in later rounds, is A := U ′ + I . By IH, H ′ ≥ 2U ′ + T − 1 element-wise. Further, P2’s move in this information set791

does not affect the future of the game, since P1 does not learn P2’s move, and P2’s move does not otherwise affect her future792

optimal decisions. That is, U ′y is the same for all (normalized) y. Let y be the uniform random strategy for player 1, and y∗ be793

a best response for player 1. Then we have:794

H = 1 + h(p) + xTH ′y

≥ T + h(p) + 2xTU ′y

= T + h(p) + 2xTU ′y∗

= T + h(p) + 2xTAy∗ − 2xT y∗

= T + h(p) + 2xTAy∗ − 2 min(p, 1− p)

and we are once again done by the inequality h(p) ≥ 2 min(p, 1− p).795

The restriction on P2’s strategy is necessary: indeed, since P1 has only 2T pure strategies, there are sparse ε-NE strategies796

for P2 supported on only O(T/ε2) pure strategies.797

Somewhat surprisingly, this proposition becomes false if P1 learns what P2 played in each round. Indeed, the P1 strategy798

“play heads if your number of losses minus number of wins is εT , and uniformly at random otherwise” is (for large T ) an799

ε-equilibrium with basically T bits of entropy, since if P2 plays uniformly at random, with very good probability their score800

delta will never exceed εT . However, despite having low entropy, this strategy has a very large support over terminal nodes.801

Corollary A.2. In every ε-NE of this game, for every t ≥ T/2, the first t rounds of P1’s strategy have at least t(1− 4ε) bits of802

entropy.803

Corollary A.3. Let ε ≤ 1/16. In every ε-NE of this game, for every t ≥ T/2, P1’s strategy assigns probability at least 2−t to804

at least half of her pure strategies at round t.805

Proof. Let Z be a random variable for P1’s selected strategy, and E be the event that Z is among the half least likely pure806

strategies to be picked.807

H(Z) = H(Z,E) = Pr[E]H(Z|E) + Pr[¬E]H(Z|¬E) +H(E) ≤ 2tp

2

t

2
+
t

2

where H is the entropy. We know from above that H(Z) ≥ t(1− 4ε), so the claim follows by solving for p.808

We now prove Theorem 4.5. The proof acts like a partial converse to Proposition 4.1 for this game. Let ((G̃, α, β), σ) be an809

ε-certificate, and let Z ′ be the set of terminal nodes in G̃. Let u be the assignment of utilities induced by P2 playing uniform810



random at every decision point outside G̃ (it does not matter at this point how P1 plays). Let σ′i be the uniform random strategy 811

for player i. Then: 812

β2(σ1, σ
′
2) ≤ β∗2(σ1) ≤ u2(σ) + ε ≤ u2(σ′1, σ2) + 2ε = u2(σ1, σ

′
2) + 2ε. (A.4)

For simplicity of notation, for any terminal node z of G̃, let r(z) be the number of rounds remaining in the game. Then note 813

that β(z) − u(z) = r(z)/2T for every z. Now suppose for contradiction that G̃ has fewer than n := 22T (1−16ε)−2 terminal 814

nodes. Consider the level of the game tree after both players have made t := (1 − 16ε)T moves; in other words, the level at 815

which r(z) = 16εT . This level has 4n nodes, so certainly G̃ must contain at most 1/4 of the nodes at this level. Let S be a set 816

of half of the nodes of G at level t to which P1 assigns probability at least 2−t. Then G̃ contains at most half the nodes in S. 817

Now observe that 818

β2(σ1, σ
′
2)− u2(σ1, σ

∗
2) =

1

2T
E
z
r(z)

≥ 1

2T

∑
z∈S\G̃

σ1(z)σ∗2(z)r(z)

≥ 1

2T

1

2
22t2−t2−tr(z) = 4ε

which contradicts (A.4). 819

A.4 Theorem 4.2 820

We first introduce some terminology that will be useful in this section. The realization plan corresponding to a strategy σi is 821

the vector of reach probabilities σi(s) for each sequence s for player i. The constraints on valid realization plans are linear, and 822

the payoff of a two-player zero-sum game can be expressed as a bilinear form xTAy, where x and y are the realization plan 823

vectors for the two players, and A is a payoff matrix depending only on the terminal node values (Koller, Megiddo, and von 824

Stengel 1994). This bilinear program is known as the sequence form of a game. 825

Lemma A.5. Let x be any P1 strategy. Let x̂ be a strategy profile defined by mixing uniformly at random over a multiset of k 826

independent sampled pure strategies from x, where 827

k ≥ D2

2ε2
log

2N

δ
.

and D is the maximum support size over terminal sequences of any P2 pure strategy. Then with probability 1 − δ, for any 828

strategy profile y, we have |u2(x̂, y)− u2(x, y)| ≤ ε. 829

Proof. We follow basically the same idea as the proof in Lipton, Markakis, and Mehta (2003). Let A be the P2 sequence-form 830

payoff matrix, restricted to those rows and columns corresponding to terminal sequences. By Hoeffding, we have 831

Pr
[
|(Ax̂)i − (Ax)i| ≥

ε

D

]
≤ 2e−2kε

2/D2

≤ δ

N
by picking k as above. Taking a union bound over the at most N sequences for P2, we have ‖Ax̂−Ax‖∞ ≤ ε/D with 832

probability 1− δ. Now select an x′ for which this is true. Then by Hölder’s inequality, for any pure realization plan y, we have 833∣∣yTAx̂− yTAx∣∣ ≤ ‖y‖1‖Ax̂−Ax‖∞ ≤ ε.
where the last inequality follows because ‖y‖1 ≤ D. Now since

∣∣yTAx̂− yTAx∣∣ is convex in y, and the pure realization plans 834

are the vertices of the polytope of all realization plans, we are done. 835

Theorem 4.2 now follows by applying the lemma to an equilibrium strategy x with any δ < 1. 836

A.5 Theorem 5.1 837

Sampling this number of samples at each nature node h is at least as good as sampling (D2/2ε2) log(2N/δ) pure nature 838

strategies. The proposition now follows by applying Lemma A.5 to the game in which the game tree is the same as G, P1 is 839

nature, P2 controls every actual player in G (and thus has perfect information), and the P2 utility function is u. 840

A.6 Corollary 5.2 841

By a union bound over the |P| players and the two utility functions αi and βi for each player, we have that with probability at 842

least 1− 2δ|P |, for every i and every deviation σ′i, |α̂i(σ′i, σ−i)− αi(σ′i, σ−i)| ≤ ε and
∣∣∣β̂i(σ′i, σ−i)− βi(σ′i, σ−i)∣∣∣ ≤ ε. 843

Let α̂i(σ) and β̂i(σ) for a given strategy σ be the utilities of σ under the approximated version of G̃. Let σ̂∗i be a best response 844

for player i in the approximated version of G̃, and let σ∗i be a best response in G̃ itself. Then we have: 845

β∗i (σ−i) ≤ β̂i(σ∗i , σ−i) + ε ≤ β̂∗i (σ−i) + ε ≤ α̂(σ) + ε+ ε′ ≤ α(σ) + 2ε+ ε′

for every player i. 846



A.7 Proposition 6.3847

Let (x, y) be an ε-NE in the sense of Definition 6.2. Then848

β∗(y)− α(x, y) ≤ β∗(y)− α∗(x) ≤ ε and β(x, y)− α∗(x) ≤ β∗(y)− α∗(x) ≤ ε.

A.8 Proposition 6.4849

Let (x, y) be an ε-NE in the sense of Definition 3.2. Then850

β∗(y)− α∗(x) ≤ β∗(y)− α(x, y) + β(x, y)− α∗(x) ≤ 2ε.

A.9 Theorem 6.5851

We reduce from the SET-COVER problem, which is known to be NP-hard to better than a Θ(log n) factor (Raz and Safra852

1997). In SET-COVER, we are given a universe U = {1, . . . , n} and a collection of m sets S = {S1, . . . , Sm} whose union is853

U , and our task is to find the smallest subset of S whose union is still U .854

Consider the following game: P2 starts by choosing to either play or leave. If P2 leaves, then the game immediately termi-855

nates, and P1 gets value 1/2m. If P2 chooses to play, then P1 chooses an index i = 1, . . . ,m. Then, P1 is given m consecutive856

opportunities to leave the game (and immediately lose), should they choose. (The sole purpose of this is to inflate the size of857

the certificate.) After this, P2, without knowing the i, chooses an element u ∈ U . P1 gets value 1 if u ∈ Si, and 0 otherwise.858

This game has poly(m,n) nodes, and its value (for P1) is exactly 1/2m, since P1 can force P2 to leave by playing uniformly859

at random (and not choosing to lose). We now claim that, for ε < 1/2m, finding an ε-certificate of size Θ((m + n)k) is860

equivalent to finding a set cover of size k, which completes the proof.861

If R ⊆ S is a set cover of size k, then consider the trunk created by expanding exactly those P2 decision nodes where P1862

has played some set Si ∈ R. This creates a trunk of size Θ((m+ n)k). Even pessimistically, P1 can gain value 1/k ≥ 1/m by863

randomizing uniformly overR in this trunk; thus, P2 is forced to leave, and this is a 0-certificate.864

Conversely, suppose we had an ε-certificate, for ε < 1/2m, constructed from some tree G̃. Let R be the collection of sets865

Si ∈ S for which P2’s decision node after P1 plays Si has been expanded, and let k = |R|. Then the trunk has size at least866

Ω((m + n)k). If R is not a set cover, then there is some u ∈ U outside the union of sets in R. If P1 plays u, then she gains867

optimistic value 0. Thus, since ε < 1/2m,R must be a set cover.868

A.10 Theorem 6.6869

Consider the family of two-player games in which there is a target string x ∈ {0, 1}n, and play proceeds as follows: Player 1870

chooses, bit-by-bit, a string y ∈ {0, 1}n. If x = y, then Player 1 wins; otherwise, Player 2 chooses whether to win or lose. The871

smallest certificate in this game has size Θ(n), and consists of the path of play to y. However, there is no algorithm, randomized872

or deterministic, that will find the correct node y without first expanding Ω(2n) other nodes.873

A.11 Theorem 6.8874

(⇐) Suppose G̃ has no 0-certificate. Let (x∗, y∗) be an optimistic profile. Then875

α(x∗, y∗) ≤ α∗(y∗) < β∗(x∗) ≤ β(x∗, y∗).

where the middle inequality is strict since G̃ has no 0-certificate, But then α(x∗, y∗) 6= β(x∗, y∗); i.e., there is some uncertainty876

as to the value of the strategy profile (x∗, y∗); i.e., there is a nonzero probability that a pseudoterminal node is reached.877

(⇒) Now suppose G̃ has a 0-certificate, and call it (x∗, y
∗). Clearly, (x∗, y

∗) cannot contain in its support any pseudoterminal878

node. We claim that (x∗, y
∗) is also an optimistic profile of G̃, which completes the proof. Indeed, we have879

α∗(x∗) ≤ β∗(x∗) ≤ β∗(y∗) and α∗(x∗) ≤ α∗(x∗) ≤ β∗(y∗)

But all of these must actually be equalities, since α∗(x∗) = β∗(y∗) for a 0-certificate. Thus, x∗ is a Nash equilibrium strategy880

in (G̃, β), and y∗ is a Nash equilibrium strategy in (G̃, α), which is what we needed to show.881

A.12 Theorem 6.12882

(⇐) The correction algorithm adds infinitesimal amounts to sequences such that P2 is then forced to never play to any bad883

sequence that could be used to achieve value better than V (I). Thus, corrected equilibrium is actually an ε-equilibrium for884

infinitesimal ε, and the proof of Appendix A.11 applies verbatim.885

(⇒) A pessimistic strategy will never be corrected, since a pessimistic player never has a terminal node of utility +∞. Thus,886

again, the proof of Appendix A.11 applies verbatim.887


