
Sparsified Linear Programming for Zero-Sum Equilibrium Finding

Brian Hu Zhang,1 Tuomas Sandholm1,2,3,4

1 Computer Science Department, Carnegie Mellon University
2 Strategic Machine, Inc.

3 Strategy Robot, Inc.
4 Optimized Markets, Inc.

Abstract
Computational equilibrium finding in large zero-sum1

extensive-form imperfect-information games has led to sig-2

nificant recent AI breakthroughs. The fastest algorithms for3

the problem are new forms of counterfactual regret minimiza-4

tion (Brown and Sandholm 2019). In this paper we present a5

totally different approach to the problem, which is competi-6

tive and often orders of magnitude better than the prior state7

of the art. The equilibrium-finding problem can be formulated8

as a linear program (LP) (Koller, Megiddo, and von Stengel9

1994), but solving it as an LP has not been scalable due to10

the memory requirements of LP solvers, which can often be11

quadratically worse than CFR-based algorithms. We give an12

efficient practical algorithm that factors a large payoff matrix13

into a product of two matrices that are typically dramatically14

sparser. This allows us to express the equilibrium-finding15

problem as a linear program with size only a logarithmic fac-16

tor worse than CFR, and thus allows linear program solvers17

to run on such games. With experiments on poker endgames,18

we demonstrate in practice, for the first time, that modern19

linear program solvers are competitive against even game-20

specific modern variants of CFR in solving large extensive-21

form games, and can be used to compute exact solutions un-22

like iterative algorithms like CFR.23

1 Introduction24

Imperfect-information games model strategic interactions25

between agents that do not have perfect knowledge of26

their current situation, such as auctions, negotiations, and27

recreational games such as poker and battleship. Linear28

programming (LP) can be used to solve—that is, to find29

a Nash equilibrium in—imperfect-information two-player30

zero-sum perfect-recall games (Koller, Megiddo, and von31

Stengel 1994). However, due mostly to memory usage32

(see e.g., Zinkevich et al. 2007 or Brown and Sandholm33

2019), it has generally been thought of as impractical for34

solving large games. Thus, a series of other techniques35

has been developed for solving such games. Most promi-36

nent among these is the counterfactual regret minimization37

(CFR) family of algorithms (Zinkevich et al. 2007). These38

algorithms work by iteratively improving both player’s39

strategies until their time averages converge to an equilib-40

rium. They have a worst-case bound of O(1/ε2) iterations41

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

needed to reach accuracy ε, and more recent improvements, 42

most notably CFR+ (Tammelin 2014) and discounted CFR 43

(DCFR) (Brown and Sandholm 2019) mean that algorithms 44

from the CFR family remain the state of the art in practice 45

for solving large games, and have been used as an impor- 46

tant part of the computational pipelines to achieve super- 47

human performance in benchmark cases such as heads-up 48

limit (Bowling et al. 2015) and no-limit (Brown and Sand- 49

holm 2017) Texas hold’em. 50

Several families of algorithms have theoretically faster 51

convergence rates than those of the CFR family. First-order 52

methods (Hoda et al. 2010; Kroer et al. 2015) have a the- 53

oretically better convergence guarantee of O(1/ε) (or even 54

log(1/ε) with a condition number (Gilpin, Peña, and Sand- 55

holm 2012)), but in practice perform worse than the newest 56

algorithms in the CFR family (Kroer, Farina, and Sandholm 57

2018; Brown and Sandholm 2019). Standard algorithms for 58

LP are known that converge at rate O(log(1/ε)), but for the 59

most part, these algorithms require storage of the whole pay- 60

off matrix explicitly, which the CFR family does not, and 61

often require superlinear time per iteration (with respect to 62

the number of nonzero entries of the LP constraint matrix), 63

which is prohibitive when the game is extremely large. 64

In this paper we investigate how to reduce the space re- 65

quirements of LP solvers by factoring the possibly dense 66

payoff matrix of an extensive-form game. A long body of 67

work investigates the problem of decomposing, or factoring, 68

a given matrixA as the product of other matrices, with some 69

objective in mind. Studied objectives include the speedup of 70

certain operations, as in the LU or Cholesky factorizations, 71

and approximation of the matrix A in a certain norm, as in 72

the singular value decomposition (SVD). Our objective in 73

this work is sparsity: we investigate the problem of factoring 74

a matrixA into the product of two matrices U and V that are 75

much sparser than A. This differs from the usual low-rank 76

approximation in that the optimization objective is different 77

(0-norm, that is, number of non-zero entries, instead of the 78

2-norm, that is, the square root of sum of squares), and that 79

the matrices U and V might not be low rank (and in fact 80

in poker they will high rank that is linear in the number of 81

sequences in the game). 82

We are not aware of any prior application-independent 83

work that addresses this problem. The SVD approximates A 84

in the wrong norm for this purpose: 2-norm approximations 85



will in the general case have fully dense residual, which is86

not desirable. The body of work on sparse PCA (e.g., Zou87

and Xue 2018) focuses on low-rank sparse factorizations.88

That still mostly focuses on 2-norm approximations, and the89

runtime of the algorithm usually scales with the rank of the90

factorization as well as the size of A. In our cases, an opti-91

mal factorization may have high or even full rank (and yet92

be sparse), and our matrices are large enough that quadratic93

(or worse) dependence on ‖A‖0, which is often seen in these94

algorithms, is unacceptable. Our goal is to find such a factor-95

ization efficiently. Neyshabur and Panigrahy (2013) address96

the same problem, but restrict their attention to matrices that97

are known a priori to be the product of sparse matrices with98

entries drawn independently from a nice distribution. This99

is not the case in our setting. Richard, Obozinski, and Vert100

(2014) attack a related but still substantially different prob-101

lem, of finding a sparse factorization when we know a priori102

a good bound on the sparsity of each row or column of the103

factors. This, too, is not true in our setting: no such bound104

may even exist, much less be known.105

Our main technical contribution is a novel practical ma-106

trix factorization algorithm that greatly reduces the size of107

the game payoff matrix in many cases. This matrix factor-108

ization allows LP algorithms to run in far less memory and109

time than previously known, bringing the memory require-110

ment close to that of CFR. We demonstrate in practice that111

this method can reduce the size of a payoff matrix by mul-112

tiple orders of magnitude, yielding improvements in both113

the time and space efficiency of solving the resulting LP.114

This makes our approach—automated matrix sparsification115

followed by LP—superior to domain-independent versions116

of the fastest CFR variant. If high accuracy is desired, our117

domain-independent approach in many cases outperforms118

even a highly customized poker-specific implementation of119

the fastest CFR variant (Brown and Sandholm 2019).120

We show experiments with the primal simplex, dual sim-121

plex, and the barrier method as the LP solver. The barrier122

method runs in polynomial time but each iteration is heavy123

in terms of memory and time. For that reason, we present124

techniques that significantly speed up a recentO(log2(1/ε))125

LP algorithm (Yen et al. 2015) that has iteration time and126

memory linear in the number of nonzero entries in the127

constraint matrix, and show experiments with that as well.128

Our experiments show interesting performance differences129

among the LP solvers as well.130

2 Preliminaries131

Extensive-form games. We study the standard represen-132

tation of games which can include sequential and simulta-133

neous moves, as well as imperfect information, called an134

extensive-form game. It consists of the following. (1) A set135

of players P , usually identified with positive integers. Ran-136

dom chance, or “nature” is also considered a player, and will137

be referred to as player 0. (2) A finite tree H of histories or138

nodes, rooted at some initial state ∅ ∈ H . Each node is la-139

beled with the player (possibly nature) who acts at that node.140

The set of leaves, or terminal states, in H will be denoted141

Z. The edges connecting any node h ∈ H to its children142

are labeled with actions. (3) For each player i ∈ P , a utility 143

function ui : Z → R. (4) For each player i ∈ P , a partition 144

of the nodes at which player i acts into a collection Ii of 145

information sets. In each information set I ∈ Ii, every pair 146

of nodes h, h′ ∈ I must have the same set of actions. (5) For 147

each node h at which nature acts, a distribution σ0(h) over 148

the actions available that node. 149

For any history h ∈ H and any player i ∈ P , the sequence 150

h[i] of player i at node h is the sequence of information sets 151

reached and actions played by player i on the path from the 152

root node to h. The set of sequences for player i is denoted 153

Si. A player i has perfect recall if h[i] = h′[i] whenever h 154

and h′ are in the same information set I ∈ Ii. In this work, 155

we will focus our attention on two-player zero-sum games 156

of perfect recall; i.e., games in which P = {1, 2}, u1 = 157

−u2, and both players have perfect recall. For simplicity of 158

notation, the opponent of player i will be denoted −i. 159

A behavior strategy (hereafter simply strategy) σi for 160

player i is, for each information set I ∈ Ji at which player 161

i acts, a distribution σi(I) over the actions available at that 162

infoset. When an agent reaches information set I , it chooses 163

an action according to σi(I). A pair (σ1, σ2) of behavior 164

strategies, one for each player, is a strategy profile. The 165

reach probability πσi (h) is the probability that node hwill be 166

reached, assuming that player i plays according to strategy 167

σi, and all other players (including nature) always choose 168

actions leading to h when possible. This definition extends 169

to sets of nodes or to sequences by summing the reach prob- 170

abilities. 171

The best response value BRV(σ−i) for player i against 172

an opponent strategy σ−i is the largest achievable value; i.e., 173

in a two-player game, BRV(σ−i) = maxσi
ui(σi, σ−i). A 174

strategy σi is an ε-best response to opponent strategy σ−i if 175

ui(σi, σ−i) ≥ BRV(σ−i) − ε. A strategy profile σ is an ε- 176

Nash equilibrium if its Nash gap BRV(σ2) + BRV(σ1) is at 177

most ε. Best responses and Nash equilibria are respectively 178

0-best responses and 0-Nash equilibria. The exploitability 179

exp(σi) of a strategy is how far away σi is away from a Nash 180

equilibrium: exp(σi) = BRV(σi) − BRV(σ∗i ) where σ∗i is 181

a Nash equilibrium strategy for the player. In a zero-sum 182

game, the Nash value BRV(σ∗i ) is the same for every Nash 183

equilibrium strategy, so the exploitability is well-defined. 184

Equilibrium finding via linear programming. Nash 185

equilibrium finding in an extensive-form game can be cast 186

as an LP in the following fashion (von Stengel 1996). Con- 187

sider mapping behavior strategies σi to vectors x ∈ RSi by 188

setting x(s) = πσi (s) for every sequence s. We will refer 189

to vector x as a strategy. Under this framework, equilibrium 190

finding can be cast as a bilinear saddle point problem 191

max
x≥0

min
y≥0

xTAy s.t. Bx = b, Cy = c, x, y ≥ 0

where the matrices B and C satisfy ‖B‖0 = O(|S1|), 192

‖C‖0 = O(|S2|), and encode the constraints on the behavior 193

strategies x and y. A is the payoff matrix whose (i, j) entry 194

is the expected payoff for Player 1 when Player 1 plays to 195

reach sequence i and Player 2 plays to reach sequence j: 196

A =
∑
z∈Z π0(z)u1(z[1], z[2])ez[1]e

T
z[2] where ei is the ith 197

unit vector. The number of entries ‖A‖0 ≤ |Z|. Now taking 198



the dual of the inner minimization yields the LP199

max
x≥0,z

cT z s.t. Bx = b, CT z ≤ ATx. (2.1)

Expressed in any LP standard form, the constraint matrix has200

O(|S1|+ |S2|+ |Z|) nonzero entries in its constraint matrix.201

The LP can be solved with any standard solver.202

Sparse linear programming. Yen et al. (2015) give a203

generic algorithm for solving LPs in the standard form1204

min
xLP≥0

cTLPxLP s.t. ALPxLP ≤ bLP (2.2)

We first give a brief overview of the algorithm. We are inter-205

ested in LPs of the standard form (2.2) and their duals206

min
yLP≥0

bTLPyLP s.t. −ATLPyLP ≤ cLP

where A ∈ Rm×n. Consider the convex subproblem207

min
yLP≥0

bTLPyLP +
1

2η
‖yLP − ŷ‖22 s.t. −ATLPyLP ≤ cLP

for some given initial solution ŷ ∈ Rm and real number208

η > 0. The dual of this subproblem is209

min
x,z

cTLPxLP +
η

2
‖ALPxLP − bLP + zLP +

1

η
ŷ‖

2

2

s.t. xLP ≥ 0, zLP ≥ 0 (2.3)

The approach is shown in Algorithm 2.4. In Line 2, the so-210

lution to Problem (2.3) is computed via either a randomized211

coordinate descent (RC) or a projected Newton-CG (PG)212

algorithm; the details are not important here. The break-213

through of Yen et al. (2015) is an implementation of these in-214

ner loops in O(‖ALP‖0) time, rather than O(mn) or worse.215

At each iteration, x∗ is infeasible in the original problem216

since the quadratic regularization term in (2.3) does not pun-217

ish slightly infeasible solutions much at all. y∗ is infeasible218

since (x∗, z∗) is a suboptimal solution to (2.3). Thus, Algo-219

rithm 2.4 works with infeasible solutions to the LP, which220

must be projected back into the feasible space.

Algorithm 2.4 Augmented Lagrangian algorithm for solv-
ing linear programs (Yen et al. 2015)
Input: initial dual solution guess ŷ ∈ Rm, parameter η > 0
Output: primal-dual solution pair (x∗, ŷ)

1: loop
2: let (x∗, z∗) be an approximate solution to

Problem (2.3) given the current ŷ and η.
3: set ŷ ← ŷ + η(ALPx

∗ − bLP + z∗)
4: if necessary (as detailed by Yen et al. (2015)),

increase η by a constant factor

221

Theorem 2.5 (Theorem 3 in Yen et al. 2015). After222

O(log(1/ε)) outer iterations of Algorithm 2.4, each of which223

is run forO(log(1/ε)) inner iterations, we have d(ŷ, S) ≤ ε224

where S ⊆ Rm is the set of dual-optimal solutions and d is225

Euclidean distance.226

1We use the subscript LP everywhere due to the clash of vari-
able naming conventions between LP (where ALP is the constraint
matrix) and equilibrium finding (where A is the payoff matrix).

The O in the above theorem hides problem-dependent 227

constants such as condition numbers. This theoretical guar- 228

antee applies to the dual solution, and not the primal. Thus, 229

to find a primal-dual solution pair, in theory we must run 230

Algorithm 2.4 twice: on the primal (to find a dual solution) 231

and then the dual (to find a primal solution). In practice, the 232

primal solution from the first run already has extremely low 233

exploitability, so the second run would be unnecessary. 234

The rest of the paper covers our new contributions. 235

3 Adapting the O(log2(1/ε)) Sparse LP 236

Solver 237

In order to make the above LP algorithm fast for game solv- 238

ing, we had to make a modification and also deal with the 239

caveat of eternally infeasible solutions xLP and yLP. 240

3.1 Limiting the Number of Inner Iterations 241

Yen et al. (2015) give an implementation of their algorithm, 242

which they call LPsparse. In it, the inner loop runs until ei- 243

ther (1) it converges to a sufficiently small error tolerance, or 244

(2) some prescribed iteration limit is hit. The iteration limit 245

is set to increase exponentially every time it is hit. In prac- 246

tice, we found this to be far too aggressive, leading to inner 247

loops that take prohibitively long (an hour or more on two- 248

player no-limit Texas hold’em endgames). Thus, we instead 249

we only allow the number of inner iterations to grow linearly 250

with respect to the number of outer iterations. Since both the 251

outer and inner loop lengths are bounded by O(log(1/ε)) 252

in Theorem 2.5, this does not change the theoretical perfor- 253

mance guarantee of the algorithm, and it leads to a signifi- 254

cant speedup in practice. 255

3.2 Normalizing Infeasible Solutions 256

Algorithm 2.4 will output an infeasible solution pair. To re- 257

trieve a valid behavior strategy (feasible solution), we first 258

project into the positive orthant (i.e., zero out any negative 259

entries), and then normalize each information set in topo- 260

logical order, starting with the root. This results in a strategy 261

pair whose Nash gap we can evaluate. This normalization 262

step roughly maintains the guarantee of Theorem 2.5: 263

Theorem 3.1. Suppose xLP = (x, z) is an infeasible so- 264

lution to (2.1) such that d((x, z), S) ≤ ε, where S is the 265

set of optimal solutions to (2.1). Then the above normaliza- 266

tion yields a (feasible) strategy with exploitability at most 267

εn4‖A‖∞, where n is the total number of sequences be- 268

tween the two players. 269

A proof is in the appendix. The above bound is loose, 270

but it is unnecessary to improve it for the theoretical punch- 271

line: combining Theorems 2.5 and 3.1, we see that the LP 272

algorithm converges to a strategy with exploitability ε in 273

O(log2(1/ε)) inner iterations (where the O possibly hides 274

problem-dependent constants), assuming A is normalized 275

(i.e., ‖A‖∞ is fixed to, say, 1). 276

4 Sparse Factorization 277

In many games, the payoff matrixA is somewhat dense. This 278

occurs when the number of terminal game tree nodes, |Z|, is 279



large compared to the total number of sequences |S1|+ |S2|,280

that is, when a significant fraction of the sequence pairs281

represent valid terminal nodes. In most normal-form (a.k.a.282

matrix-form) games, A is fully dense, whereas in extensive-283

form games of perfect information, A is extremely sparse284

(because the number of terminal nodes equals the total num-285

ber of terminal sequences between the players). In most real286

games, the value of each entry Aij can be computed in con-287

stant time from the indices i and j alone based on the rules288

of the game, with a minimal amount of auxiliary memory,289

so A can be stored implicitly. In these cases, the sparse LP290

solver is at a disadvantage compared to the CFR family of291

algorithms. CFR can run with only implicit access to A. Its292

memory usage is thus O(|S1| + |S2|). LP solvers, on the293

other hand, require a full description of A, which here will294

have size O(|Z|). Our idea here is to make LP solvers prac-295

tical by carefully compressing A in a way that standard LP296

solvers can still handle.297

This leads to our main idea. If we can write A approx-298

imately as the product of two matrices; that is, A = Â +299

UV T , such that ‖U‖0 + ‖V ‖0 + ‖Â‖ 0 � ‖A‖0, then we300

can reformulate the LP (2.1) as301

max
x≥0,z,w

cT z

s.t. Bx = b, CT z ≤ V w + ÂTx, UTx = w

which, in standard form, has O(‖B‖0 + ‖C‖0 + ‖U‖0 +302

‖V ‖0+‖Â‖ 0) nonzero constraint matrix entries. In this for-303

mulation, we demand that not only U and V but also the304

residual Â be sparse. Depending on the density of A and the305

quality of the factorization Â + UV T , a good factorization306

could yield a quadratic improvement in both the time and307

space used by the LP solver.308

When A is low-rank, SVD would provide such a factor-309

ization. However, in many cases, A is not sparse and not310

well approximated by a low-rank factorization. Further, even311

whenA is low-rank, it is possible that, for example,A−uvT312

is a dense matrix (where uvT is the best rank-1 approxi-313

mation to A), which means that the algorithm would take314

Ω(mn) time and memory per iteration starting from the sec-315

ond outer iteration. We now give examples of matricesA for316

which finding a sparse factorization in our style is superior317

to finding a standard low-rank factorization (SVD), both in318

speed and resulting sparsity. An additional example can be319

found in the appendix.320

Example 1. Let A1 = uvT be a rank-one matrix, and let321

A be A1, except its lower-triangular half has been zeroed322

out. In general, A will now be full-rank, and the SVD of323

A will not be sparse. However, we can express A = UV T324

with ‖U‖0 = ‖V ‖0 = O(n log n) as follows. Set u0 = u325

except with its right half zeroed out, and set v0 = v ex-326

cept with its left half zeroed out. Then u0vT0 matches the327

upper-right quadrant of the matrix A, as shown in Figure 1.328

Moreover,A−u0vT0 is block diagonal, where the two blocks329

have size (n/2) × (n/2) and have the same structure as A330

itself. Thus, we may recursively factor the two blocks. The331

vectors u0 and v0 both have n/2 nonzero entries, so the total332

number of nonzero entries in the factorization is expressed333

by the recurrence S(n) = n + 2S(n/2), which solves to 334

S(n) = O(n log n). The matrices U and V will both have 335

Θ(n) columns. This example shows up in practice; the pay- 336

off matrix of poker endgames is block diagonal, where the 337

blocks have essentially this form.

Figure 1: Illustration of factorization in Example 1. The box
represents the matrixA. The upper right shaded regions rep-
resents its nonzero entries. The first iteration of the factor-
ization zeros out the orange shaded box.

338

Example 2. Let A0 = Â + UV T be a sparsely-factorable 339

matrix, and A = A0 + Â0 where the residual Â0 may be 340

high-rank, but is sparse. For example, perhaps A is A0 with 341

some entries around its diagonal zeroed out. Then A itself is 342

also sparsely factorable as A = (Â+ Â0) + UV T . This ex- 343

ample may seem trivial, but the SVD does not share a similar 344

property. For example, if Â0 is the matrix from Example 1, 345

andA0 is a general sparsely-factorable matrix (even the zero 346

matrix), then the SVD of A = A0 + Â0 will be dense, but A 347

will still have a sparse factorization. 348

5 Factorization Algorithm 349

In this section, we develop a general algorithm for factoring 350

an arbitrary sparse matrixA into the product of two possibly 351

sparser—and never denser—matrices. For this section, we 352

letm = |S1| and n = |S2| so thatA ∈ Rm×n. We follow the 353

general strategy used by the power iteration SVD algorithm 354

(e.g., Golub and Van Loan 1996). Algorithm 5.2 reduces the 355

factorization problem to solving, for a given matrix A, the 356

subproblem 357

argmin
u,v

∥∥A− uvT∥∥. (5.1)

Algorithm 5.2 Matrix factorization
Input: matrix A ∈ Rm×n, norm ‖·‖ on matrices
Output: matrices U ∈ Rm×r and V ∈ Rn×r

1: set U and V to be empty matrices
2: loop
3: u, v ← argminu,v

∥∥A− uvT∥∥
4: if ‖u‖0 > 1 and ‖v‖0 > 1 then
5: U ← [U, u]
6: V ← [V, v]
7: A← A− uvT

358

When ‖·‖ is the 2-norm, this problem can be solved using 359

the standard power iteration algorithm. However, when ‖·‖ 360

is the 0-norm, the problem is not so easy, and even using the 361

1-norm as a convex substitute for the 0-norm does not help: 362



Theorem 5.3 (Gillis and Vavasis 2018). When ‖·‖ is the 1-363

norm or 0-norm, the optimization problem (5.1) is NP-hard.364

We thus resort to an algorithm that may not yield the op-365

timal solution but works extremely well in practice. Algo-366

rithm 5.5 reduces (5.1) to solving the subproblem367

argmin
v

∥∥A− uvT∥∥ (5.4)

for a given matrix A and now a fixed vector u (the other368

subproblem is analogous by transposing A and flipping the369

roles of u and v). Again, when ‖·‖ is the 2-norm, and the370

optimizer of (5.4) is just v∗ = Au, so that the full algorithm371

is just standard power iteration algorithm for SVD.

Algorithm 5.5 Approximating argminu,v
∥∥A− uvT∥∥

Input: matrix A ∈ Rm×n
Output: vectors u, v.

1: make an initial guess for u
2: loop
3: v ← argminv

∥∥A− uvT∥∥
4: u← argminu

∥∥A− uvT∥∥
372

When ‖·‖ is instead the 0-norm, as seen in Algorithm 5.6,373

the optimizer of (5.4) is the vector v whose jth element is the374

mode of Aij/ui over all i for which ui 6= 0. Since the ob-375

jective function (5.1) cannot increase during the alternating376

minimization, and the objective values are integral, Algo-377

rithm 5.5 terminates in finitely many iterations at a local op-378

timum. Algorithm 5.2 is an anytime algorithm. In practice,379

we terminate it when the number of unsuccessful iterations380

(the number of iterations in which the condition on line 4 is381

false) exceeds the number of successful iterations.

Algorithm 5.6 Sparse matrix factorization subproblem
Input: matrix A ∈ Rm×n, vector u ∈ Rm
Output: vector v minimizing

∥∥A− uvT∥∥
0

1: q ← map from indices to lists of real numbers
2: for each i for which ui 6= 0 do
3: for each nonzero entry Aij in row i of A do
4: append Aij/ui to q[j]
5: v ← 0
6: for each j for which q[j] is nonempty do
7: M ← mode(q[j])
8: count← number of times M appears in q[j]
9: if count > ‖u‖0 − len(q[j]) then vj ←M

382

Algorithms 5.2-5.6 constitute an approximate algorithm383

for sparse matrix factorization. It is not exact for two rea-384

sons. First, Algorithm 5.2 is greedy: at each step of the loop,385

it chooses the immediate best rank-1 matrix and greedily ap-386

pends it to U and V . This is not always optimal, and in fact387

in the worst case can already doom the algorithm to have388

a trivial approximation factor Θ(n). Second, Algorithm 5.5389

is not exact when ‖·‖ is the 0-norm or 1-norm, as expected390

from our Theorem 5.3. Nevertheless, the method works re- 391

markably well as we will show experimentally.2 392

The practical success of our technique depends on several 393

implementation details, including the choice of initial guess 394

for u in Algorithm 5.5 and the ability to implement the algo- 395

rithm with only implicit access to the matrix A. We discuss 396

these in the appendix. 397

6 Experiments 398

We compared state-of-the-art commercial implementa- 399

tions (Gurobi Optimization 2019) of the common LP solv- 400

ing algorithms (simplex, dual simplex, and barrier) and 401

our modified version of the O(log2(1/ε)) LPsparse algo- 402

rithm (Yen et al. 2015) (which we call LPsparse’), combined 403

with our factorization algorithm, to the newest, fastest vari- 404

ants of CFR (Brown and Sandholm 2019). 405

6.1 Experiments with All Solvers 406

In the first set of experiments, we studied the setting where 407

the payoff matrix A is given explicitly. In this setting, the 408

factorization algorithm can be allowed to modify A, and 409

CFR variants must load the whole matrix A into memory. 410

In this experiment, we use the game-independent CFR im- 411

plementation built in the Rust programming language for 412

speed. In each game, the largest entry of the payoff matrix 413

in absolute value, that is, ‖A‖∞, was normalized to be 1. 414

We ran LPsparse’ four times on each game; in particular, 415

for each combination of (i) which player is chosen to be 416

player x in (2.1), in other words, whether (2.1) is solved via 417

the primal or dual; and (ii) choice of inner iteration algo- 418

rithm (RC or PG). We tested four different variants of CFR: 419

DCFR[∞,−∞, 1] (“CFR+”), DCFR[∞,−∞, 2] (“CFR+ 420

with quadratic averaging”), DCFR[1.5, 0, 2] (“DCFR”), 421

DCFR[1, 1, 1] (“LCFR”). These variants are introduced and 422

analyzed in depth by Brown and Sandholm (2019) and rep- 423

resent the current state of the art in large-scale game solving. 424

The best of those variants for each game is shown in Table 1. 425

We ran LPsparse’ and CFR to target precision (Nash gap) 426

10−4, or for 2 hours, whichever threshold was hit first. We 427

ran primal and dual simplex to optimality (machine preci- 428

sion), and barrier with default settings except crossover off. 429

We ran all solvers on a single core. The games that we tested 430

on are standard benchmarks; they are described in the ap- 431

pendix. 432

On most games, all LP solvers outperformed CFR. This 433

marks, to our knowledge, the first time that LP (or, indeed, 434

any fundamentally different algorithm) has been shown to be 435

competitive against leading CFR variants on large games. 436

The matrix factorization algorithm performs remarkably 437

well in practice when it needed to. On 9-card and 13- 438

card Leduc poker, it led to a compression ratio of 2-3. 439

More impressively, the algorithm compresses both no-limit 440

endgames by a factor of more than 100. This brings savings 441

of nearly the same factor in convergence rate in both games, 442

2We also experimented with using the 1-norm as a convex re-
laxation of the 0-norm. Here, the exact solution to (5.4) is given
by Meng and Xu (2012). This seemed to make no difference in
practice, so in the experiments we use the 0-norm.



Table 1: Experiments on explicitly specified games. Gap is the target Nash gap to which LPsparse’ and CFR were run. fnnz
is the total number of nonzero elements that resulted from running our matrix factorization algorithm, reported only when the
factorization algorithm had nontrivial effect. Simplex, Barrier, LPsparse’, and CFR are the wall-clock times, in seconds, that
those four algorithms took to achieve the desired Nash gap. All times greater than 2 hours (7200 seconds) are estimated via
linear regression on the log-log convergence plot. Gurobi was time-limited to half an hour (1800 seconds) because each game
had at least one method that solved the game well within this limit. Since it is difficult to estimate the convergence rate of
Gurobi’s solver, Gurobi timeouts are simply indicated with a (T).

Game Gap |S1|+ |S2| ‖A‖0 fnnz Simplex Barrier LPsparse’ CFR

9-card Leduc poker .0001 5,798 30,924 13,712 .5 .08 7 901
13-card Leduc poker .0001 12,014 95,056 31,522 2.4 .24 14 1,823
5x2 battleship m=2 n=1 .0001 230,778 33,124 — 8.7 .44 5 2,451
4x3 battleship m=2 n=1 .0001 639,984 82,076 — 81.0 1.47 14 4,059
3x2 battleship m=4 n=1 .0001 3,236,158 1,201,284 — (T) 16.90 659 86,284
3x2 battleship m=3 n=2 .0001 1,658,904 3,345,408 — (T) 20.22 202 55,040
sheriff N=10000 B=100 .0001 1,020,306 2,020,101 — 3.0 52.56 12 7,912
sheriff N=1000 B=1000 .0001 1,005,006 2,003,501 — 2.8 208.35 9 1,728
sheriff N=100 B=10000 .0001 1,030,206 2,020,151 — 5.2 66.71 19 287
4-rank goofspiel .0001 42,478 11,136 — .7 .39 42 51,857
5-rank goofspiel 1.74 5,332,052 1,574,400 — (T) 267.46 7,200 1,081
NLH river endgame A .00684 129,222 53,585,621 481,967 294.9 (T) 7,200 11,893
NLH river endgame B .00178 61,062 25,240,149 229,454 54.4 (T) 7,200 3,350

and enables the LP algorithms to be competitive against the443

CFR variants in these large games. On payoff matrices that444

are already sparse, the factorization algorithm fails to find a445

sparse factorization, and terminates immediately.446

On a few games, the choice of which player to make the447

x player in LP (2.1); that is, the choice between primal and448

dual solves, made a significant difference. For example, in449

the sheriff family of games, setting x to be the smuggler450

yields much better results. This is because the optimal strat-451

egy in the sheriff games is very sparse for the smuggler. In-452

deed, Yen et al. (2015) make note of the fact that their algo-453

rithm performs significantly better when the optimal primal454

solution is sparse, since in this case the inner loop does not455

need to loop over the entire constraint matrix A.456

6.2 Experiments on No-limit Texas Hold’em457

Endgames458

In the experiment described above, Gurobi’s LP solvers459

consistently outperformed LPsparse’ despite the theoretical460

guarantees of the latter. Thus, in the second set of experi-461

ments, we focus on Gurobi and DCFR.462

The implicit implementation of our factorization algo-463

rithm (Section C.2) allows us to scale our method to464

larger games than previously possible. We hence ran ex-465

periments testing this implementation on heads-up no-limit466

Texas Hold’em poker endgames encountered by the super-467

human agent Libratus (Brown and Sandholm 2017). To align468

with Brown and Sandholm (2019), we used a simple action469

abstraction: the bets are half-pot, full-pot, and all-in, and470

the raises are full-pot and all-in. All results are expressed471

in terms of the standard metric, namely big blinds (bb). The472

starting stacks are 200 big blinds per player as in the Li-473

bratus match against humans. We tested on eight real river474

endgames (i.e., endgames that start on the fourth betting475

round) and a single manually-generated small turn endgame 476

(i.e., endgames that start on the third betting round) where 477

the pot already has half of the players’ wealth, so only a sin- 478

gle additional bet or raise is possible. 479

In this experiment we used an optimized poker-specific 480

C++ implementation of DCFR. This implementation in- 481

cludes optimizations such as those of Johanson et al. (2011), 482

which shave an O(k) factor off the runtime of CFR, where 483

in the case of Texas hold’em poker, k = 1326 is the number 484

of possible hands a player may have, and Brown and Sand- 485

holm (2015), which prune game lines that are dynamically 486

determined not to be part of the optimal solution. For the LP 487

solver, we use Gurobi’s simplex and barrier methods. Both 488

primal and dual simplex were run, and only the better of 489

the two results is shown in Table 2. We also tested Gurobi 490

without the factorization algorithm. In this case, we do not 491

include results for the barrier method, because it timed out or 492

ran out of memory in all the cases. All algorithms were again 493

restricted to a single core. DCFR was run for the amount of 494

time taken by the fastest LP variant that used factoring. For 495

example, if Gurobi took 200 seconds to solve a game, and 496

the factorization algorithm took 100 seconds, CFR was run 497

for 300 seconds. The results are in Table 2 and representa- 498

tive convergence plots showing anytime performance are in 499

the appendix. 500

The factorization algorithm reduced the size of the game 501

by a factor of 52–80 and the resulting payoff matrix had den- 502

sity (i.e., nonzeros divided by rows plus columns) 7.8–9.5. 503

This is expected: poker payoff matrices are block diagonal, 504

where the blocks are k × k and rank one with the lower- 505

triangular half negated. Thus, they basically have the struc- 506

ture of Example 1, in which we saw a compression from 507

density k ≈ 210 to density log k ≈ 10, which is exactly the 508

compression we are seeing here. 509



Table 2: Experiments on poker endgames. pot is the current pot size in big blinds. |S1|+ |S2| is the total number of sequences
across both players. nnz is the number of nonzero entries of the payoff matrix before (first row) and after (second row) the our
factorization algorithm is run. The timeout was set to 3600 seconds (1 hour).

Factored Poker-Specific Unfactored
Endgame Starting pot (bb) |S1|+ |S2| Simplex Barrier DCFR Simplex

River 1 5.0 95,220 time (s) 364 2,116 509 2904
factor nnz: 58,707,847→ 740,218 memory (MB) 259 1,645 572 5569
factor time 145s, memory 52MB Nash gap (bb) 6.8× 10−8 2.8× 10−5 2.1× 10−4 6.9× 10−8

River 2 21.0 68,102 time (s) 113 951 238 830
factor nnz: 40,817,801→ 662,219 memory (MB) 208 1,126 450 3700
factor time 125s, memory 43MB Nash gap (bb) 8.1× 10−8 8.5× 10−7 2.4× 10−4 1.0× 10−7

River 3 5.0 96,232 time (s) 410 1,584 591 timeout
factor nnz: 60,831,748→ 888,608 memory (MB) 272 1,730 572 na
factor time 181s, memory 58MB Nash gap (bb) 5.8× 10−8 6.3× 10−7 2.6× 10−4 na

River 4 10.0 82,440 time (s) 231 1,242 389 1936
factor nnz: 51,332,645→ 781,400 memory (MB) 249 1,433 511 4740
factor time 158s, memory 52MB Nash gap (bb) 1.0× 10−7 1.7× 10−6 2.7× 10−4 1.2× 10−7

River 5 5.0 96,922 time (s) 210 1,631 366 2120
factor nnz: 61,078,916→ 816,401 memory (MB) 269 1,735 572 5748
factor time 156s, memory 55MB Nash gap (bb) 6.6× 10−8 1.7× 10−5 3.3× 10−4 5.9× 10−8

River 6 36.0 51,632 time (s) 38 516 109 142
factor nnz: 27,859,761→ 454,203 memory (MB) 164 848 390 2292
factor time 71s, memory 32MB Nash gap (bb) 1.1× 10−7 1.4× 10−5 7.9× 10−4 4.8× 10−8

River 7 37.5 47,152 time (s) 21 708 89 81
factor nnz: 23,087,696→ 445,810 memory (MB) 159 770 389 2086
factor time 68s, memory 31MB Nash gap (bb) 1.8× 10−7 8.0× 10−6 4.9× 10−4 1.7× 10−7

River 8 25.0 53,536 time (s) 51 644 135 167
factor nnz: 30,197,553→ 488,937 memory (MB) 167 792 389 2702
factor time 84s, memory 34MB Nash gap (bb) 1.0× 10−7 9.3× 10−9 2.6× 10−4 6.8× 10−8

Small Turn 200.0 352,800 time (s) 3,241 482 726 timeout
factor nnz: 96,450,855→ 2,680,527 memory (MB) 887 1,545 133 na
factor time 244s, memory 193MB Nash gap (bb) 2.3× 10−8 3.3× 10−6 1.0× 10−6 na

The DCFR implementation we tested against is especially510

optimized to solve no-limit turn endgames. It thus may have511

some inefficiencies when handling river endgames. We esti-512

mate that these inefficiencies lose a factor of approximately513

20 in time and space on river endgames relative to a river-514

optimized implementation. However, importantly, these in-515

efficiencies pale in comparison to the speedups gained by516

game-specific poker speedups (e.g., Johanson et al. 2011),517

which save a factor of approximately k = 1326 in time (but518

not space). This strongly suggests that our method would be519

significantly faster than any non-game-specific implementa-520

tion of CFR or any modern variant. Furthermore, the mem-521

ory usage of simplex, after factorization, is only a factor522

of log k ≈ 10 worse than the game-specific CFR (which523

stores the constraint matrix implicitly) in the case of all524

these endgames, which means it is often practical to use LP525

solvers even on extremely large games with dense payoff526

matrices, as long as the constraint matrix is factorable.527

7 Conclusion and Future Research 528

We presented a matrix factorization algorithm that yields 529

significant reduction in sparsity. We showed how the fac- 530

tored matrix can be used in an LP to solve zero-sum games. 531

This reduces both the time and space needed by LP solvers. 532

On explicitly represented games, this significantly outper- 533

forms the prior state-of-the-art algorithm, DCFR. It also 534

made LP solvers competitive on large games that are im- 535

plicitly defined by a compact set of rules—even against an 536

optimized game-specific DCFR implementation. There are 537

many interesting directions for future research, such as (1) 538

further improving the factorization algorithm, (2) investigat- 539

ing the explicit form of an optimal factorization in special 540

cases, and (3) parallelizing the factorization algorithm. 541

Acknowledgements 542

This material is based on work supported by the National 543

Science Foundation under grants IIS-1718457, IIS-1617590, 544

IIS-1901403, and CCF-1733556, and the ARO under awards 545

W911NF1710082 and W911NF2010081. 546



References547

Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.548

2015. Heads-up Limit Hold’em Poker is Solved. Science549

347(6218).550

Brown, N.; and Sandholm, T. 2015. Regret-Based Prun-551

ing in Extensive-Form Games. In Proceedings of the An-552

nual Conference on Neural Information Processing Systems553

(NeurIPS).554

Brown, N.; and Sandholm, T. 2017. Superhuman AI for555

heads-up no-limit poker: Libratus beats top professionals.556

Science eaao1733. Print version 359(6374):418–424, 2018.557

Brown, N.; and Sandholm, T. 2019. Solving imperfect-558

information games via discounted regret minimization. In559

AAAI Conference on Artificial Intelligence (AAAI).560

Farina, G.; Ling, C. K.; Fang, F.; and Sandholm, T. 2019.561

Correlation in Extensive-Form Games: Saddle-Point For-562

mulation and Benchmarks. In Proceedings of the An-563

nual Conference on Neural Information Processing Systems564

(NeurIPS).565

Gillis, N.; and Vavasis, S. A. 2018. On the complexity of566

robust PCA and `1-norm low-rank matrix approximation.567

Mathematics of Operations Research 43(4): 1072–1084.568

Gilpin, A.; Peña, J.; and Sandholm, T. 2012. First-Order569

Algorithm with O(ln(1/ε)) Convergence for ε-Equilibrium570

in Two-Person Zero-Sum Games. Mathematical Program-571

ming 133(1–2): 279–298. Conference version appeared in572

AAAI-08.573

Golub, G. H.; and Van Loan, C. F. 1996. Matrix Computa-574

tions. Johns Hopkins University Press.575

Gurobi Optimization, L. 2019. Gurobi Optimizer Reference576

Manual.577

Hoda, S.; Gilpin, A.; Peña, J.; and Sandholm, T. 2010.578

Smoothing Techniques for Computing Nash Equilibria of579

Sequential Games. Mathematics of Operations Research580

35(2).581

Johanson, M.; Waugh, K.; Bowling, M.; and Zinkevich, M.582

2011. Accelerating Best Response Calculation in Large Ex-583

tensive Games. In Proceedings of the International Joint584

Conference on Artificial Intelligence (IJCAI).585

Koller, D.; Megiddo, N.; and von Stengel, B. 1994. Fast586

algorithms for finding randomized strategies in game trees.587

In Proceedings of the 26th ACM Symposium on Theory of588

Computing (STOC).589

Kroer, C.; Farina, G.; and Sandholm, T. 2018. Solving590

Large Sequential Games with the Excessive Gap Technique.591

In Conference on Neural Information Processing Systems592

(NIPS).593

Kroer, C.; Waugh, K.; Kılınç-Karzan, F.; and Sandholm, T.594

2015. Faster First-Order Methods for Extensive-Form Game595

Solving. In Proceedings of the ACM Conference on Eco-596

nomics and Computation (EC).597

Meng, D.; and Xu, Z. 2012. Divide-and-Conquer Method598

for L1 Norm Matrix Factorization in the Presence of Outliers599

and Missing Data. arXiv abs/1202.5844.600

Neyshabur, B.; and Panigrahy, R. 2013. Sparse Matrix Fac- 601

torization. arXiv abs/1311.3315. 602

Richard, E.; Obozinski, G.; and Vert, J. 2014. Tight convex 603

relaxations for sparse matrix factorization. In Proceedings 604

of the Annual Conference on Neural Information Processing 605

Systems (NeurIPS). 606

Southey, F.; Bowling, M.; Larson, B.; Piccione, C.; Burch, 607

N.; Billings, D.; and Rayner, C. 2005. Bayes’ Bluff: Oppo- 608

nent Modelling in Poker. In Proceedings of the 21st Annual 609

Conference on Uncertainty in Artificial Intelligence (UAI). 610

Tammelin, O. 2014. Solving Large Imperfect Information 611

Games Using CFR+. CoRR abs/1407.5042. 612

von Stengel, B. 1996. Efficient Computation of Behavior 613

Strategies. Games and Economic Behavior 14(2): 220–246. 614

Yen, I. E.; Zhong, K.; Hsieh, C.; Ravikumar, P.; and Dhillon, 615

I. S. 2015. Sparse Linear Programming via Primal and Dual 616

Augmented Coordinate Descent. In Proceedings of the An- 617

nual Conference on Neural Information Processing Systems 618

(NeurIPS), 2368–2376. 619

Zinkevich, M.; Bowling, M.; Johanson, M.; and Piccione, 620

C. 2007. Regret Minimization in Games with Incomplete 621

Information. In Proceedings of the Annual Conference on 622

Neural Information Processing Systems (NeurIPS). 623

Zou, H.; and Xue, L. 2018. A Selective Overview of Sparse 624

Principal Component Analysis. Proceedings of the IEEE 625

106(8): 1311–1320. 626



A Proof of Theorem 3.1 627

The key to the proof is to bound how much this naive normalization changes the point x. Let (x∗, z∗) be the result of projecting 628

(x, z) into the optimal set S. 629

Lemma A.1. Let x′ be the result of normalizing x according to the given scheme, and i be an information set at depth d (with 630

the root defined to be at depth 0. Then we have |x′i − x∗i | ≤ εd
√
n. 631

Proof. By induction on the sequence-form strategy tree for player x, starting at the root. At the root node i = 0, the claim
is clearly true because x0 = 1 in any feasible solution x. Now consider any information set with parent xi0 and children
xi := (xi1 , . . . , xik) at depth d. From the theorem statement, we have ‖xi − x∗i ‖2 ≤ ε, and since x∗ is feasible, we have∑k
j=1 x

∗
ik

= x∗i0 . It follows that∣∣∣∣∣∣
k∑
j=1

xik − x′i0

∣∣∣∣∣∣ ≤
k∑
j=1

∣∣xik − x∗ik ∣∣+
∣∣x′i0 − x∗i0 ∣∣ ≤ ε√k + ε(d− 1)

√
n ≤ εd

√
n

by triangle inequality and inductive hypothesis, and noting that k ≤ n. But the normalization acts by picking x′i so that 632∑k
j=1 x

′
ik

= x′i0 , and it moves all the xiks in the same direction; thus, each one can move by at most εd
√
n, completing the 633

induction. 634

With this lemma in hand, we now prove the theorem. 635

Proof of Theorem. Since d ≤ n (each depth must have at least one information set), it follows from the lemma that
‖x′ − x∗‖2 ≤ εn2. But the best response function miny x

TAy (with feasibility constraints on y) is a pointwise minimum
of Lipschitz functions xT v for each v = Ay and y feasible, hence itself Lipschitz, with Lipschitz constant

max
y
‖Ay‖2 ≤ max

y
‖Ay‖1 ≤ ‖A‖1 max

y
‖y‖∞ = ‖A‖1 ≤ n

2‖A‖∞.

where ‖A‖1 is the sum of the magnitudes of the nonzero entries of A. The desired theorem follows. 636

637

B Another Example of the Utility of Sparse Factorization 638

Example 3. Let A be the n× (n+ 1) matrix given by A = [In 0] + [0 In], where In is the n×n identity, and 0 is a column 639

vector of zeros. So, A is the matrix whose (i, j) entry is 1 exactly when j = i or j = i + 1. By direct computation, the SVD 640

of this matrix is A = UΣV T where U and V are fully dense, and the SVD is unique (in the usual sense, that is, up to signs 641

and permutations) since all the singular values are. Thus, taking an SVD would have the result of increasing the number of 642

nonzeros from 2n to Θ(n2), which is the opposite of what we want. Thus, although in this case there will not be a good sparse 643

factorization, using SVD make the problem worse. 644

645

C Sparse Factorization Implementation Details and Runtime Analysis 646

C.1 Initialization 647

For the SVD, the initial guess for u in Algorithm 5.5 is usually chosen to point in a random direction (i.e., ui ∼ N(0, 1) are 648

drawn i.i.d). In our case, this does not work: if we draw u that way, then as long as each column of A has at least two nonzero 649

entries, the mode computation in Algorithm 5.6 will return v = 0 with probability 1, since Aij/ui will be different for each i 650

with probability 1. This causes the subroutine of Algorithm 5.2 to degenerate, leading to a trivial output. This is troubling for us, 651

since in basically all extensive-form games, A is much sparser than this. Fortunately, one small change yields an initialization 652

that works well. Instead of initializing u to a random unit vector, we initialize u to a random basis vector ei. This circumvents 653

the above problem, and leads to remarkably strong performance in practice. 654

C.2 Implementation with Implicit Matrices 655

A major problem with the above algorithm is that a straightforward implementation of it would store and modify the matrix A 656

in order to factor it. In the setting we are considering, A is often too big to store in memory: the number of nonzero entries in 657

A may be several orders of magnitude greater than the number of rows or columns. In these settings, we would like to be able 658

to implement the algorithm with only implicit access to A. Formally, we assume access to A via only an immutable oracle that, 659

given an index i, retrieves the list of nonzero entries, and their indices, in the ith row or ith column of A. 660

The immutability of A is the biggest roadblock here. Several changes need to be made to Algorithms 5.2-5.6 to acco- 661

modate this. First, Line 7 of Algorithm 5.2 is no longer possible.. Thus, Line 3 of Algorithm 5.2, must be revised to read 662

argminu,v
∥∥A− UV T − uvT∥∥, and the matrices U and V must be passed through to Algorithms 5.5 and 5.6. On Line 3 of 663

Algorithm 5.6, querying the ith row of A− UV T requires a matrix multiplication UiV T , where Ui is the ith row of U . 664



C.3 Run-time Analysis665

The run time of the algorithm depends heavily on the structure of A. The worst case run time is O(‖A‖0n2), since every inner666

iteration runs in at most quadratic time and removes at least one nonzero entry from A. In practice it runs dramatically faster667

than that, and we will now present a rough analysis, valid in most typical cases. For simplicity, assume A ∈ Rn×n is square.668

This doesn’t change the analysis in any meaningful way, and makes for easier exposition since we do not need to distinguish669

when A has been transposed in Algorithm 5.6.670

As stated above, the run time of the algorithm is dominated by the matrix multiplication UiV T , which must be performed for
every i where ui 6= 0 on the current iteration. On the rth outer iteration of the algorithm, U and V will have r columns each;
therefore, V T ∈ Rr×n, so the matrix multiplication takes time O(rn). We need to perform ‖u‖0 of these per inner iteration.
Thus, if the algorithm runs for a total of R outer loop iterations each of which takes t inner-loop iterations, it will take time

O

(
t

R∑
r=1

(‖ur‖0 + ‖vr‖0)rn

)
.

In practice, the number of inner iterations t per outer iteration is usually very small, say, 3. As an example, if the algorithm671

correctly factors a matrix of the structure in Example 1, the rth outer loop iteration will find a block of size O(1/r)×O(1/r).672

Thus each inner loop iteration just takes time O(n), and there will be O(n) iterations, so that the whole algorithm runs in time673

O(n2) = O(‖A‖0).674

In most extensive-form games, the payoff matrix A is block diagonal. In this case, running the factorization algorithm on A675

is equivalent to running it on each of the blocks individually, and has the same run time as running the algorithm on each block676

separately. Indeed, if u is initialized to a random basis vector ei, the algorithm’s entire run, and all its operations—including the677

critical matrix multiplication UiV T—will not escape the block to which row i of matrix A belongs. Thus, for example, running678

the algorithm on a matrix with blocks of size k× k, each of which has the structure of Example 1, will still take time O(‖A‖0).679

680

D Convergence plots on no-limit river endgames681

Since primal simplex and dual simplex give respectively only primal-feasible and dual-feasible solutions, anytime performance682

of simplex is measured by running both simultaneously, and measuring the Nash gap between the current primal and dual683

solutions at each time checkpoint, using Gurobi’s reported objective values. While Gurobi does not allow retrieval of these684

anytime solutions when its presolver is turned on, in principle they can be retrieved easily using the presolver’s mapping,685

which unfortunately Gurobi does not expose to the end user. The convergence plots in Figure 2 show roughly what we would686

expect. CFR has a very stable convergence curve (until it hits too high precision, at which point numerical stability issues start687

kicking in, and the convergence plot looks weird). The LP solvers start out slow (especially due to the sometimes nontrivial688

time requirements of the factorization algorithm) but catch up with and often eventually exceed the performance of DCFR,689

before again very often stopping due to numerical issues. Even on turn endgames, LP algorithms consistently outperform a690

hypothetical non-game-specific implementation of DCFR—which we define to be 500 times slower than the poker-specific691

DCFR—due to the additional factor of k ≈ 1326 in the density of the payoff matrix, and hence the additional cost of the692

gradient computation in DCFR.693

694

E Benchmark Games in Experiment 1695

We tested on the following benchmark games from the literature:696

• Leduc poker (Southey et al. 2005) is a small variant of poker, played with one hole card and three community cards.697

• Battleship (Farina et al. 2019) is the classic targeting game, with two parameters: m is the number of moves (shots) a player698

may take, and n is the number of ships on the board. All ships have length 2. A player scores a point only for sinking a full699

ship.700

• Sheriff (Farina et al. 2019) is a simplified Sheriff of Nottingham game, modified to be zero-sum, played between a smuggler701

and a sheriff. The smuggler selects a bribe amount b ∈ [0, B] and a number of illegal items n ∈ [0, N ] to try to smuggle past702

the sheriff. The sheriff then decides whether to inspect. If the sheriff does not inspect the cargo, then the smuggler scores703

n− b. If the sheriff inspects and finds no illegal items (n = 0), then the smuggler scores 3. If the sheriff inspects, and n > 0,704

then the smuggler scores −2n. The smuggler has far more sequences than the sheriff in this game.705

• No-limit hold-em (NLH) river endgames are endgames encountered by the poker-playing agent Libratus (Brown and Sand-706

holm 2017), using the action abstraction used by Libratus. They both begin on the last betting round, when all five community707

cards are known. The normalization of ‖A‖∞ = 1 means that in these endgames, a Nash gap of 1 corresponds to 0.075 big708

blinds. Due to the explicit storage of the payoff matrix in this experiment, only extremely small no-limit endgames can be709

tested. In particular, endgame A here is the same as endgame 7 in the next experiment (with a finer abstraction), and endgame710

B is the same as endgame A except with the starting pot size doubled to make the game smaller.711



Figure 2: Convergence plots on representative endgames. DCFR is plotted against the best-performing LP algorithm. The blue
dot represents the time taken by the factorization algorithm, and the space between the blue dot and the start of the blue line
is the time taken for the algorithm to initialize the algorithm, and then find a feasible solution (simplex) or run one iteration
(barrier). The drop below zero of the simplex plot is due to a quirk of Gurobi’s objective value reporting, and can most likely be
safely ignored. The drop below zero of the poker-specific DCFR in the small turn endgame is due to machine precision issues,
and once again can be ignored.


