
Behaviourally Cloning River Raid Agents

Laurens Diels
imec-TELIN-URC-IPI, Ghent University

St-Pietersnieuwstraat 41, 9000 Ghent, Belgium
laurens.diels@ugent.be

Hussain Kazmi
ESAT-ELECTA, KU Leuven

Kasteelpark Arenberg 10, 3000 Leuven, Belgium
hussainsyedkazmi@kuleuven.be

Abstract

We investigate the feasibility and difficulties of using be-
havioural cloning to obtain player models using the 1982
video game River Raid. We attempt to clone both virtual
game-playing agents (a fixed (non-improving) reinforcement
learning agent and a random agent sampling actions uni-
formly) as well as an actual human agent. The behavioural
clones’ performance is evaluated on the micro-level through
comparison of the state-conditioned and unconditional ac-
tion distributions, and on the macro-level by comparing the
(cloned) agents’ survival time and score per episode. Us-
ing our methodology, cloning virtual agents seems feasible
to varying extents, even with somewhat limited amounts of
data. However, our method fails to create reliable behavioural
clones of human players. We conclude with a discussion of
some of the more important reasons that might cause this: a
lack of training data, the problem of covariate shift, and im-
proving and inconsistent play-style over time.

Introduction
There has been considerable amounts of research efforts
concerning reinforcement learning in video games, espe-
cially since DeepMind’s breakthrough paper Playing atari
with deep reinforcement learning (Mnih et al. 2013). Here
they used their technique of deep Q-networks to play games
for the Atari 2600, such as River Raid.

Traditionally in reinforcement learning the goal of an
agent is to choose actions that maximise its long-term re-
wards. In many applications such as energy management
this makes perfect sense. However, in video games, which
are mostly just meant to be fun, playing at a superhuman
level might not be optimal. Indeed, for most humans, play-
ing against such foes will be very frustrating. In this setting it
might then be more interesting to attempt to be able to gener-
ate human-like opponents (or allies), or even to capture spe-
cific players. The use cases can be diverse (Pfau, Smeddinck,
and Malaka 2018). One could for example analyse the player
models to create personalised challenges, or, when detecting
a mismatch between player and model, to detect cheating or
identity fraud. Or in multiplayer games human allies and op-
ponents can be replaced by similarly playing bots. Research
has shown that player engagement is higher when playing

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

against more human-like bots than those programmed using
fuzzy finite state machines (Soni and Hingston 2008).

There are multiple ways to capture player models, such
as inverse reinforcement learning (IRL) and behavioural
cloning (BC). To capture the use cases highlighted above,
we will focus on the latter approach. The idea is as follows.
A player model should be able to predict which action the
player will choose in a given state of the game. Behavioural
cloning just views this as a multiclass classification prob-
lem which can be solved by collecting many examples of
the player’s input-output pairs.

More concretely, we will use behavioural cloning to at-
tempt to capture player models in the game of River Raid.
This is a 1982 vertical autoscroller for the Atari 2600, where
the goal is to survive for as long as possible and obtain a high
score. The game uses frames of size 160×210 with 3 colour
channels, at 60 frames per second. See Figure 1 for an ex-
ample frame together with some explanation of what is hap-
pening in the game. Although we will emulate the game in
the Arcade Learning Environment (ALE) (Bellemare et al.
2013) integrated into OpenAI Gym (Brockman et al. 2016),
like DeepMind we will only consider the game frames as in-
puts, and not for example the (emulated) console’s internal
RAM of 100 bytes. As outputs we will use the 18 possible
combinations of 9 movement directions (cardinal, intercar-
dinal and no movement) and a binary choice of shooting or
not.

Methodology
Game-playing agents While our ultimate goal is to model
human players, there are a number of challenges associated
with behavioural cloning of such players. First and foremost,
humans tend to play quite inconsistently and improve over
time. Moreover we are likely to have only limited amounts
of training data for a single human player. Therefore we
opted to start with computer agents as base agents to clone.
This allows for the collection of as much data as needed, as
well as an estimation of how BC improves with increasing
amounts of (stationary) data.

We first consider a reinforcement learning agent in a fixed
state. That is, we made sure it was no longer improving af-
ter the training phase, which consisted of playing for 1000
episodes using Proximal Policy Optimisation (PPO) (Schul-
man et al. 2017), as implemented in Keras Gym (Holsheimer

Figure 1: A greyscaled frame from River Raid (emulated).
The player controls the aircraft at the bottom of the screen.
Here it is moving to the left after having fired a shot which
is about to hit the second enemy ship. The aircraft always
moves upwards, but the player can control its speed to some
extent. The current score is 2690 which will increase after
destroying the ship. Further there is a fuel meter which can
be refilled by the fuel pad at the bottom left. The player
has two remaining lives (not including the current one). The
black borders are part of the image and will not be cut off.

2019). The reinforcement learning agent will play quite pre-
dictably. Completely opposite to this we will also consider
a random agent which simply samples actions uniformly, ir-
respective of the current game state. Finally, we will also
consider data from a human agent, namely the first named
author.

Training The data collection consists of letting the var-
ious agents play the game of River Raid for a number of
episodes. Next, we train a model that can predict the actions
the base agent would choose given the current game state.
In fact, as input for our model, we will use stacked game
frames (in chronological order), to provide a local history.
Since consecutive frame stacks will be extremely similar, we
only use every third frame stack for training. For the model
architecture, we chose a neural network consisting of two
convolutional layers of 128 filters of size 3× 3, a max pool-
ing and flatten layer, and finally three dense layers of 128,
128 and 18 nodes. We also included Monte Carlo dropout
(p = 0.5) layers (Gal and Ghahramani 2016) in front of
the flatten and dense layers. These serve the dual purpose
of preventing the model from overfitting, and introducing
stochasticity in the (trained) model, i.e. the same input stack
can lead to different outputs during different forward passes.
As an additional way to prevent overfitting we also use L2-
regularisation (weight decay).

We used Nadam (Dozat 2016) as the optimiser, and the
hyperopt package (Bergstra, Yamins, and Cox 2013) for op-
timising over the hyperparameters, namely the learning rate,
L2-regularisation strength, and number of frames to stack
using the tree-structured Parzen estimator approach (TPE)

(Bergstra et al. 2011). We used a loguniform distribution be-
tween 10−5 and 10−3 for the learning rate, a loguniform
distribution between 10−4 and 10−2 for the regularisation
constant and a uniform distribution on {2, 3, . . . , 25} for the
number of frames to stack. We let the tuning algorithm run
for 50 combinations of hyperparameters (or 44 in the human
case due to practical considerations of computation time),
evaluated using the average validation accuracy over the last
training epoch of our model. For each combination of hy-
perparameters we trained the model for 10 epochs with 50
training episodes and 25 validation episodes from the base
agent. These optimised hyperparameters were then used to
train the final models used for BC. We opted to always use
25 epochs.

Evaluation Given a behavioural clone of a game-playing
agent, we will evaluate it in two different ways: (1) by com-
paring action distributions, and (2) by comparing play-style
data. Part of the distribution comparison will only work for
computer agents (or, more generally, agents that we can eas-
ily sample at will).

We will start with comparing local action distributions,
which is only possible when the game-playing base agent is
a computer agent. Since both this agent and its clone are
stochastic, we can sample probability distributions of ac-
tions in a certain frame stack. This way we obtain empiri-
cal distributions. The Kullback-Leibler (KL) divergence is a
popular choice to compare distributions. However, this is ill-
defined when one (the second) distribution vanishes while
the other (the first) does not. Therefore we opted to simply
use the L1-distance to compare these empirical conditional
action distributions. The frame stacks we condition on were
obtained by considering every tenth frame stack from an
episode from the human player. This yielded a total of 115
frame stacks. For each of these and for each base agent and
clone we sampled 100 actions. This results in 115 empirical
conditional action distributions per agent and consequently
115 L1-distances for each base agent - clone pair. To aggre-
gate these into one number we simply took the mean. Thus
in this manner we obtain what we call the mean local (or
conditional) L1-distance between a computer agent and its
clone.

We can also approximate the global unconditional action
distribution of an agent by taking all the 11500 sampled
actions. We can then compare the global distributions of a
game-playing base agent and its clone by taking the L1-
distance. This results in the global L1-distance between the
agent and its clone.

For human agents, however, we can not rely on local dis-
tributions, as these agents cannot (reliably) be sampled in
a given state. There is also an additional issue that the pre-
vious performance metrics can at times be considered quite
artificial, as the states we condition on might never be en-
countered by an actual agent. For example, if an agent never
makes it very far into the game, the relevance of its hypo-
thetical performance at this stage in the game is disputable.
Therefore we will also compare a base agent and its clone
solely by looking at played episodes.

Figure 2: The time-score scatter plot from the reinforcement
learning agent with overlaid Gaussian density and contour
lines. The colour intensity of the background, quantified in
the colour bar at the right, indicates the logdensity of the
Gaussian distribution fitted using maximum likelihood esti-
mation. Contour lines of this logdensity are also shown.

After completing an episode we can extract the number of
frames the agent survived, and the score the agent obtained
in this time. In this way we can represent every episode as
a point in 2D (survival time, score) space. Playing for many
episodes yields a point cloud (scatter plot), and we can com-
pare such a point cloud of a base agent with that of a clone.

The problem now shifts to comparing these point clouds.
We will consider two methods. In the first one we fit a 2D
Gaussian distribution onto a point cloud using maximum
likelihood parameters. See Figure 2 for an example. Then
we compare the fitted Gaussians of the base agent with the
fitted Gaussian of a clone using the KL divergence. We will
refer to the resulting scalar metric as the Fitted Gaussian KL
Divergence or FGKLD. This approach of course assumes
that the point clouds are approximately normally distributed.
Based on Figure 2 this assumption seems reasonable, at least
in this case.

The second method is non-parametric and is based on the
Kolmogorov-Smirnov two-sample test, lifted to higher di-
mensions (Fasano and Franceschini 1987). Given two sets
of points this test returns a p-value for the null hypothesis
that both sets were sampled from the same underlying dis-
tribution. Therefore, similar point clouds will receive a high
p-value near 1, and dissimilar point clouds a value near 0.
These p-values can then be used to compare the point clouds
of a base agent with that of its clone. In addition we get a
normalised quantity, as opposed to the KL divergence. We
refer to this value as the Kolmogorov-Smirnov p-value or
simply the KSp.

Results and discussion
As explained in the methodology section we will start with
the reinforcement learning agent, followed by a random
agent sampling actions uniformly. Finally the case of be-
haviourally cloning the human agent will be examined.

Figure 3: Histograms of the global action distributions of
the reinforcement learning agent (RL) and some of its be-
havioural clones (BCs) trained using varying numbers of
episodes. For the labels of combined actions we abbreviated
Up by U, Right by R, Down by D, Left by L, and Fire by F.

Reinforcement learning agent For the purposes of
cloning the reinforcement learning agent we let it play for
2571 episodes, which constitutes 2174108 frames and corre-
sponds to about 10 hours of non-stop playing. To investigate
the effect of the amount of training data on the clone’s per-
formance, we trained models using 1, 2, 5, 10, 25, 50, 125,
250, 500, 1000 and 2000 training episodes. (The number of
validation episodes used was always a quarter of the number
of training episodes, rounded up.) This resulted in 11 differ-
ent behavioural clones for the reinforcement learning agent.

The performance of these clones is evaluated in Table 1,
according to the metrics we previously discussed. For the
creation of the time-score scatter plots we used 100 newly
sampled episodes. For the metrics based on the action distri-
butions we can see a general, albeit not monotonic, improv-
ing trend as the number of training episodes increases. As
can also be seen in Figure 3, where we present histograms
of the global action distributions, we also certainly end up
with low (i.e. good) values for the L1-distance. Based on
the comparison of the distributions, it seems that using more
than 250 episodes yields little improvement.

On the other hand, the measures based on the time-score
scatter plots yield chaotic results: there is no clear trend to
be found when increasing the amount of training data. Since
the FGKLD, like all KL divergences, is unnormalised, it is
not clear whether the results are generally good or gener-
ally poor. The KSp is more interpretable in comparison. Al-
though quite low in general, with the exception of the case
of 2000 episodes, from 50 episodes onwards it lies above
5%. This means we will not reject the null hypothesis of the
point clouds being sampled from the same distribution at a
confidence level of 95%.

Note the good results of the clone using 10 episodes for
the FGKLD and KSp. Visual inspection shows that this

Tr
ai

ni
ng

ep
is

od
es

1
2

5
10

2
5

5
0

1
2
5

2
5
0

5
0
0

1
0
0
0

2
0
0
0

G
lo

ba
lL

1
-d

is
ta

nc
e

(↓
)

0.
27
74

0.
13
41

0.
18
97

0.
22
87

0.
2
5
2
2

0.
1
5
9
5

0.
1
4
4
9

0
.1
2
9
7

0.
1
0
6
4

0.
1
1
6
7

0
.0
7
9
3
0

M
ea

n
lo

ca
lL

1
-d

is
ta

nc
e

(↓
)

1
.0
99

0.
82
90

0.
73
13

0.
71
83

0.
6
4
9
6

0.
6
0
0
3

0.
6
3
6
5

0
.4
5
1
8

0.
4
9
7
9

0.
4
2
6
6

0.
4
5
3
4

FG
K

L
D

(↓
)

1
.2
18

4.
32
4

0.
32
73

0.
08
02
4

1
.8
8
2

0.
1
8
3
8

0.
1
0
5
6

0
.2
6
2
0

0.
2
1
3
1

0.
4
1
1
8

0.
5
0
3
3

K
Sp

(↑
)

2
.0
02
·1
0
−
6

0
0
.0
29
21

0.
26
70

0
0.
1
5
0
9

0.
0
9
6
6
7

0.
0
7
2
4
3

0
.0
5
8
4
5

0.
1
1
3
4

0
.0
1
6
1
7

Ta
bl

e
1:

E
va

lu
at

io
n

of
th

e
be

ha
vi

ou
ra

lc
lo

ne
s

of
th

e
re

in
fo

rc
em

en
tl

ea
rn

in
g

ag
en

t.
V

al
ue

s
of

0
fo

r
th

e
K

Sp
ar

e
du

e
to

lim
ite

d
nu

m
er

ic
al

pr
ec

is
io

n.
A

rr
ow

s
ne

xt
to

th
e

pe
rf

or
m

an
ce

m
ea

su
re

s
in

di
ca

te
w

he
th

er
th

ey
ar

e
su

bj
ec

tt
o

m
ax

im
is

at
io

n
(↑

)o
rm

in
im

is
at

io
n

(↓
).

Fo
ra

po
in

to
fc

om
pa

ri
so

n
fo

rt
he

re
su

lts
in

te
rm

s
of

th
e

ac
tio

n
di

st
ri

bu
tio

ns
,a

n
ag

en
ts

am
pl

in
g

ac
tio

ns
un

if
or

m
ly

ha
s

a
gl

ob
al
L
1
-d

is
ta

nc
e

of
1.
13
1

an
d

an
av

er
ag

e
lo

ca
lL

1
-d

is
ta

nc
e

of
1.
7
9
4

to
th

e
ba

se
re

in
fo

rc
em

en
tl

ea
rn

in
g

ag
en

t.

Figure 4: Histograms of the global action distributions of the
random agent and its behavioural clone (BC).

clone does play quite similarly to the reinforcement learn-
ing agent. However, we found the same for the clone of
2000 episodes, despite the low KSp. It seems that from a
low FGKLD and high KSp we can conclude that a clone
performs well, but the converse does not hold: if a clone has
a high FGKLD and/or a low KSp it might still play visually
similarly to the base agent. These metrics therefore seem to
have only limited discerning power about the quality of the
behavioural clone.

Random agent We collected 511 episodes (521721
frames) from the random agent in action. The comparison of
actions distributions between this agent and its behavioural
clone trained on 400 of these episodes yielded a global L1-
distance of 0.3023 and a mean local L1-distance of 1.050.
Note that these values are somewhat comparable with the
clone of the reinforcement learning agent using only 1 train-
ing episode, i.e. they are considerably worse than the clones
using a decent amount of episodes in that case. Thus the ac-
tion distributions are captured rather poorly. See also Figure
4.

For the scatter plot based metrics (see Figure 5) we again
used 100 newly sampled episodes. Although the KSp is quite
low at 0.0621, so is the FGKLD at 0.1969. So for the latter
metric at least we score quite well, although it is the only one
coming to this conclusion. When visually inspecting both
the clone and the base agent, subtle differences are notice-
able, but overall they feel quite similar in the sense that they
both play very erratically. Although there are clearly ob-
jective differences between the random agent and its clone,
these might be more or less problematic depending on the
use case of the behavioural clone.

Human agent Finally, for the human agent, we collected
254 episodes, which corresponds to 531102 frames or about
2.5 hours of game-play. Note that such episodes are, on av-

Figure 5: Time-score scatter plots of the random agent and
its behavioural clone (BC).

erage, more than twice as long as those of the reinforce-
ment learning agent. We used 203 episodes for training a
behavioural clone. The other episodes were used for vali-
dation (25) and testing (26). The validation results showed
that our approach of always training for 25 epochs led to
slight overfitting in this case (and only this case), despite the
dropout layers and L2-regularisation. The validation accu-
racy at the end was about 3% lower than at its highest point.
Therefore, in the future we would recommend early stop-
ping. Additionally since for all the training processes in this
paper the loss learning curves were reasonably convex, this
would have reduced the computation time considerably, at
no accuracy cost.

Recall that for evaluation of the clone we cannot use local
action distributions, as the human agent cannot be sampled
many times in a fixed state. But we can still compare the
unconditional action distributions, now obtained by simply
looking at the performed actions in the test set. For the clone
we used 26 new episodes. The L1-distance between the ob-
tained unconditional action distributions was 0.5211 which
is the highest value encountered so far, although we should
point out that the way we obtained this global distribution
differs from what we did for the previous cases (as explained
in the methodology section). The poor result is confirmed by
the histogram in Figure 6.

In terms of the time-score scatter plots (Figure 7) the
results are worse by a considerable margin as well: the
FGKLD was 24.97, the KSp turned out to be 0 (due to
bounded numerical accuracy).

We will now attempt to explain the poor performance.
Firstly, data is more limited. However, it is not clear whether
having more training data would actually help. We attempted
to use the reinforcement learning behavioural clone as an
initialisation for the human agent clone, but this only made
the situation worse. Secondly, there is an inherent problem
with (naive) behavioural cloning: covariate shift. Since the
clone is imperfect, it will sometimes move into states the

Figure 6: Histograms of the global action distributions of the
human player and its behavioural clone (BC).

Figure 7: Time-score scatter plots of the human agent and its
behavioural clone (BC).

Figure 8: Improvement of the scores of the human player
over time. The line is the central simple moving aver-
age of the sequence of scores (dots), for a smoothing
radius of 25, i.e. if the n-th episode score is sn for
1 ≤ n ≤ N , where N = 254 is the total number of
episodes, then the smoothed point on the curve is tn =
avg {sk | 1 ≤ k ≤ N, |k − n| ≤ 25} .

base agent would not. Lacking training data it might then
continue to make unwise decisions. Thirdly, there is the is-
sue of stationarity: humans improve over time while playing
a game. To illustrate this, consider Figure 8, which shows the
improvement of the human agent. During data collection the
average score improved by a factor of more than two, which
we cannot simply ignore as we have done in this paper. Fi-
nally, we claim that the human agent actually plays the most
inconsistent out of all base agents, at least on the macro-
level. Indeed, globally speaking the random agent simply
moves forward, as on average its movements to the sides
cancel out.

To quantify the last assertion of erratic game-play, we use
a simple strategy. Consider one specific game-playing agent.
Now let it play the game for many episodes. From each such
episode, we collect the 60th frame. This frame number was
chosen to be near the beginning of an episode, but still far
enough into the game so that the agent’s chosen actions can
make a difference. We will remove the borders from these
frames so as to only end up with the playable space, and not,
for example, the score. This yields a set X of such cropped
frames. We then calculate the medoid m ∈ X , i.e. some
representative frame. For now we postpone the procedure
for actually obtaining this medoid; at this time simply as-
sume we have found it. Then the average deviation from this
frame would give an indication of how unpredictably the
agent plays. To calculate the deviation from a given frame
x ∈ X to the medoid m we will simply count the num-
ber of pixel locations where x and m differ. Thus, given a
medoid we can now quantify the inconsistency of an agent
in this manner. It then remains to find a medoid m. For this
we will simply try all m ∈ X and take the one leading to the

smallest mean deviation. This relation between medoid and
mean deviation is similar to the relation between the mean
and (biased) variance of a numerical data set.

For the reinforcement learning agent and random agent
we used 100 new episodes to collect X , for the human agent
we used the 26 test episodes. The inconsistency scores were
519.5 for the reinforcement learning agent, 595.4 for the
random agent, and 757.4 for the human agent. Using 50th,
55th, 65th and 70th frames always gave the same ordering,
leading to the conclusion that the human agent plays the
most inconsistent, followed by the random agent and finally
the reinforcement learning agent. This then also shows that
behaviourally cloning human agents is more difficult than
the other agent types, because humans are the least consis-
tent.

Conclusions
In this paper we attempted to capture players models in
River Raid using behavioural cloning. We developed mea-
sures of comparing a base agent and its clone, namely
the L1-distances between the local and global action dis-
tributions, and the fitted Gaussian KL divergence FGKLD
and Kolmogorov-Smirnov p-value KSp for comparing time-
score scatter plots of the agents in action. Cloning our rein-
forcement learning agent gave hopeful results, both in terms
of the captured distribution and the time-score scatter plots.
The random agent proved much harder already, certainly at
the level of distributions. On the level of play-style (time-
score) we got mixed results with the FGKLD being quite
good and the KSp quite poor. On a qualitative level it was
still possible to distinguish the random agent from its clone,
although the differences were not very large: both agents
simply appeared erratic. This might already be sufficiently
similar in certain use cases. Finally we got poor results for
all metrics when cloning the human agent. The main rea-
sons appeared to be the fact that humans improve over time
and play inconsistently. Covariate shift is also a theoretical
issue with our naive approach. The limited amounts of train-
ing data might be an issue as well, although this warrants
further investigation.

It turned out our developed measures can only be used to
conclude a clone performs well, but the converse does not
hold: clones with poor performance metrics might qualita-
tively still play very similarly to be base agent, at least to
our eyes.

Further research
We should investigate whether using more training data
would help in the case of human agent cloning. Indeed, our
guideline of 250 training episodes might only be valid for
the easy case of reinforcement learning agents, or even only
our specific reinforcement learning agent. However, we feel
that increasing the amount of training data alone would not
suffice in the case of the human agent.

As previously mentioned, covariate shift is an inherent
problem with simple behavioural cloning. Luckily there are
a number of strategies to deal with covariate shift. On-policy
techniques like DAgger (Ross, Gordon, and Bagnell 2011)

require us to continually consult the supervisor (base agent)
during training. With the ultimate goal of getting human
player models, these techniques are consequently labour-
intensive. On the other hand DART (Laskey et al. 2017) is
an off-policy technique which during data collection injects
noise into the supervisor’s chosen actions. This forces the
supervisor to also deal with the consequences of unwise de-
cisions, even when the supervisor would never make them.
By enforcing deviation from an optimal strategy it ensures
more states are covered in the training data (which stores the
real chosen actions). This way when a clone ‘gets lost’ due
to suboptimal cloning performance, it has reference data to
get ‘back on track’. It is worth investigating whether DART
would then be able to improve our cloning results. But we
should point out that depending on the use case of the cloned
models, intervening in the data collection phase is simply
not possible or desirable.

When attempting to clone the human agent we should
model the player improvement in some manner. It might be
prudent to again first consider the easier case of reinforce-
ment learning agents, but unlike in this paper allow them to
improve during the data collection phase.

Although the performance measures we developed can
be useful, they are not sufficient to characterise whether
an agent performs well or not. It might be possible to use
machine learning to obtain better measures. However, we
should be wary of the required amount of data in the case
of human agents, and should also take into account we do
not just want to be able to distinguish a base agent from its
clone, but judge whether they seem similar enough accord-
ing to human judgement. This would require a lot of (expen-
sive) human annotation. Alternatively such machine learned
measures might still be useful to improve the training pro-
cess, similar to generative adversarial networks.

We attempted to supply the models with some local his-
tory by stacking game frames. We found that compared to
not using any history at all this certainly helped. Perhaps an
even larger improvement might be gained by utilising recur-
rent neural networks, LSTMs or transformers.

Finally, it is possible that training agents using inverse re-
inforcement learning techniques might outperform the be-
havioural cloning approach highlighted in this paper.

The source code used for this project is available
at https://github.com/LaurensDiels/Behaviourally-cloning-
River-Raid-agents.

Acknowledgements
The authors would like to thank the Flemish Supercomputer
Centre VSC and the KU Leuven for allowing the use of their
servers through introductory credits. Most of the neural net-
work training was done on these servers.

The authors are also grateful to an anonymous reviewer
for pointing out the issue of covariate shift, and DAgger and
DART’s attempts to alleviate it, as well as for suggesting
LSTMs and transformers instead of basic recurrent neural
networks.

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research 47:253–279.
Bergstra, J. S.; Bardenet, R.; Bengio, Y.; and Kégl, B. 2011.
Algorithms for hyper-parameter optimization. In Advances
in neural information processing systems, 2546–2554.
Bergstra, J.; Yamins, D.; and Cox, D. 2013. Making a
science of model search: Hyperparameter optimization in
hundreds of dimensions for vision architectures. In Inter-
national conference on machine learning, 115–123.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. arXiv preprint arXiv:1606.01540.
Dozat, T. 2016. Incorporating Nesterov momentum into
Adam. ICLR Workshop.
Fasano, G., and Franceschini, A. 1987. A multidimensional
version of the Kolmogorov–Smirnov test. Monthly Notices
of the Royal Astronomical Society 225(1):155–170.
Gal, Y., and Ghahramani, Z. 2016. Dropout as a Bayesian
approximation: Representing model uncertainty in deep
learning. In international conference on machine learning,
1050–1059.
Holsheimer, K. 2019. keras-gym. https://github.com/
KristianHolsheimer/keras-gym.
Laskey, M.; Lee, J.; Fox, R.; Dragan, A.; and Goldberg, K.
2017. DART: Noise injection for robust imitation learning.
arXiv preprint arXiv:1703.09327.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Pfau, J.; Smeddinck, J. D.; and Malaka, R. 2018. Towards
deep player behavior models in MMORPGs. In Proceed-
ings of the 2018 Annual Symposium on Computer-Human
Interaction in Play, 381–392.
Ross, S.; Gordon, G.; and Bagnell, D. 2011. A reduction of
imitation learning and structured prediction to no-regret on-
line learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, 627–635.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Soni, B., and Hingston, P. 2008. Bots trained to play like
a human are more fun. In 2008 IEEE International Joint
Conference on Neural Networks (IEEE World Congress on
Computational Intelligence), 363–369. IEEE.

