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Abstract

Counterfactual Multi-agent Policy Gradients (COMA) is a
popular algorithm for learning in cooperative multi-agent re-
inforcement learning settings where agent directly receive a
global reward instead of an individual reward. COMA com-
putes difference rewards to solve the multiagent credit assign-
ment problem by providing a local learning signal for each
agent. Despite good performance, there is a lack of theoreti-
cal justification for COMA’s difference rewards. We provide
such a justification by connecting COMA’s update rule to re-
gret minimization in identical interest games. This leads to
two further insights. First, COMA’s update rule may lead to
slow policy updates even in very simple environments, and
this can be ameliorated by a slight modification as previously
observed in the Neural Replicator Dynamics algorithm. Sec-
ond, this provides a justification for the use of a bounded soft-
max policy in terms of a guarantee of favorable convergence
rates in identical interest games. Experimental results show
the importance of these observations in more complex envi-
ronments.

Cooperative multi-agent reinforcement learning (Coop-
MARL) is a framework for many complex real-world re-
inforcement learning problems such as the coordination of
autonomous vehicles (Cao et al. 2012), network packet de-
livery (Ye, Zhang, and Yang 2015), and distributed logis-
tics (Ying and Dayong 2005). Counterfactual Multi-Agent
Policy Gradients (COMA) is a recent technique for learning
cooperation among agents. Key to COMA’s success is effi-
cient multiagent credit assignment through the implementa-
tion of difference rewards which were proposed by Wolpert
and Tumer (2002) and Tumer and Agogino (2007). COMA
uses difference rewards to evaluate the contribution of each
agent’s actions by comparing with the expected value of ac-
tions based on its current policy. For each agent, the dif-
ference reward signal represents the advantage of including
the agent in the system compared to the counterfactual case
when it is excluded from the system. This individual advan-
tage signal is called the counterfactual advantage baseline.
Despite good performance, there is not a theoretical justifi-
cation for this particular choice of baseline. We argue that
this baseline works well because it is similar to minimiz-
ing regret in a cooperative setting. Previously, regret mini-
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mization algorithms for stateful settings like counterfactual
regret minimization (CFR) and its variants have primarily
been studied in competitive settings like poker. Thus our
analysis opens an opportunity to expand the advancements
from Competitive MARL to Coop-MARL settings, which
provides new structure that can be exploited.

Our theoretical results consider an identical interest game,
which is a single-state version of shared reward Coop-
MARL. This allows us to connect a variant of COMA’s up-
date rule to the classic regret minimization algorithm Hedge.
There is a small literature on regret minimization algorithms
in identical interest games showing how the structure allows
stronger properties to be shown than in competitive settings.
For example in some cases it is possible to show last iterate
convergence to a pure Nash equilibrium (Mehta, Panageas,
and Piliouras 2015), while in competitive settings it is typ-
ically only possible to show convergence on average to the
weaker solution concept of (coarse) correlated equilibrium.

Beyond this high-level justification for COMA and em-
phasis of the importance of this direction for MARL re-
search, we use this connection to make two further obser-
vations. First, we show that the current version of gradi-
ent update rule of COMA can lead to slow learning even
in simple environments. This problem, and a solution to it
known as Neural Replicator Dynamics (NRD) have previ-
ously been examined in competitive settings (Hennes et al.
2020). We argue that the structure of cooperative settings
makes this fix less important for convergence, but still im-
portant for efficient learning. In our experimental results, we
show that such an update rule leads to accelerated learning
and higher performance in many game environments with-
out adding any extra cost.

Second, we give a theoretical justification for COMA’s
use of a bounded softmax policy update instead of the usual
softmax update. This update rule has been shown in recent
work on potential games (a superset of identical interest
games) to give faster convergence to pure Nash Equilibrium
when updates are only applied to the action taken (Cohen,
Héliou, and Mertikopoulos 2017). As this is the case for
COMA, this connection provides an intuition for the good
performance of this specific choice of policy representation.
Our experimente provide evidence for this benefit in stateful
settings, with some caveats.



Related Work
For Coop-MARL settings where agents receive a single
global reward, decentralized learning leads to problem of
multiagent credit assignment which is addressed by many
techniques, including COMA, by generating a local reward
for each agent. Such an approach typically performs better
than directly using the global reward for each agent (Jian-
hong Wang et al. 2020). Various ways to assign local re-
wards from a single global reward have been proposed in
previous work. Apart from COMA, Nguyen, Kumar, and
Lau (2018) employ count-based variance reduction. Jian-
hong Wang et al. (2020) model such cooperative multiagent
problems as extended convex game and propose the Shapley
Q-value. Yang et al. (2018) perform credit assignment for
more general case where individual agents have their own
individual goals as well. Apart from using COMA-like ad-
vantages for obtaining, for each agent, they evaluate the ad-
vantages of action on other agent’s individual goal. Other
recent approaches include those taken by Zhou et al. (2020)
and Son et al. (2020).

Regret minimization algorithms have been extensively
studied in stateless multiagent settings and provide guar-
antees about convergence to Nash equilibrium in zero-sum
games and (coarse) correlated equilibrium in general-sum
games (Freund and Schapire 1999; Hart and Mas-Colell
2000). Their primary extension to stateful settings is the
Counterfactual Regret Minimization (CFR) algoritm (Zinke-
vich et al. 2008), which provides similar rigorous guaran-
tees under restrictive assumptions of perfect recall and ter-
minal states. More recently a line of work has begun to ex-
plore connections between policy gradient approaches and
regret minimization. Advantage Regret Minimization (Jin,
Keutzer, and Levine 2018) drew an analogy between ad-
vantages and CFR’s update rule and used it to demonstrate
strong performance in POMDP settings. Srinivasan et al.
(2018) explored different variants of actor critic algorithms
that exploit this insight in stochastic games. In an approach
we build on, Hennes et al. (2020) show how to draw an exact
equivalence between regret minimization and policy gradi-
ent approaches by restricting to stateless settings. Recently,
Yu et al. (2019) also use the idea of advantages for regret
minimization in a cooperative setting, but they define team
regret for group of agents and explore ways to divide the
team regret for decentralized learning rather than directly
doing regret minimization on the global reward.

Background
Cooperative Stochastic Games
COMA learns in a fully cooperative, global reward, partially
observable, multi-agent environment that can be modelled
as a stochastic game G, also known in this special case as
a DEC-POMDP (Bernstein et al. 2002), defined by a tu-
ple G = (S,U, P, r, Z,O, n, γ). The number of agents is
denoted by n, and we denote an arbitrary individual agent
by a ∈ A = {1, ..., n}. The true state of the game is de-
noted by s ∈ S. At each time step t, every agent simul-
taneously chooses an action ua ∈ U , forming a joint ac-
tion u ∈ U = Un. All the agents receive same global re-

ward r(s,u) : S × U→R and the game transitions to a new
state according to the transition function P (s′ | s,u). The
goal of G is to maximize the expected discounted reward
Rt =

∑∞
t=0 γ

trt+1 where γ ∈ [0, 1) is a discount factor. (In
general quantities in bold will be used to denote joint vari-
ables and the notation −a will used to denote variables for
agents excluding agent a.) Further, we assume that from an
agent’s perspective, the environment is partially observable
where the agents draw observations z ∈ Z according to the
observation function O(s, a) : S × A→Z. The agent main-
tains action-observation history τa ∈ T = (Z × U)∗ × Z
, on which it conditions a stochastic policy πa(ua|τa) :
T × U→[0, 1]. COMA uses centralized training and decen-
tralized execution (CTDE) learning framework to guide the
training for each agent. In CTDE, the agents have access
to the true state information and actions during the training
phase while they only observe the local action-observation
history during the actual execution in the environment.

COMA
COMA uses an actor-critic algorithm to maximize the dis-
counted global reward for G and learn a policy for each
agent. It uses a centralized critic with decentralized ac-
tor networks which implements the CTDE framework to
update policy for each agent as shown in Algorithm 1.
The input to the critic is the current state st and joint ac-
tion ut while the input to the actor network is the his-
tory hat . The goal of the centralized critic is to estimate a
value functions using sampled trajectories trajectories ac-
cording to some current policy to learn the value func-
tions Qπ(s,u) = Eπ[

∑∞
k=t[γ

k−trk|st = s,ut = u] and
Vπ(s) = Eπ[

∑∞
k=t[γ

k−trk|st = s].
Each agent plays an action uat conditioned on agent’s his-

tory hat and sampling from current policy πa(u|hat ). The
agents get the global reward rt and reach the next state next
state st+1. It uses this information to update the critic pa-
rameters θc by minimizing the mean square loss between the
critic’s target values yt and critic valuesQ(s,u). The critic’s
target network parameters are updated after every C steps.
For updating the actor network, COMA uses difference re-
wards (Wolpert and Tumer 2002; Tumer and Agogino 2007)
which measures the contribution of each agent to the global
reward. COMA’s equation for difference rewards is:

Aa(s,u) = Q(s,u)−
∑

πa(u′a|τa)Q(s, (u′a,u−a)) (1)

The Aa(s, u) is referred to as the counterfactual baseline.
The first term on right hand side measures expected reward
Q(s,u) when agent a takes action u while second term is
counterfactual scenario when a is removed from the system
by subtracting its expected value based on current policy.
This counterfactual baseline is used to update πa (param-
eterized by θπa ) according to the standard policy gradient
equation for actor-critic setting. For a given state-action pair
(s,u)) this is given by:

θt = θt−1 + ηt
∑
∇ log πaθ (ua|τa; θt−1)Aa(s,u) (2)

The centralized value network enables faster calculation of
difference rewards as it reduces number of parameters for



training and the number of forward passes required to es-
timate counterfactual advantage values while decentralized
actor networks are useful in representing broad range of
policies for different agents and allows the decentralized ex-
ecution.

Algorithm 1 COMA update for agent a
Result: Update policy for agent a give by πa
Given the action of other agents u−at , play action uat based

on agent’s history hat for each agent uat and get reward rt
and next state st+1

for t = 1 to T do
Calculate the target network values yt using the critic

parameter of the target θ̂ct while batch unrolling states,
actions and rewards.

end
for t = T to 1 do

∆θc = ∇θc(yt −Q(st,u))2

∆θc ← θc − α∆θc

Every C steps reset θ̂ct = θct
end
for t = 1 to T do

Aa(st,u) = Q(st,u)−
∑
uQ(st, u,u−a)πa(u|hat )

∆θq = ∆θa +∇θa log πa(u|hat )Aa(sat ,u)

end
θat+1 = θat + α∆θa

Identical Interest Game
For our analysis of COMA, we use the special case where
there is a single state, also known as an identical interest
game in the game theory literature (Marden, Arslan, and
Shamma 2007; Jianhong Wang et al. 2020). All identical in-
terest games have at least one joint action u which is a max-
imizer of the shared reward r(u). With such a joint action,
indeed for any local optimum of r, for all agents a

r(ua,u−a) ≥ r(ua,u−a). (3)

Such a point is known as a pure Nash equilibrium.

Regret
Regret is a tool for for measuring the relative performance of
a single action to a policy in an online setting. For an iden-
tical interest game, regret measures how much the agent’s
particular action led to a better global reward for the system
while keeping the actions of other agents u−a fixed.

Regret(a,u) = r(u)−
∑
u

πar(u,u−a) (4)

A key observation, not original to our work, is the structural
similarity between Equations (1) and (4). The average regret

1

T
Regret(a, u) (5)

is minimized by an class of algorithms known as regret
minimization, or no-regret, algorithms. The objective of no-
regret algorithms is to reduce the average regret given by

equation (5) to zero. One such algorithm is Hedge, which
maintains a policy based on the sum of regrets, weighted by
a learning rate (Freund and Schapire 1997).

RTsum(u, a) =

T∑
t=1

ηtRegret(a, u) (6)

The policy update equation of agent a at time t is given by:

πat = exp(RTsum(u, a))/
∑
u

exp(RTsum(u, a)) (7)

Hedge is no-regret when ηt is chosen carefully, e.g.,ηt ∈
Θ(1/

√
t) (Nedic and Lee 2014).

New Interpretation and Analysis of COMA
In this section we make three contributions. First, we give a
new interpretation of COMA’s difference rewards in terms
of regret minimization in an identical interest setting. Sec-
ond, inspired by approaches based on regret minimization
in general settings (Hennes et al. 2020), we point out that
COMA’s update can be slow even in many simpler settings
and that a simple modification can lead to improved perfor-
mance. Third, we show that this connection provides a prin-
cipled rationale for COMA’s use of a bounded softmax.

Justifying COMA’s Difference Rewards
To calculate its difference rewards, COMA uses a cen-
tralized critic which calculates the counterfactual advan-
tage baseline Aa. Aa compares the value of Q(s,u) and∑
π(u′a|τa)Q(s, (u′a,u−a)) for agent a and it’s action ua.

However, the correctness proof for COMA is independent
of the choice of baseline, leaving no theoretical justification
for this particular choice other than by analogy to prior suc-
cesses of difference reward approaches.

The literature on regret-like policy gradient methods (Jin,
Keutzer, and Levine 2018; Srinivasan et al. 2018) has em-
phasized the similarities between advantage calculations
and the update rule use by counterfactual regret minimiza-
tion (Zinkevich et al. 2008).1 Based on this connection, we
provide an interpretation of and justification for COMA’s
difference reward implementation in terms of regret mini-
mization in cooperative settings.

To make this connection explicit, we focus on a setting
with a single state, i.e. an identical interest game. We begin
by introducing a variant of COMA for this setting which
uses all-actions updates and a tabular representation. We call
this version Tabular COMA, and it is given in Algorithm 2.

1There is a terminology conflict between these two literatures.
The literature on difference rewards views the counterfactual ad-
vantage as representing “How much does the agent currently con-
tributes through the actual action ua to the overall goal of the
system, compared to the counterfactual case when the agent is
not present in the system?” while the literature on regret mini-
mization(Jin, Keutzer, and Levine 2018; Srinivasan et al. 2018)
interprets it as “How much benefit do we do we get by taking a
counterfactual action ua instead of adhering to the actual policy
πa(ua|τa) while keeping the policies of other fixed?”, resulting in
a difference in which part of the update is considered the counter-
factual.



Algorithm 2 Tabular COMA update for an agent a having
K actions
Result: Update policy for agent a given by πa
Sample joint action u−a from other agents policy π(u−a)
for k = 1 to K do
Aa(uk)← r(uak,ua))−

∑
u′ π

a(u′)r(u′,u−a)
Aasum(uk)← Aasum(uk) + ηAa(uk)
πa ∝ exp(Aasum)

end

Tabular COMA has four changes from Algorithm 1. First,
since we are in a single state setting we dispense with states
from the notation. Second, also since we are in a single state
setting, rather than use a critic to estimate the expected re-
turnQ(s,u) we can directly use the immediate reward when
computing the counterfactual advantage baseline. Third, to
aid in making the connections to regret minimization explicit
we use an all-actions update rule rather than solely updating
the action taken as COMA does. Fourth, we assume a soft-
max policy parameterized by a tabular representation where
each parameter gives the logit of the policy for that action
and agent. These leads to the given update rule for policies
(Hennes et al. 2020, equation (6)).

Tabular COMA is the natural all-actions implementation
of COMA in the setting of an indentical interest game.
Hennes et al. (2020) derive the same algorithm in a more
general (i.e. non-cooperative) setting from Softmax Policy
Gradient. As they point out algorithms like Tabular COMA
do not quite match up with regret minimization. The issue is
the inclusion of the πa(uk) term in the update forAasum(uk).
To exactly match up with the Hedge algorithm it should in-
stead be omitted yielding

Aasum(uk)← Aasum(uk) + ηAa(uk) (8)

We refer to Algorithm 2 with the update according to Equa-
tion 8 as Tabular COMA-N, with the “N” representing the
inclusion of this “NeuRD fix.”

With this variants, we can make a precise connection be-
tween COMA’s difference rewards and regret minimization.

Theorem 1. In an identical interest game, Tabular COMA-
N is equivalent to all agents independently using the Hedge
algorithm, in that all agents choose the same policy after
each update under both.

Proof. Immediate from Statement 1 of Hennes et al. (2020)
which gives the equivalence of Hedge and NeuRD in the
more general setting of normal-form games.

Theorem 1 provides a satisfying justification for COMA’s
particular choice of baseline for its difference rewards in
terms of an approximation of regret minimization.2 While
regret minimization algorithms like Hedge have a long his-
tory and many appealing properties in normal-form games

2In addition to the lack of the NeuRD fix, COMA is also miss-
ing the necessary weights, in the form of reach probabilities, used
by algorithms like CFR (Zinkevich et al. 2008) to ensure correct
regret minimization in stateful settings. (Hennes et al. 2020).

in general, a line of work has shown that they have partic-
ularly appealing properties in potential games (also known
as congestion games), a generalization of identical interest
games. Kleinberg, Piliouras, and Tardos (2009) show that
players who use Hedge-like updates end up playing a pure
equilibrium for a fraction of time that is arbitrarily close to
1 with probability also arbitrarily close to 1 after a poly-
nomially small transient stage. Mehta, Panageas, and Pil-
iouras (2015) showed that the multiplicative weights algo-
rithm (MW) converges to a pure Nash equilibrium for all
but a measure 0 of initial conditions, and hence obtained
a stronger guarantee, in identical interest games. Recently,
Palaiopanos, Panageas, and Piliouras (2017) showed that a
version of the MW update rule converges to equilibrium in
potential games. However, if the MW algorithm is run with
a constant step-size that is not small enough, the actual se-
quence of play may exhibit chaotic behavior, even for small
2 × 2 games. On the other hand, Krichene, Drighès, and
Bayen (2015) showed that agents converge to Nash equi-
librium in all nonatomic potential games if the same algo-
rithm is run with a decreasing step-size. For bandit setting,
Coucheney, Gaujal, and Mertikopoulos (2015) showed that a
“penalty-regulated” variant of the MW algorithm converges
to ε-approximate Nash equilibria in congestion games with
bandit feedback. While these results do not directly apply
to COMA, they provide a strong intuitive rationale for its
performance in cooperative settings.

COMA vs COMA-N
While our use of Tabular COMA-N rather than Tabular
COMA was necessary to make a precise connection to
Hedge, Hennes et al. (2020) argue that the NeuRD fix is
also important to performance. In particular, if πa(uk) is
small then weighting by it results in slow updates even if
uk is a substantially superior action. They demonstrate that
this leads to both slow adaptation or even a lack of conver-
gence in some normal form games. It is not immediate that
the same issues arise in cooperative settings. Identical in-
terest games are known to be a particularly well-behaved
class of games. In particular, they are special cases of poten-
tial games (and even more generally weakly acyclic games)
which are relatively forgiving in the sorts of learning dy-
namics which are guaranteed to converge (Marden, Arslan,
and Shamma 2007). We argue that while that while a lack
of the NeuRD fix will not prevent convergence, it can sub-
stantially harm the rate of convergence. That Tabular COMA
is guaranteed to converge in identical interest games, unlike
Softmax Policy Gradient in normal form games, is a con-
sequence of the standard analysis of actor-critic algorithms.
In their correctness proof for COMA, Foerster et al. (2018)
prove that COMA’s use of a centralized critic effectively
results in an actor-critic update that corresponds to single
agent actor-critic updates with a policy parameterized by the
parameters of independent actors representing the policy of
each individual agent. Thus it is guaranteed to converge to a
local optimum of the objective function under standard as-
sumptions for the convergence of actor-critic methods. As
the true rewards provide a perfect critic, the same applies to
Tabular COMA. Since a local optimum of the shared util-
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Figure 1: Tabular COMA is slow to update to the
unique Nash Equilibrium policy M2.
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Figure 2: Tabular COMA-N quickly reaches the Nash
Equilibrium policy.

ity function is a Nash equilibrium, this shows that failure
to include the NeuRD fix does not prevent convergence in
identical interest games, unlike in normal form games.

L R
U 4 3
D 2 1

M0

L R
U -4 -5
D -5 -6

M1

L R
U 6 -10
D -20 -20

M2

Table 1: A 3-player Identical Interest Game

Consider the three agent identical interest game given in
Table 1. In this game Agent 1 can take actions (L,R), Agent
2 can take actions (U,D), and Agent 3 can take actions
(M1,M2,M3). This game has a unique Nash Equilibrium
(U,L,M2), but M2 is a poor choice unless the other two
agents are playing their part of the equilibrium. Thus, agent
3 typically needs to “unlearn” playing M0.

Figure 1 shows the results of 100 runs of Tabular COMA
and Tabular COMA-N on this game. Despite the tiny size,
with 300 iterations of policy update Tabular COMA couldn’t
reach the Nash Equilibrium in the time allowed in about half
of the runs. This is because, while finding the policy update
for agent 3, Tabular COMA use a sample of the policies of
agents 1 and 2. This sampling will often lead to bad early re-
wards forM2 and thus small values of π3(M2) and thus slow
updates. In contrast, Figure 2 shows that Tabular COMA-N
learns rapidly in all runs.

In the experimental section, we show that the benefits of
applying the NeuRD fix to COMA hold in richer, stateful
settings and not merely in identical interest games.

Justifying Bounded Softmax
The theoretical analysis of COMA by Foerster et al. (2018)
is agnostic about the choice of policy representation for each
actor. For Tabular COMA we chose a softmax policy to
make a precise connection to Hedge possible. The experi-
mental analysis of COMA instead used a bounded softmax
policy, where a parameter ε is used to put a weight of 1 − ε
on the softmax policy and a weight of ε on the uniform pol-
icy. We make another connection to prior work showing that

this choice leads to strong convergence rate guarantees in
identical interest games.

The use of bounded softmax is linked to COMA’s updat-
ing of actions taken rather than all actions. Thus, rather than
Tabular COMA, we use another variant which does not per-
form all actions updates. In online learning this type of feed-
back is often referred to as bandit feedback, so we call this
variant Bandit COMA-N. It is given in Algorithm 3.

Algorithm 3 Bandit COMA-N update for agent a
Result: Update policy for agent a given by πa
Sample joint action u−a from other agents policy π(u−a)

Sample action u from current policy of an agent πa
Aa(u)← r(u,u−a)/πa(u)
Aasum(u)← Aasum(u) + ηAa(u)
πa ∝ (1− ε) exp(Aasum) + ε/|U |

Since we are working with bandit feedback we do not
have access to the term

∑
u′ π

a(u′)r(u′,u−a) of the Tabu-
lar COMA update. However, this term is independent of the
choice of u for agent a so simply omitting it has no effect on
the policy (this fact in part justifies Theorem 1).

Just as Tabular COMA-N is equivalent to Hedge, Ban-
dit COMA-N is equivalent to ε-Hedge with bandit feedback.
This algorithm was analyzed by Cohen, Héliou, and Mer-
tikopoulos (2017) in the more general setting of potential
games, and the following is a special case of their Theorem
3 restated for our setting.

Theorem 2. In a generic identical interest game Bandit
COMA-N with exploration parameter ε > 0 and a suitable
choice of learning rate converges almost surely to a δ(ε)
Nash equilibrium, where δ(ε) → 0 as ε → 0. Furthermore,
if the approximate equilibrium Bandit COMA-N converges
to puts weight ε on the uniform strategy and weight 1− ε on
a pure strategy for each agent then almost surely this pure
strategy profile is a (strict) Nash equilibrium and the con-
vergence to it occurs at a quasi-exponential rate.

In the theorem, the requirement that the game be generic
means that a sufficiently small perturbation of the payoffs
does not change the set of Nash equilibria. (A game can



be made generic almost surely by an arbitrarily small per-
turbation to the payoffs, so this assumption is mild.) The
quasi exponential rate is much faster than the typical bound
of O(

√
T ) for the growth of regret. See their paper for the

exact bound and requirements on the learning rate.
This analysis provides a principled rationale for the use of

bounded softmax by COMA in terms of establishing a con-
vergence rate for this special case. (The theorem does not
apply for ε = 0 because the variance may grow unbounded,
breaking the analysis establishing the convergence rate.) Our
experiments show that in some cases using bounded soft-
max significantly improves the performances over the corre-
sponding regular softmax versions of COMA while in few
cases it can lead to slower learning and lower performance
because of the unnecessary forced exploration.

Evaluation
In this section, we analyze the importance of the two key
features we analyzed theoretically—if the NeuRD fix is used
and whether bounded softmax is used—in stateful settings.
This gives us four algorithms: COMA, COMA-N (described
as Algorithm 4 with the changes highlighted in red), and
their variants where the bounded softmax is replaced by a
standard softmax Soft-COMA and Soft-COMA-N.

Algorithm 4 COMA-N update for agent a
Result: Update policy for an agent a given by πa with policy

network having logits υa
Given the action of other agents u−at , play action uat based

on agent’s history hat for each agent uat and get reward rt
and next state st+1

for t = 1 to T do
Calculate the target network values yt using the critic

parameter of the target θ̂ct while batch unrolling states,
actions and rewards.

end
for t = T to 1 do

∆θc = ∇θc(yt −Q(st,u))2

∆θc ← θc − α∆θc

Every C steps reset θ̂ct = θct
end
for t = 1 to T do

Aa(st,u) = Q(st,u)−
∑
uQ(st, u,u−a)πa(u|hat )

∆θa = ∆θa + [1/πa(u|hat )]∇̂θaυa(θa)Aa(st,u)

end
θat+1 = θat + α∆θa

We use the implementation of COMA from the repos-
itory at https://github.com/QDPP-GitHub/QDPP provided
by Yang et al. (2020). For COMA-N, we threshold the range
of allowable logits using the same implementation as the
OpenSpiel implementation of NeuRD and β = 2. This
thresholding is described by Hennes et al. (2020) as a way to
prevent infinite gradients and our testing confirms that per-
formance without it as poor. For all other hyperpameters, we

use the values from the repository unless otherwise noted.
We tested all four algorithms on all discrete purely co-

operative environments in the repository (some of which
are originally due to ma-gym https://github.com/koulanurag/
ma-gym). We present results for Switch, Checkers, Blocker,
and a Multistep Matrix Game and omit the remaining games
since no version of COMA learns meaningfully in them.

Switch Switch is a small grid world navigation game hav-
ing two or four agents where each agent wants to reach its
own home location with either local or shared observations.
The challenge is to coordinate with the other agent(s) to nav-
igate through the narrow corridor which can be used only by
one agent at a time. The agents need to coordinate to not
block the pathway for the other. Although the game pro-
vides individual reward to the agents, COMA treats those
rewards as global reward and perform our experiments ac-
cordingly. A team reward of +5 is given to the agents if one
of agent reaches the home cell. The episode ends when all
agents have reached their home state or for a maximum of
100 steps in environment. Our experiments in figures 3, 5, 4
and 6 show that using NeurRD fix with COMA-N and Soft-
COMA-N never leads to worse performance in this game
than COMA and Soft-COMA respectively. Further COMA-
N leads to better performance in three out of four versions of
the game which shows that this one line fix can lead to adap-
tive policies without incurring additional costs, consistent
with our theoreticak results. The story for softmax updates
is more mixed. We observe opposite trends in performance
of Soft-COMA vs COMA in figure 5 and 4. Recall that the
theoretical advantage of bounded softmax was more stable
updates, but this does come at a cost in terms of additional
forced exploration due to ε. This also explains the perfor-
mance of Soft-COMA-N vs COMA-N in figure 3.

Checkers This is another grid world setting where the
map contains apples and lemons and the two agents have
different sensitivity. The first agent scores 5 for the team
for an apple and -5 for a lemon. The second, less sensi-
tive agent scores 1 for the team for an apple and -1 for a
lemon. Figure 7 shows that all algorithms have essentially
the same performance in this setting, with the exception of
Soft-COMA-N.3 This may be because of large fluctuations
due to the factor of 1/π used for bandit settings in policy up-
date equation in 4. However, with a bounded-softmax policy
COMA-N manages to perform just like the other variants.

Multistep Matrix Game We use two versions of the Mul-
tistep Matrix game introduced by Yang et al. (2020): (v1) is
their original version and (v2) is our variant, shown in Figure
8. The only difference is that the -4s in the upper left matrix
were +1s in the original version. This environment is unique
and designed to be somewhat pathological since it involves
many intermediate terminal states (shown in red) and fewer
paths leading to later stages. In (v1), Figure 9 shows a per-
haps surprising order of performance. This occurs for two
reasons. Observe that in this game both players coordinating
on either (U,L) or (D,R) yields a score of 10, and all versions

3We omit a figure for Checkers-v1 since the results are essen-
tially the same.
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Figure 3: Switch2-v0
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Figure 4: Switch4-v0
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Figure 5: Switch2-v1
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Figure 6: Switch4-v1
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Figure 7: Checkers-v0

1 0

0 1

1 0

0 0

0 0

0 1

-4 -4

-4 4

1 1

1 1

TerminalTerminal

Intial Stage

1 0

0 0

1 0

0 0   x 8 
times

   x 8 
times

Figure 8: Illustration of Multistep Matrix
Game (v2)
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Figure 9: Multistep Matrix Game (v1)
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Figure 10: Multistep Matrix Game (v2)
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Figure 11: Blocker-v0

essentially converge to this policy. However, the bounded
softmax policies anneal their ε parameter down to 0.02 over
the first 10K steps4 After that, each agent can still take its
intended action at most 99% of the time, so performance de-
grades due to this forced exploration. Similarly, our clipping
of the logits using β = 2 also puts a limit on the probability
assigned to the desired action. These limits entirely explain
the performance differences; by way of example, in a sam-
ple run after 25K steps Soft-COMA took its desired action
in the start state 100% of the time, Soft-COMA-N 99.45%,
COMA 98.62%, and COMA-N 97.98%. In (v2), agents who
coordinate up (U,L) now have a stronger incentive to learn to
play (D,R) in the final stage, which only the more adaptive
COMA-N variants do. Again, the lack of forced exploration
makes softmax policies slightly better.

Blocker This game requires one of a team of three agents
to reach the last row by setting up a situation where moving
blockers can only stop two of them. The agents receive -1 re-
ward per time-step before they all reach the destination. The
highest reward of the game varies from -6 and -3 depending

4Yang et al. (2020) anneal over a longer period and so report
slower learning for COMA than with our tuning.

on the starting points. The agents only have access to decen-
tralized policies and local observations. Figure 11 shows that
both versions of softmax initially learn faster, since ε in still
being annealed hurting the performance of bounded softmax
versions. Despite this initial lead, Soft-COMA eventually
leads to worst performance but Soft-COMA-N continues to
improve along with the bounded softmax variants.

Conclusion
We provided a new justification for COMA’s update rule
by connecting it to regret minimization in identical interest
games. Based on this we showed that COMA should apply
the NRD fix for performance (even if not requried for con-
vergence) and provided a justification for COMA’s use of a
bounded softmax policy. An important direction for future
work is taking this connection beyond the simple setting of
identical interest games and analyzing the behavior of regret
minimization algorithms in stateful settings.
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