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Abstract

We focus on the problem of finding an optimal strategy for a1

team of two players that faces an opponent in an imperfect-2

information zero-sum extensive-form game. Team members3

are not allowed to communicate during play but can coordi-4

nate before the game. In that setting, it is known that the best5

the team can do is sample a profile of potentially random-6

ized strategies (one per player) from a joint (a.k.a. correlated)7

probability distribution at the beginning of the game. In this8

paper, we first provide new modeling results about comput-9

ing such an optimal distribution by drawing a connection to a10

different literature on extensive-form correlation. Second, we11

provide an algorithm that computes such an optimal distribu-12

tion by only using profiles where only one of the team mem-13

bers gets to randomize in each profile. We can also cap the14

number of such profiles we allow in the solution. This begets15

an anytime algorithm by increasing the cap. We find that often16

a handful of well-chosen such profiles suffices to reach opti-17

mal utility for the team. This enables team members to reach18

coordination through a relatively simple and understandable19

plan. Finally, inspired by this observation and leveraging the-20

oretical concepts that we introduce, we develop an efficient21

column-generation algorithm for finding an optimal distribu-22

tion for the team. We evaluate it on a suite of common bench-23

mark games. It is three orders of magnitude faster than the24

prior state of the art on games that the latter can solve and it25

can also solve several games that were previously unsolvable.26

1 Introduction27

Much of the computational game theory literature has fo-28

cused on finding strong strategies for large two-player zero-29

sum extensive-form games. In that setting, perfect game30

playing corresponds to playing strategies that belong to a31

Nash equilibrium, and such strategies can be found in poly-32

nomial time in the size of the game. Recent landmark re-33

sults, such as superhuman agents for heads-up limit and no-34

limit Texas hold’em poker (Bowling et al. 2015; Brown and35

Sandholm 2019; Moravčı́k et al. 2017) show that the prob-36

lem of computing strong strategies in two-player zero-sum37

games is well understood both in theory and in practice. The38

same cannot be said for almost any type of strategic multi-39

player interaction, where computing strong strategies is gen-40

erally hard in the worst case. Also, all superhuman AI gam-41
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ing milestones have been in two-player zero-sum games, 42

with the exception of multi-player no-limit Texas hold’em 43

recently (Brown and Sandholm 2019). 44

In this paper, we study adversarial team games, that is, 45

games in which a team of coordinating (colluding) play- 46

ers faces an opponent. We will focus on a two-player 47

team coordinating against a third player. Team members 48

can plan jointly at will before the game, but are not al- 49

lowed to communicate during the game (other than through 50

their actions in the game). These games are a popular mid- 51

dle ground between two-player zero-sum games and multi- 52

player games (von Stengel and Koller 1997; Celli and Gatti 53

2018). They can be used to model many strategic interac- 54

tions of practical relevance. For example, how should two 55

players colluding against a third at a poker table play? Or, 56

how would the two defenders in Bridge (who are prohibited 57

from communicating privately during the game) play opti- 58

mally against the declarer? Even though adversarial team 59

games are conceptually zero-sum interactions between two 60

entities—the team and the opponent—computing optimal 61

strategies is hard in this setting. Even finding a best-response 62

strategy for the team given a fixed strategy for the opponent 63

is hard (Celli and Gatti 2018). 64

One might think that finding the optimal strategy for the 65

team simply amounts to finding an optimal profile of po- 66

tentially mixed (a.k.a. randomized) strategies, one strategy 67

per team members. A solution of this type that yields max- 68

imum expected sum of utilities for the team players against 69

a rational (that is, best-responding) opponent is known as 70

a team-maxmin equilibrium (TME) strategy (Basilico et al. 71

2017; Zhang and An 2020a,b). 72

In this paper, we are interested in a more powerful model. 73

Before the game starts, the team members are able to sam- 74

ple a profile from a joint (a.k.a. correlated) distribution. This 75

form of ex-ante coordination is known to be the best a team 76

can do and comes with two major advantages. First, it of- 77

fers the team larger (or equal) expected utility than TME— 78

sometimes with dramatic gains (Celli and Gatti 2018). Sec- 79

ond, it makes the problem of computing the optimal team 80

strategy convex—and thus more amenable to the plethora 81

of convex optimization algorithms that have been developed 82

over the past 80 years—whereas the problem of computing a 83

TME strategy is not convex. In our model, an optimal distri- 84

bution for the team is known as a team-maxmin equilibrium 85



with coordination device (TMECor) strategy (Celli and Gatti86

2018; Farina et al. 2018). Finding a TMECor strategy is NP-87

hard and inapproximable (Celli and Gatti 2018).88

We propose a new formulation for the problem of find-89

ing a TMECor strategy. In doing so, we introduce the key90

notion of a semi-randomized correlation plan and draw con-91

nections with a particular strategy polytope defined by von92

Stengel and Forges (2008). Second, we propose an algo-93

rithm for computing a TMECor strategy when only a fixed94

number of pairs of semi-randomized correlation plans is al-95

lowed. This begets an anytime algorithm by increasing that96

fixed number. We find that often a handful of well-chosen97

semi-randomized correlation plans is enough to reach opti-98

mal utility. This enables team members to reach coordina-99

tion through simple and understandable strategies. Finally,100

by leveraging the theoretical concepts that we introduce, we101

develop an efficient optimal column-generation algorithm102

for finding a TMECor strategy. We evaluate it on a suite of103

common benchmark games. It is three orders of magnitude104

faster than the prior state of the art on games that the latter105

can solve. It can also solve many games that were previously106

unsolvable.107

2 Preliminaries: Extensive-Form Games108

Extensive-form games (EFGs) are a standard model in game109

theory. They model games that are played on a game tree,110

and can capture both sequential and simultaneous moves, as111

well as private information. In this paper, we focus on three-112

player zero-sum games where two players—T1 and T2—113

play as a team against the opponent player, denoted by O.114

Each node v in the game tree belongs to exactly one player115

i ∈ {T1,T2,O} ∪ {C} whose turn is to move. Player C116

is a special player, called the chance player. It models ex-117

ogenous stochasticity in the environment, such as drawing a118

card from a deck or tossing a coin. The edges leaving v rep-119

resent the actions available at that node. Any node without120

outgoing edges is called a leaf and represents an end state121

of the game. We denote the set of such nodes by Z. Each122

z ∈ Z is associated with a tuple of payoffs specifying the123

payoff ui(z) of each player i ∈ {T1,T2,O} at z. The prod-124

uct of the probabilities of all actions of C on the path from125

the root of the game to leaf z is denoted by pC(z).126

Private information is represented via information set (in-127

foset). In particular, the set of nodes belonging to i ∈128

{T1,T2,O} is partitioned into a collection Ii of non-empty129

sets: each I ∈ Ii groups together nodes that Player i cannot130

distinguish among, given what they have observed. Neces-131

sarily, for any I ∈ Ii and v, w ∈ I , nodes v and w must132

have the same set of available actions. Consequently, we de-133

note the set of actions available at all nodes of I byAI . As it134

is customary in the related literature, we assume perfect re-135

call, that is, no player forgets what he/she knew earlier in the136

game. Finally, given players i and j, two infosets Ii ∈ Ii,137

Ij ∈ Ij are connected, denoted by Ii 
 Ij , if there exist138

v ∈ Ii and w ∈ Ij such that the path from the root to v139

passes through w or vice versa.140

Sequences. The set of sequences of Player i, denoted by Σi,141

is defined as Σi := {(I, a) : I ∈ Ii, a ∈ AI} ∪ {∅}, where142

the special element ∅ is called the empty sequence of Player143

i. The parent sequence of a node v of Player i, denoted σ(v), 144

is the last sequence (information set-action pair) for Player 145

i encountered on the path from the root of the game to that 146

node. Since the game has perfect recall, for each I ∈ Ii, 147

nodes belonging to I share the same parent sequence. So, 148

given I ∈ Ii, we denote by σ(I) ∈ Σi the unique parent 149

sequence of nodes in I . Additionally, we let σ(I) = ∅ if 150

Player i never acts before infoset I . 151

Relevant sequences. A pair of sequences σi ∈ Σi, σj ∈ Σj 152

is relevant if either one is the empty sequence, or if the can 153

be written as σi = (Ii, ai) and σj = (Ij , aj) with Ii 
 Ij . 154

We write σi ./ σ2 to denote that they form a pair of relevant 155

sequences. Given two players i and j, we let Σi ./ Σj := 156

{(σi, σj) : σi ∈ Σi, σj ∈ Σj , σi ./ σj}. Similarly, given σi 157

and Ij ∈ Ij , we say that (σi, Ij) forms a relevant sequence- 158

information set pair (σi ./ Ij), if σi = ∅ or if σi = (Ii, ai) 159

and Ii 
 Ij . 160

Reduced-normal-form plans. A reduced-normal-form 161

plan πi for Player i defines a choice of action for every infor- 162

mation set I ∈ Ii that is still reachable as a result of the other 163

choices in π itself. The set of reduced-normal-form plans 164

of Player i is denoted Πi. We denote by Πi(I) the subset 165

of reduced-normal-form plans that prescribe all actions for 166

Player i on the path from the root to information set I ∈ Ii. 167

Similarly, given σ = (I, a) ∈ Σi, let Πi(σ) ⊆ Πi(I) be the 168

set of reduced-normal-form plans belonging to Πi(I) where 169

Player i plays action a at I , and let Πi(∅) := Πi. Finally, 170

given a leaf z ∈ Z, we denote with Πi(z) ⊆ Πi the set of 171

reduced-normal-form where Player i plays so as to reach z. 172

Sequence-form strategies. A sequence-form strategy is a 173

compact strategy representation for perfect-recall players in 174

EFGs (Romanovskii 1962; Koller, Megiddo, and von Sten- 175

gel 1996). Given a player i ∈ {T1,T2,O} and a normal- 176

form strategy µ ∈ ∆(Πi),1 the sequence-form strategy in- 177

duced by µ is the real vector y, indexed over σ ∈ Σi, de- 178

fined as y[σ] :=
∑
π∈Πi(σ) µ(π). The set of sequence-form 179

strategies that can be induced as µ varies over ∆(Πi) is de- 180

noted by Yi and is known to be a convex polytope (called the 181

sequence-form polytope) defined by a number of constraints 182

equal to |Ii| (Koller, Megiddo, and von Stengel 1996). 183

3 TMECor Formulation and Prior Work 184

A TMECor strategy is a probability distribution µT over the 185

set of randomized strategy profiles YT1 × YT2 that guaran- 186

tees maximum expected utility for the team against the best- 187

responding opponent O. Since each player has perfect recall, 188

any randomized strategy for a player is equivalent to a dis- 189

tribution over reduced-normal-form pure strategies (Kuhn 190

1953). Hence, any distribution over profiles of randomized 191

strategies of the team members can be expressed in an equiv- 192

alent way as a distribution over deterministic strategy pro- 193

files ΠT1 × ΠT2. The benefit of this transformation is that 194

ΠT1 ×ΠT2 is a finite set, unlike YT1 × YT2. For this reason, 195

TMECor is usually defined in the literature as a distribution 196

over ΠT1 × ΠT2 without loss of generality. We will follow 197

the same approach in our characterization. 198

1∆(X) denotes the probability simplex over the finite set X .



TMECor as a Bilinear Saddle-Point Problem. For each199

leaf z, let ûT(z) := (uT1(z) + uT2(z))pC(z). The expected200

utility of the team can be written as the following function of201

the distributions of play µT ∈ ∆(ΠT1×ΠT2), µO ∈ ∆(ΠO):202

uT(µT, µO) :=
∑
z∈Z

ûT(z)

∑
πT1∈ΠT1(z)
πT2∈ΠT2(z)

µT(πT1, πT2)


∑
π∈ΠO(z)

µO(π)

.
By definition, a team-maxmin equilibrium with coordina-203

tion device (TMECor) is a Nash equilibrium of the game204

where the team plays according to the coordinated strategy205

µT ∈ ∆(ΠT1 × ΠT2). In the zero-sum setting, this amounts206

to finding a solution of the optimization problem207

arg max
µT∈∆(ΠT1×ΠT2)

min
µO∈∆(ΠO)

uT(µT, µO). (1)

The opponent’s strategy µO can be compactly represented208

through its equivalent sequence-form representation. This is209

not the case for µT, which cannot be represented concisely210

through the sequence form as shown by Farina et al. (2018).211

Prior algorithms. Prior work on the computation of212

TMECor mainly differs in the way the team’s distribution213

µT is represented. Celli and Gatti (2018) directly represent214

the strategy as a probability distribution over the set of joint215

reduced-normal-form plans ΠT1 × ΠT2. The number of bits216

required to store such a distribution is exponential in the size217

of the game tree in the worst case. They propose a column-218

generation approach in which, at each iteration, a new pair219

of pure strategies is added to the support of the distribution220

µT. Farina et al. (2018) show that it suffices to employ |Z|-221

dimensional vectors of realizations where each z is mapped222

to its probability of being reached when the team follows223

µT. A realization-form strategy is a more concise represen-224

tation than the original distribution µT. The authors propose225

a structural decomposition of the problem which is then used226

to prove convergence of a fictitious-play-like algorithm.227

4 A Formulation of TMECor Based on228

Extensive-Form Correlation Plans229

We propose using a different representation of the correlated230

distribution of play µT, inspired by the growing body of lit-231

erature on extensive-form correlated equilibria. Like the re-232

alization form by Farina et al. (2018), in our approach we233

represent µT as a vector with only a polynomial number234

of components. However, unlike the realization form, the235

number of components scales as the product of the num-236

ber of sequences of the two players, which can be signif-237

icantly larger than the number of leaves. This downside is238

amply outweighed by the following benefits. First, we show239

that in practice our proposed representation of µT enables us240

to compute best responses for the team significantly faster241

than the prior representations. Second, in certain classes of242

games, we even show that our proposed representation en-243

ables the computation of a TMECor in polynomial time.244

This is the case, for example, in Goofspiel, a popular bench-245

mark game in computational game theory (Ross 1971).246

Extensive-Form Correlation Plans 247

Our representation is based on the concept of extensive-form 248

correlation plans, introduced by von Stengel and Forges 249

(2008) in their seminal paper on extensive-form correlation. 250

In particular, we map the correlated distribution of play µT 251

of the team to the vector ξT indexed over pairs of sequences 252

(σT1, σT2) ∈ ΣT1 ./ ΣT2, where each entry is defined as 253

ξT[(σT1, σT2)] :=
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT[(πT1, πT2)]. (2)

Here ξT is not indexed over all pairs of sequences 254

(σT1, σT2)—only relevant sequence pairs. While there are 255

games in which this distinction is meaningless (that is, 256

games in which all sequences pairs for the team members 257

are relevant), in practice the number of relevant sequence 258

pairs is only a tiny fraction of the total number of sequence 259

pairs, as shown in Table 1(b). 260

The set of extensive-form correlation plans ξT that can be 261

induced as µT varies over the set of all correlated distribu- 262

tions of play for the team members is a convex polytope. We 263

denote it as ΞT and call it the polytope of correlation plans. 264

We will recall existing results and provide new ones about 265

the structure of ΞT in Section 5. 266

Computing a TMECor using Correlation Plans 267

Extensive-form correlation plans encode a superset of the 268

information encoded by realization plans. Indeed, for all 269

z, ξT[σT1(z), σT2(z)] = ρT[z]. Using the previous identity, 270

we can rewrite the problem of computing a TMECor of a 271

constant-sum game (1) as 272

arg max
ξT∈ΞT

min
yO∈YO

∑
z∈Z

ûT(z)ξT[σT1(z), σT2(z)]y[σO(z)].

By dualizing the inner linear minimization problem over yO, 273

we get the following proposition that shows that a TMECor 274

can be found as the solution to a linear program (LP) with a 275

polynomial number of variables. (All the proofs of this paper 276

can be found in the appendix.) 277

Proposition 1. An extensive-form correlation plan ξT is a 278

TMECor if and only if it is a solution to the LP 279

arg max
ξT

v∅, subject to:

1 vI −
∑
I′∈IO

σO(I′)=(I,a)

vI′ ≤
∑
z∈Z

σO(z)=(I,a)

ûT(z)ξT[σT1(z), σT2(z)]

∀ (I,a)∈ΣO\{∅}

2 v∅ −
∑
I′∈IO

σO(I′)=∅

vI′ ≤
∑
z∈Z

σO(z)=∅

ûT(z)ξT[σT1(z), σT2(z)]

3 v∅ free, vI free ∀ I ∈ IO
4 ξT ∈ ΞT.

As a direct consequence of Proposition 1, a TMECor can be 280

found in polynomial time whenever ΞT can be represented 281

as the intersection of a set of polynomially many linear con- 282

straints. In Section 5, we recall when that is the case. 283



Game instance Num. sequences Num. leaves |ΣT1 ./ ΣT2|
|Z|

|ΣT1 × ΣT2|
|ΣT1 ./ ΣT2|

Triangle-free?
|Σ1| |Σ2| |Σ3| |Z| O = 1 O = 2 O = 3

[A] Kuhn poker (3 ranks) 25 25 25 78 3.40 2.36 7 7 7
[B] Kuhn poker (4 ranks) 33 33 33 312 1.59 2.19 7 7 7
[C] Kuhn poker (12 ranks) 97 97 97 17 160 0.29 1.90 7 7 7

[D] Goofspiel (3 ranks, limited info) 934 934 934 1296 9.54 70.59 3 3 3
[E] Goofspiel (3 ranks) 1630 1630 1630 1296 15.54 131.96 3 3 3

[F] Liar’s dice (3 faces) 1021 1021 1021 13 797 5.27 14.43 7 7 7
[G] Liar’s dice (4 faces) 10 921 10 921 10 921 262 080 6.25 72.79 7 7 7

[H] Leduc poker (3 ranks, 1 raise) 457 457 457 4500 2.62 17.70 7 7 7
[I] Leduc poker (4 ranks, 1 raise) 801 801 801 16908 1.34 28.36 7 7 7
[J] Leduc poker (2 ranks, 2 raises) 1443 1443 1443 3786 7.28 75.59 7 7 7

(a) — Game instances and sizes (b) (c)

Table 1: (a) Size of the game instances used in our experiments, in terms of number of sequences |Σi| for each player i, and
number of leaves |Z|. (b) Ratio between the number of leaves |Z|, number of sequence pairs for the team members |ΣT1×ΣT2|,
and number of relevant sequence pairs for the team members |ΣT1 ./ ΣT2| in various benchmark games. For all games reported
in the subtable, we chose the first two players to act as the team members. (c) The subtable reports whether the interaction of
the team members is triangle-free (Farina and Sandholm 2020), given the opponent player O.

5 Semi-Randomized Correlation Plans and284

the Structure of ΞT285

Even though ΞT is a convex polytope, the set of (potentially286

exponentially many) linear constraints that define it is not287

known in general. So, alternative characterizations of the set288

ΞT are needed before the LP in Proposition 1 can be solved.289

In this section, we recall two known results about the struc-290

ture of ΞT, and propose a new one (Proposition 3). We will291

use our result to arrive at two different approaches to tackle292

the LP of Proposition 1 in Section 6 and 7, respectively.293

Containment in the von Stengel-Forges Polytope294

The first result about the structure of ΞT has to do with a295

particular polytope that was introduced by von Stengel and296

Forges (2008).297

Definition 1. The von Stengel-Forges polytope of the team,298

denoted VT, is the polytope of all vectors ξ ∈ R|ΣT1./ΣT2|
≥0 in-299

dexed over relevant sequence pairs that satisfy the following300

polynomially-sized set of linear constraints.301

1 ξ[∅,∅] = 1

2
∑

aT1∈AIT1

ξ[(IT1, aT1), σT2] = ξ[σ(IT1), σT2] ∀IT1 ./ σT2

3
∑

aT2∈AIT2

ξ[σT1, (IT2, aT2)] = ξ[σT1, σ(IT2)] ∀σT1 ./ IT2.

These can be interpreted as “probability mass conservation”302

constraints. They are interlaced sequence-form constraints.303

The following result by von Stengel and Forges (2008) is304

immediate from the definition of ξT in (2).305

Proposition 2 (von Stengel and Forges (2008)). The set306

of extensive-form correlation plans is a subset of the von307

Stengel-Forges polytope. Formally, ΞT ⊆ VT.308

Triangle-Freeness and Polynomial-Time309

Computation of TMECor310

Proposition 2 shows that ΞT is a subset of the von Stengel-311

Forges polytope. There are games where the reverse inclu-312

sion does not hold. Farina and Sandholm (2020) gave a suf- 313

ficient condition—called triangle-freeness—for the reverse 314

inclusion to hold. We state the condition for our setting. 315

Definition 2 (Farina and Sandholm (2020)). The interac- 316

tion of the team members T1 and T2 is triangle-free if, for 317

any choice of distinct information sets I1, I2 ∈ IT1 with 318

σT1(I1) = σT1(I2) and any choice of distinct information 319

sets J1, J2 ∈ IT2 with σT2(J1) = σT2(J2), it is never the 320

case that (I1 
 J1) ∧ (I2 
 J2) ∧ (I1 
 J2). 321

Farina and Sandholm (2020) show that when the informa- 322

tion structure of correlating players (in our case, the team 323

members) is triangle-free, then ΞT = VT. So, when the inter- 324

action of the team is triangle-free, a TMECor can be found 325

in polynomial time by substituting constraint 4 in the LP 326

in Proposition 1 with the von Stengel-Forges constraints of 327

Definition 1. As far as we are aware, this positive complexity 328

result has not been noted before in the literature. We show 329

in Table 1(c) that Goofspiel is triangle free (and that none of 330

the other common benchmark games that we consider are). 331

Semi-Randomized Correlation Plans 332

We now give a third result about the structure of ΞT, which 333

will enable us to replace Constraint 4 of Proposition 1 334

with something more practical. First, we introduce semi- 335

randomized correlation plans, which are subsets of the von 336

Stengel-Forges polytope of the team. They represent strat- 337

egy profiles in which one of the players plays a determinis- 338

tic strategy, while the other player in the team independently 339

plays a randomized strategy. Formally, we define the set of 340

semi-randomized correlation plans for T1 and T2 as 341

Ξ∗T1 = {ξ ∈ VT : ξ[∅, σT2] ∈ {0, 1} ∀ σT2 ∈ ΣT2},
Ξ∗T2 = {ξ ∈ VT : ξ[σT1,∅] ∈ {0, 1} ∀ σT1 ∈ ΣT1},

respectively. Crucially, a point ξ ∈ Ξ∗i for i ∈ {T1,T2} can 342

be expressed using real and binary variables, in addition to 343

the linear constraints the define V (Definition 1). 344



With that, we can show the following structural result for345

the polytope of extensive-form correlation plans ΞT.346

Proposition 3. In every game, ΞT is the convex hull of the347

set Ξ∗T1, or equivalently of the set Ξ∗T2. Formally, ΞT =348

co Ξ∗T1 = co Ξ∗T2 = co(Ξ∗T1 ∪ Ξ∗T2).349

6 Computing TMECor with a Small Support350

of Semi-Randomized Plans of Fixed Size351

From Proposition 3, it is known that ΞT is the convex hull352

of Ξ∗T1 and Ξ∗T2. Furthermore, the polytopes Ξ∗T1 and Ξ∗T2353

can be described via a number of linear constraints that is354

quadratic in the game size and a number of integer variables355

that is linear in the game size. So, we can replace Constraint356

4 in Proposition 1 with the constraint that ξT be a convex357

combination of elements from Ξ∗T1 and Ξ∗T2. We introduce358

variables ξ(1)
T , . . . , ξ

(n)
T ∈ Ξ∗T1 ∪ Ξ∗T2 and the corresponding359

convex combination coefficients λ(1), . . . , λ(n), and replace360

Constraint 4 with the linear constraint ξT =
∑n
i=1 λ

(i)ξ
(i)
T .361

Here, n is a parameter with which we can cap the number362

of semi-randomized correlation plans that can be included363

in the strategy. This gives the following mixed integer LP.364 

arg max
ξ
(1)
T ,...,ξ

(n)
T ,λ(1),...,λ(n)

v∅, subject to:

constraints 1 2 3 as in Proposition 1

4 ξT =
∑n
i=1 λ

(i)ξ
(i)
T

5 ξ
(1)
T ∈ Ξ∗T1, ξ

(2)
T ∈ Ξ∗T2, ξ

(3)
T ∈ Ξ∗T1, ξ

(4)
T ∈ Ξ∗T2, . . .

‡

6
∑n
i=1 λ

(i) = 1, λ(i) ≥ 0 ∀i ∈ {1, . . . , n}.
365

The larger n is, the higher the solution value obtained,366

but the slower the program. We can make this into an any-367

time algorithm by solving the integer program for increas-368

ing values of n. By Caratheodory’s theorem, this program369

already yields an optimal solution to the LP in Proposi-370

tion 1 when n ≥ |Σ1 ./ Σ2| + 1. As we show in detail371

in Section 8, in practice we found that near-optimal coor-372

dination can be achieved through strategies with a signifi-373

cantly smaller value of n. Hence, oftentimes the team does374

not need a large number of complex profiles of randomized375

strategies to play optimally: a handful of carefully selected376

simple strategies often result in optimal coordination.377

7 A Fast Column Generation Approach378

In this section, we show a different approach to solving379

the LP in Proposition 1—using column generation (Ford380

and Fulkerson 1958). First, we proceed with a seeding381

phase. We pick a set S containing one or more points382

ξ
(1)
T , ξ

(2)
T , . . . , ξ

(m)
T that are known to belong to ΞT. Then,383

‡In Constraint 5 we alternate the set of semi-randomized cor-
relation plans (i.e., we alternate which player’s turn it is to play a
deterministic strategy). Empirically, this increases the diversity of
the strategies of ΞT that can be represented with small values of n
and leads to higher utilities for the team.

the main loop starts. First, for i ∈ {1, . . . , |S|}, let 384

β(i)(σO) :=
∑
z∈Z

σO(z)=σO

ûT(z)ξ
(i)
T [σT1(z), σT2(z)] ∀ σO ∈ ΣO.

Then we solve the LP of Proposition 1 where Constraint 4 385

has been substituted with ξT ∈ coS: 386

(∗) :



arg max
λ(1),..., λ(|S|)

v∅, subject to:

1 vI −
∑
I′∈IO

σO(I′)=σO

vI′ −
|S|∑
i=1

β(i)(σO)λ(i) ≤ 0

∀σO∈ΣO\{∅}

2 v∅ −
∑
I′∈IO

σO(I′)=∅

vI′ −
|S|∑
i=1

β(i)(∅)λ(i) ≤ 0

3
∑|S|
i=1 λ

(i) = 1

4 λ(i) ≥ 0 ∀ i ∈ {1, . . . , |S|}
5 v∅ free, vI free ∀ I ∈ IO.

This is called the master LP.2 387

Given the solution to the master LP, a pricing problem 388

is created. The goal of the pricing problem is to generate 389

a new element ξ|S|+1
T to be added to S so as to increase 390

the team utility in the next iteration, that is, the next solve 391

of the master LP that then has an additional variable. This 392

main loop of solving the larger and larger master LP keeps 393

repeating until termination (discussed later). 394

The Pricing Problem 395

The pricing problem consist of finding a correlation plan 396

ξ̂T ∈ ΞT which, if included in the convex combination com- 397

puted by (∗), would lead to the maximum gradient of the 398

objective (that is, the maximum reduced cost). By exploiting 399

the theory of linear programming duality, such a correlation 400

plan can be computed starting from the solution of the dual 401

of (∗). In particular, let γ be the |ΣO|-dimensional vector of 402

dual variables corresponding to Constraints 1 and 2 of (∗), 403

and γ′ ∈ R be the dual variable corresponding to Constraint 404

3 . Then, the reduced cost of any candidate ξ̂T is 405

c(ξ̂T) := −γ′ +
∑
z∈Z

ûT(z)ξ̂T[σT1(z), σT2(z)]γ[σO(z)].

Now comes our crucial observation. Since c(ξ̂T) is a linear 406

function, and since from Proposition 3 we know that ΞT = 407

co Ξ∗T1, by convexity 408

max
ξ̂T∈ΞT

c(ξ̂T) = max
ξ̂T∈Ξ∗T1

c(ξ̂T).

We want to solve the LP on the left hand side, but—as dis- 409

cussed in Section 5—the constraints defining ΞT are not 410

2In (∗) the convex combination is among given correlation
plans, while in the MIP of Section 6, the elements to combine are
themselves variables.



Game Opponent player O = 1 Opponent player O = 2 Opponent player O = 3
n = 1 n = 2 n = 3 n =∞ n = 1 n = 2 n = 3 n =∞ n = 1 n = 2 n = 3 n =∞

Kuhn
poker

[A] 0 F F 0 0 F F 0 0 F F 0
[B] 0.0208 0.0379 F 0.0379 0.0018 0.0246 0.0265 0.0265 −0.0417 F F −0.0417
[C] 0.0470 0.0655 0.0663 0.0664 0.0128 0.0367 0.0376 0.0380 −0.0227 −0.0153 −0.0141 −0.0140

Goofspiel [D] 0.2389 0.2524 F 0.2524 0.2389 0.2524 F 0.2524 0.2389 0.2524 F 0.2524
[E] 0.2389 0.2534 F 0.2534 0.2389 0.2534 F 0.2534 0.2389 0.2534 F 0.2534

Liar’s
dice

[F] 0 F F 0 0.2099 0.2554 0.2562 0.2562 0.2716 0.2840 F 0.2840
[G] 0.0625 F F 0.0625 0.2500 0.2656 0.2656 — 0.2656 — — —

Leduc
poker

[H] 0.1453 0.2246 0.2466 0.2765 0.2107 0.2863 0.3143 0.3450 0.1840 0.2448 0.2815 0.2926
[I] — — — 0.1422 — — — 0.1420 — — — 0.0850
[J] 0.2449 0.7037 0.7975 0.8359 0.2101 0.9222 0.9695 0.9709 0.2449 0.7037 0.7975 0.8359

Table 2: Expected utility of the team for varying support sizes (n). All values for n ∈ {1, 2, 3} were computed using the MIP of
Section 6, while the values corresponding to n = ∞ were computed using our column generation approach (Section 7). ‘F‘:
A provably optimal utility has already been obtained with a lower value of the support size n. ‘—‘: We were unable to compute
the exact value, because the corresponding algorithm hit the time limit.

known. The above equality enables us to solve the problem411

because the right hand side is a well-defined mixed integer412

LP (MIP). We can use a commercial solver such as Gurobi413

to solve it. When the objective value of the pricing problem414

is non-positive, there is no variable that can be added to the415

master LP which would increase its value. Thus, the optimal416

solution to the master LP is guaranteed to be optimal for the417

LP in Proposition 1 and the main loop terminates.418

Implementation Details419

We further speed up the solution of the pricing problem in420

our implementation by the following techniques.421

Seeding phase. To avoid having to go through many it-422

erations of the main loop, each of which requires solv-423

ing the pricing problem, we want to seed the master LP424

up front with a set of good candidate variables. While any425

seeding maintains optimality of the overall algorithm, seed-426

ing it with variables that are likely to be part of the opti-427

mal solution increases speed the most. We initialize the set428

of correlation plans S by running m iterations of a self-429

play no-external-regret algorithm. Specifically, we let each430

player run CFR+ (Tammelin et al. 2015; Bowling et al.431

2015) and, at each iteration of that algorithm, we sample432

a pair of pure normal-form plans for the two team mem-433

bers according to the current strategies of the two players.434

At each iteration of that no-regret method, we set the utility435

of each team member to uT1 + uT2. Finally, for each pair436

(πT1, πT2) ∈ ΠT1 ×ΠT2 of normal-form plans generated by437

that no-regret algorithm, we compute and add to S the cor-438

relation plan corresponding to the distribution µ that assigns439

probability 1 to (πT1, πT2) using Eq. (2). While self-play no-440

regret methods guarantee convergence to Nash equilibrium441

in two-player zero-sum game, no guarantee is available in442

our setting. However, we empirically find that this seeding443

strategy leads to a strong initial set of correlation plans.444

Linear relaxation. Before solving the MIP formulation of445

the pricing problem, we first try to solve its linear relaxation446

arg maxξ̂T∈VT
c(ξ̂T). We found that in many cases it outputs447

semi-randomized correlation plans, thus avoiding the over-448

head of having to solve a MIP.449

Solution pools. Modern commercial MIP solvers such as 450

Gurobi keep track of additional suboptimal feasible solu- 451

tions (in addition to the optimal one) that were found during 452

the process of solving a MIP. Since accessing those addi- 453

tional solutions is essentially free computationally, we add 454

to S all the solutions (even suboptimal ones) that were pro- 455

duced in the process of solving the MIP. This can be viewed 456

as a form of dynamic seeding and does not affect the opti- 457

mality of the overall algorithm. 458

Termination. Because fast integer and LP solvers work with 459

real-valued variables, near the end of the column-generation 460

loop the new variables that are generated in the pricing prob- 461

lem have reduced costs that are very close to zero. It is not 462

clear whether they are actually positive or zero. Therefore, 463

we set the numeric tolerance so that we stop the column- 464

generation loop if the value of the pricing problem solution 465

is less than 10−6. 466

Dual values. To obtain the dual values used in the pricing 467

problem, we do not need to formulate and solve a dual LP 468

as modern LP solvers already keep track of dual values. 469

8 Experimental Evaluation 470

We computationally evaluate the algorithms proposed in 471

Section 6 and Section 7. We test on the common paramet- 472

ric games shown in Table 1. Appendix B provides additional 473

detail about the games. We ran the experiments on a machine 474

with a 16-core 2.40GHz CPU and 32GB of RAM. We used 475

Gurobi 9.0.3 to solve LPs and MIPs. 476

Small-Supported TMECor in Practice. Table 2 de- 477

scribes the maximum expected utility that the team can 478

obtain by limiting the support of its distribution to n ∈ 479

{1, 2, 3} semi-randomized correlation plans. Columns de- 480

noted by n = ∞ show the optimal expected utility of the 481

team at the TMECor (without any limit on the support size). 482

We ran experiments with the opponent as the first (O = 1), 483

second (O = 2), and third player (O = 3) of each game. In all 484

the games, distributions with as few as two or three semi- 485

randomized coordination plans gave the team near-optimal 486

expected utility. Moreover, in several games, one or two 487



Game Ours Fictitious Team Play (FTP) CG-18 Pricers Team utility after seeding TMECor
Seeded Not seed. ε = 50% ε = 10% ε = 1% Relax. MIP m = 1 1000 10 000 value

[A] 1ms 1ms 2s† 10s† 1m 08s† 175ms 1 0 −0.500 0 0 0
[B] 1ms 34ms 3m 52s 37m 51s > 6h 26.81s 2 0 −0.365 −0.021 −0.020 −0.042
[C] 17.20s 18.61s 4h 42m > 6h > 6h > 6h 2 25 −0.155 −0.020 −0.020 −0.014

[D] 267ms 682ms 50s 9m 21s > 6h 3m 09s 14 0 −0.436 0.252 0.252 0.252
[E] 1.34s 1.77s 4m 51s 2h 02m > 6h 29m 38s 48 0 −0.830 0.248 0.250 0.253

[F] 1m 41s 11m 22s > 6h > 6h > 6h > 6h 20 7 −0.481 0.252 0.252 0.284
[G] > 6h > 6h > 6h > 6h > 6h > 6h — — −0.688 0.277 oom —

[H] 5m 20s 5m 53s > 6h > 6h > 6h > 6h 23 204 −2.354 0.087 0.125 0.293
[I] 1h 30m 1h 44m > 6h > 6h > 6h > 6h 5 638 −1.827 0.013 0.036 0.085
[J] 11m 08s 14m 49s > 6h > 6h > 6h > 6h 1232 48 −3.333 0.646 0.668 0.836

(a) — Comparison of run times (b) (c)

Table 3: (a) Runtime comparison between our algorithm, FTP, and CG-18. The seeded version of our algorithm runs m = 1000
iterations of CFR+ (Section 7), while the non seeded version runs m = 1. ‘†’: since the TMECor value for the game is exactly
zero, we measure how long it took the algorithm to find a distribution with expected value at least −ε/10 for the team. (b)
Number of times the pricing problem for our column-generation algorithm was solved to optimality by the linear relaxation
(‘Relax’) and by the MIP solver (‘MIP’) when using our column-generation algorithm. (c) Quality of the initial strategy of the
team obtained for varying sizes of S compared to the expected utility of the team at the TMECor. ‘oom’: out of memory.

carefully selected semi-randomized coordination plans are488

enough to reach an optimal solution.489

Column-Generation in Practice. We evaluate our column-490

generation algorithm against the two prior state-of-the art al-491

gorithms for computing a TMECor: the column-generation492

technique by Celli and Gatti (2018) (henceforth CG-18),493

and the fictitious-team-play algorithm by Farina et al. (2018)494

(denoted FTP). Like our algorithm, CG-18 uses column gen-495

eration approach which lets O play sequence-form strate-496

gies, while the team’s strategy is directly represented as497

a distribution over joint normal-form plans. On the other498

hand, FTP is based on the bilinear saddle-point formula-499

tion of the problem and is essentially a variation of fictitious500

play (Brown 1951). FTP operates on the bilinear formula-501

tion of TMECor (1): the team and the opponent are treated502

as two entities that converge to equilibrium in self-play. FTP503

only guarantees convergence in the limit to an approximate504

TMECor, while our algorithm certifies optimality. So, the505

run-time comparison between our algorithm to FTP must be506

done with care, as the latter never stops, whereas our algo-507

rithm and CG-18 terminate after a finite number of iterations508

with an exact optimal strategy. We report the run time of FTP509

reaching solution quality that is ε = 50%, 10%, and 1% off510

the optimal value (determined by the other two algorithms).511

We set a time limit of 6 hours and a cap of at most four512

threads for each algorithm. Table 3 shows the results with513

the opponent playing as the third player. By Table 2, this is514

almost always the hardest setting. The results for the other515

two settings are in Appendix C.516

Our column-generation algorithm dramatically outper-517

forms FTP and CG-18. There are settings, such as Liar’s dice518

instance [F], where we our algorithm needs just a few sec-519

onds to compute an optimal TMECor, while previous algo-520

rithms exceed 6 hours. The last column of Table 3(c) shows521

the final team utility. Even when the opponent is playing as522

the third player, the team is able to reach positive expected523

utility. Finally, we identify Liar’s dice instance [G] as the 524

current boundary of problem that just cannot be handled 525

with current TMECor technology. 526

Using the linear relaxation of the pricing problem (“im- 527

plementation details” in Section 7) often obviated the need 528

to run the slower MIP pricing (see Table 3(b)). In all Goof- 529

spiel instances (games [D] and [E]) and in small Kuhn poker 530

instances, the MIP pricing is never invoked. 531

Regret-based seeding further ameliorates the performance 532

of the algorithm. In the Liar’s dice instance [F], it reduced 533

run time by roughly a factor of ten. The value of the initial 534

master solution (that is, before the first pricing) increases 535

significantly with the number of iterations of the no-regret 536

algorithm used for seeding. 537

9 Conclusions 538

We studied the problem of finding an optimal strategy for a 539

team with two members facing an opponent in an imperfect- 540

information, zero-sum, extensive-form game. We focused on 541

the scenario in which team members are not allowed to com- 542

municate during play but can coordinate before the game. 543

First, we provided modeling results by drawing a connection 544

to previous results on extensive-form correlation. Then, we 545

developed an algorithm that computes an optimal joint dis- 546

tribution by only using profiles where only one of the team 547

members gets to randomize in each profile. We can cap the 548

number of such profiles we allow in the solution. This begets 549

an anytime algorithm by increasing the cap. Moreover, we 550

showed that often a handful of well-chosen such profiles suf- 551

fices to reach optimal utility for the team. Inspired by this 552

observation and leveraging theoretical concepts that we in- 553

troduced, we developed an efficient column-generation algo- 554

rithm for finding an optimal strategy for the team. We tested 555

our algorithm on a suite of standard games, showing that it is 556

three order of magnitudes faster than the state of the art and 557

also solves many games that were previously intractable. 558



Broader Impact559

Enabling the computation of strong, game-theoretic strate-560

gies for imperfect-information adversarial team games has561

complex effects. Such technology could be used by a team562

of malicious players to exploit an interaction or a specific563

opponent. On the other hand, the technology could also be564

used defensively, to play in such a way as to minimize the565

value that can be extracted from the agent herself. Whether566

the technology has a positive or negative societal impact567

(or none) varies depending on the nature of the imperfect-568

information interaction and the way the technology is imple-569

mented. We believe that publishing the algorithm increases570

its dissemination, thereby helping even the playing field be-571

tween educated expert players and ones who might be less572

privileged and could thus benefit more from algorithmic573

strategy support.574

References575

Basilico, N.; Celli, A.; Nittis, G. D.; and Gatti, N. 2017.576

Team-maxmin equilibrium: efficiency bounds and algo-577

rithms. In Proceedings of the Thirty-First AAAI Conference578

on Artificial Intelligence, 356–362.579

Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.580

2015. Heads-up Limit Hold’em Poker is Solved. Science581

347(6218).582

Brown, G. W. 1951. Iterative Solutions of Games by Fic-583

titious Play. In Koopmans, T. C., ed., Activity Analysis of584

Production and Allocation, 374–376. John Wiley & Sons.585

Brown, N.; and Sandholm, T. 2019. Superhuman AI for mul-586

tiplayer poker. Science 365(6456): 885–890.587

Celli, A.; and Gatti, N. 2018. Computational Results for588

Extensive-Form Adversarial Team Games. In AAAI Confer-589

ence on Artificial Intelligence (AAAI), 965–972.590

Farina, G.; Celli, A.; Gatti, N.; and Sandholm, T. 2018. Ex591

ante coordination and collusion in zero-sum multi-player592

extensive-form games. In Advances in Neural Information593

Processing Systems, 9638–9648.594

Farina, G.; and Sandholm, T. 2020. Polynomial-Time Com-595

putation of Optimal Correlated Equilibria in Two-Player596

Extensive-Form Games with Public Chance Moves and Be-597

yond. In ArXiv preprint.598

Ford, L. R.; and Fulkerson, D. R. 1958. A Suggested Com-599

putation for Maximal Multi-Commodity Network Flows.600

Management Science 5(1): 97–101. doi:10.1287/mnsc.5.1.601

97.602

Koller, D.; Megiddo, N.; and von Stengel, B. 1996. Effi-603

cient Computation of Equilibria for Extensive Two-Person604

Games. Games and Economic Behavior 14(2).605

Kuhn, H. W. 1950. A Simplified Two-Person Poker. In606

Kuhn, H. W.; and Tucker, A. W., eds., Contributions to the607

Theory of Games, volume 1 of Annals of Mathematics Stud-608

ies, 24, 97–103. Princeton, New Jersey: Princeton University609

Press.610

Kuhn, H. W. 1953. Extensive Games and the Problem of 611

Information. In Kuhn, H. W.; and Tucker, A. W., eds., Con- 612

tributions to the Theory of Games, volume 2 of Annals of 613

Mathematics Studies, 28, 193–216. Princeton, NJ: Princeton 614

University Press. 615

Lanctot, M.; Waugh, K.; Zinkevich, M.; and Bowling, M. 616

2009. Monte Carlo Sampling for Regret Minimization in 617

Extensive Games. In Proceedings of the Annual Conference 618

on Neural Information Processing Systems (NIPS). 619
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A Theoretical Details655

Representing Distributions of Play via656

Extensive-Form Correlation Plans657

As mentioned in the body, every distribution over random-658

ized stratregy profiles for the team members is equivalent659

to a different distribution over deterministic strategy pro-660

files by means of Kuhn’s theorem (Kuhn 1953), one of the661

most fundamental results about extensive-form game play-662

ing. Specifically, given two independent mixed strategies663

yT1 ∈ YT1 and yT2 ∈ YT2 for the team members, let664

µT1 and µT2 be the distributions over normal-form plans665

ΠT1,ΠT2 equivalent to yT1 and yT2, respectively. Then,666

the distribution over reandomized strategy profiles that as-667

signes probability 1 to (yT1,yT2) is equivalent to the prod-668

uct distribution of µT1 and µT2, that is, the distirbution over669

ΠT1×ΠT2 that picks a generic profile (πT1, πT2) with prob-670

ability πT1(πT1)×πT2(πT2). The reverse is also true: a prod-671

uct distribution over ΠT1×ΠT2 is equivalent to a distribution672

over randomized profiles that picks exactly one profile with673

probability 1.674

We now show that a similar result holds when the distribu-675

tion over normal-form plans is represented as an extensive-676

form correlation plan. First, we introduce the notion of prod-677

uct correlation plan.678

Definition 3. Let ξT ∈ V be a vector in the von Stengel-679

Forges polytope. We say that ξT is a product correlation plan680

if681

ξT[σT1, σT2] = ξT[σT1,∅] · ξT[∅, σT2]

for all (σT1, σT2) ∈ ΣT1 ./ ΣT2.682

Lemma 1. A product correlation plan is always an element683

of ΞT.684

Proof. Let ξT be a product correlation plan. Since by defi-685

nition, ξT ∈ V , the vectors yT1,yT2 indexed over ΣT1 and686

ΣT2, repsectively, and defined as687

y[σT1] = ξT[σT1,∅], y[σT2] = ξT[∅, σT2]

are sequence-form strategies. By Kuhn’s theorem, there ex-688

ist distributions µT1, µT2 over ΠT1 and ΠT2, respectively,689

such that690

y[σT1] =
∑

πT1∈ΠT1(σT1)

µT1[πT1] ∀σT1 ∈ ΣT1, (3)

y[σT2] =
∑

πT2∈ΠT2(σT2)

µT2[πT2] ∀σT2 ∈ ΣT2. (4)

Consider the distribution µT over ΠT1 × ΠT2 defined as the691

product distribution µT1 ⊗ µT2, that is,692

µT[σT1, σT2] := µT1[πT1] · µT2[πT2]

for all (πT1, πT2) ∈ ΠT1 × ΠT2. We will show that is the693

extensive-form correlation plan corresponding to µT accord-694

ing to (2), that is,695

ξT[σT1, σT2] :=
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT[πT1, πT2]

for all (σT1, σT2) ∈ ΣT1 ./ ΣT2. Indeed, using the fact that 696

ξT is a product correlation plan together with (3) and (4): 697

ξT[σT1, σT2] = ξT[σT1,∅] · ξT[∅, σT2]

= yT1[σT1] · yT2[σT2]

=

 ∑
πT1∈ΠT1(σT1)

µT1[πT1]

 ∑
πT2∈ΠT2(σT2)

µT2[πT2]


=

∑
πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT1[πT1] · µT2[πT2]

=
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT[πT1, πT2].

This concludes the proof. 698

Lemma 2. An extensive-form correlation plan is equivalent 699

to a distribution of play for the team that picks one profile of 700

randomized strategies (yT1,yT2) ∈ YT1 ×YT2 if and only if 701

ξT is a product correlation plan. Furthermore, when that is 702

the case, yT1[σT1] = ξT[σT1,∅], yT2[σT2] = ξT[∅, σT2] for 703

all σT1 ∈ ΣT1, σT2 ∈ ΣT2. 704

Proof. The proof of Lemma 1 already shows that when 705

ξT is a product correlation plan, it is equivalent to play- 706

ing according to the distribution of play for the team 707

with singleton support (yT1,yT2), where yT1[σT1] = 708

ξT[σT1,∅], yT2[σT2] = ξT[∅, σT2] for all σT1 ∈ ΣT1, σT2 ∈ 709

ΣT2. So, the only statement that remains to prove is that dis- 710

tributions µT over randomized strategy profiles for the team 711

members with a singleton support are mapped (Eq. (2)) to 712

product correlation plans. 713

Let {(yT1,yT2)} ⊆ YT1 × YT2 be the (singleton) support 714

of µT, and let µT1, µT2 be distributions over ΠT1 and ΠT2, 715

respectively, equivalent to yT1 and yT2. Then, 716

y[σT1] =
∑

πT1∈ΠT1(σT1)

µT1[πT1] ∀σT1 ∈ ΣT1, (5)

y[σT2] =
∑

πT2∈ΠT2(σT2)

µT2[πT2] ∀σT2 ∈ ΣT2. (6)

Since by assumption the two team members sample strate- 717

gies independently, their equivalent distribution of play over 718

determinitic strategies is the product distribution µT := 719

µT1 ⊗ µT2. Using (2), µT has a representation as extensive- 720

form correlation plan given by 721

ξT[σT1, σT2] =
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT[πT1, πT2]

=
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT1[πT1] · µT2[πT2]

=

 ∑
πT1∈ΠT1(σT1)

µT1[πT1]

 ∑
πT2∈ΠT2(σT2)

µT2[πT2]


= yT1[σT1] · yT2[σT2] (7)



for all (σT1, σT2) ∈ ΣT1×ΣT2. In particular, choosing σT2 =722

∅ in (7), and using the fact that yT2[∅] = 1, we obtain723

ξT[σT1,∅] = yT1[σT1] ∀ σT1 ∈ ΣT1.

Similarly,724

ξT[∅, σT2] = yT2[σT2] ∀ σT2 ∈ ΣT2.

Substituting the last two equalities into (7) we can write725

ξT[σT1, σT2] = ξT[σT1,∅] · ξT[∅, σT2]

for all (σT1, σT2) ∈ ΣT1 × ΣT2. That, together with the726

inclusion ΞT ⊆ V , shows that ξT is a product correlation727

plan.728

Semi-randomized correlation plans are product plans729

In the body we mentioned that semi-randomized correlation730

plans correspond to a distribution of play where one team731

member plays a deterministic strategy and the other team732

member plays a randomized strategy. We now give more for-733

mal grounding that that assertion.734

Lemma 3. Let ξT ∈ Ξ∗T1 ∪Ξ∗T2 be a semi-randomized plan.735

Then, ξT is a product plan.736

We reuse some ideas that already appeared in Farina and737

Sandholm (2020) to prove Lemma 3. In particular, in the738

proof we will make use of the following lemma.739

Lemma 4 (Farina and Sandholm (2020, Lemma 6)). Let740

ξT ∈ V . For all σT1 ∈ ΣT1 such that ξT[σT1,∅] = 0,741

ξT[σT1, σT2] = 0 for all σT2 ∈ ΣT2 : σT1 ./ σT2. Similarly,742

for all σT2 ∈ ΣT2 such that ξT[∅, σT2] = 0, ξT[σT1, σT2] = 0743

for all σT1 ∈ ΣT1 : σT1 ./ σT2.744

Proof of Lemma 3. We will only show the proof for the case745

ξT ∈ Ξ∗T1. The other case (ξT ∈ Ξ∗T2) is symmetric.746

To show that747

ξT[σT1, σT2] = ξT[σT1,∅] · ξT[∅, σT2]

for all (σT1, σT2) ∈ ΣT1 ./ ΣT2, we perform induction on748

the depth of the sequence σT2. The depth depth(σT2) of a749

generic sequence σT2 = (J, b) ∈ ΣT2 of Player i is defined750

as the number of actions that Player T2 plays on the path751

from the root of the tree down to action b at information set752

J , included. Conventionally, we let the depth of the empty753

sequence be 0.754

The base case for the induction proof corresponds to the755

case where σT2 has depth 0, that is, σT2 = ∅. In that case,756

the theorem is clearly true, because ξT[∅,∅] = 1 as part of757

the von Stengel-Forges constraints (Definition 1).758

Now, suppose that the statement holds as long as759

depth(σT2) ≤ d. We will show that the statement will hold760

for any (σT1, σT2) ∈ ΣT1 ./ ΣT2 such that depth(σT2) ≤761

d + 1. Indeed, consider (σT1, σT2) ∈ ΣT1 ./ ΣT2 such that762

σT2 = (J, b) with depth(σT2) = d+ 1.763

There are only two possible cases:764

• Case 1: ξT[∅, σT2] = 0. From Lemma 4, ξT[σT1, σT2] = 0765

and the statement holds.766

• Case 2: ξT[∅, σT2] = 1. From the von Stengel-Forges 767

constraints, ξT[∅, σ(J)] =
∑
b′∈AJ

ξT[∅, (J, b′)] = 1 + 768∑
b′∈AJ ,b′ 6=b ξT[∅, (J, b′)] ≥ 1. Hence, because all en- 769

tries of ξT[∅, σ2] are in {0, 1} by definition of Ξ∗T1, it 770

must be ξT[∅, σ(J)] = 1 and ξT[∅, (J, b′)] = 0 for all 771

b′ ∈ AJ , b′ 6= b. 772

Using the inductive hypothesis, we have that 773

ξT[σT1, σ(J)] = ξT[σT1,∅] · ξT[∅, σ(J)] = ξT[σT1,∅]
(8)

for all σT1 ∈ ΣT1, σT1 ./ σ(J). On the other hand, since 774

ξT[∅, (J, b′)] = 0 for all b′ ∈ AJ , b′ 6= b, from Lemma 4 775

we have that 776

ξT[σT1, (J, b
′)] = 0 ∀σT1 ./ J, b

′ 6= b. (9)

Hence, summing over all b′ ∈ AJ and using the von 777

Stengel-Forges constraints, we get 778

ξT[σT1,∅] · ξT[∅, σT2] = ξT[σT1, σ(J)]

=
∑
b′∈AJ

ξT[σT1, (J, b
′)]

= ξT[σT1, (J, b)] = ξT[σT1, σT2]

for all σT1 ./ (J, b). This concludes the proof by induc- 779

tion. 780

So, from Lemma 2 it follows that semi-randomized plans 781

correspond to distributions of play over randomized profiles 782

with the singleton support (yT1,yT2) ∈ YT1 × YT2. Fur- 783

thermore, because of the second part of Lemma 2, when 784

ξT ∈ Ξ∗T1, yT2[σT2] ∈ {0, 1} for all σT2 ∈ ΣT2, which 785

means that yT2 is a deterministic strategy for Player T2 (a 786

similar statement holds for ξT ∈ Ξ∗T2). 787

Convex combinations of product plans Both of the al- 788

gorithms we presented in the paper ultimately produce an 789

extensive-form correlation plan ξT that is a convex combi- 790

nation of semi-randomized plans ξ(1)
T , . . . , ξ

(n)
T , that is, of 791

the form 792

ξT = λ(1)ξ
(1)
T + ·+ λ(n)ξ

(n)
T

for λ(i) ≥ 0 such that λ(1) + · · · + λ(n) = 1. Since 793

semi-randomized correlation plans are product correlation 794

plans (Lemma 3), from Lemma 2 each ξ(i)
T is equivalent to 795

the team playing a single profile of randomized strategies 796

(y
(i)
T1 ,y

(i)
T2 ) ∈ YT1 × YT2 with probability 1. By linearity, 797

it is immediate to show that ξT is equivalent to playing ac- 798

cording to the distribution over randomized strategies for the 799

team that picks (y
(i)
T1 ,y

(i)
T2 ) with probability λ(i). 800



TMECor Formulation Based on Extensive-Form801

Correlation Plans802

Proposition 1. An extensive-form correlation plan ξT is a803

TMECor if and only if it is a solution to the LP804 

arg max
ξT

v∅, subject to:

1 vI −
∑
I′∈IO

σO(I′)=(I,a)

vI′ ≤
∑
z∈Z

σO(z)=(I,a)

ûT(z)ξT[σT1(z), σT2(z)]

∀ (I,a)∈ΣO\{∅}

2 v∅ −
∑
I′∈IO

σO(I′)=∅

vI′ ≤
∑
z∈Z

σO(z)=∅

ûT(z)ξT[σT1(z), σT2(z)]

3 v∅ free, vI free ∀ I ∈ IO
4 ξT ∈ ΞT.

Proof. We follow the steps mentioned in the body, starting805

from the bilinear saddle point problem formulation of the806

problem of computing a TMECor strategy for the team:807

arg max
ξT∈ΞT

min
yO∈YO

∑
z∈Z

ûT(z)ξT[σT1(z), σT2(z)]y[σO(z)].

Expanding the constraint yO ∈ YO using the sequence-form808

constraints (Koller, Megiddo, and von Stengel 1996; von809

Stengel 1996), the inner minimization problem is810

(P ) :



min
yO

∑
z∈Z

ûT(z)ξT[σT1(z), σT2(z)]y[σO(z)]

1 − y[σ(I)] +
∑
a∈AI

yO[(I, a)] = 0 ∀I ∈ IO

2 yO[∅] = 1

3 yO[σO] ≥ 0 ∀ σO ∈ ΣO.

Introducing the free dual variables {vI : I ∈ IO} for Con-811

straint 1 , and the free dual variable v∅ for Constraint 2 , we812

obtain the dual linear program813

(D) :



max
vI ,v∅

v∅, subject to:

1 vI −
∑
I′∈IO

σO(I′)=(I,a)

vI′ ≤
∑
z∈Z

σO(z)=(I,a)

ûT(z)ξT[σT1(z), σT2(z)]

∀ (I,a)∈ΣO\{∅}

2 v∅ −
∑
I′∈IO

σO(I′)=∅

vI′ ≤
∑
z∈Z

σO(z)=∅

ûT(z)ξT[σT1(z), σT2(z)]

3 v∅ free, vI free ∀ I ∈ IO.

So, ξT is a TMECor if and only if it is a solution of814

arg maxξT∈ΞT
(D), which is exactly the statement.815

Semi-Randomized Correlation Plans816

Proposition 3. In every game, ΞT is the convex hull of the817

set Ξ∗T1, or equivalently of the set Ξ∗T2. Formally, ΞT =818

co Ξ∗T1 = co Ξ∗T2 = co(Ξ∗T1 ∪ Ξ∗T2).819

Proof. We will show that ΞT = co Ξ∗T1. The proof that ΞT =820

co Ξ∗T2 is symmetric.821

We will break the proof of ΞT = co Ξ∗T1 into two parts:822

(⊆) In the first part of the proof, we argue that Ξ∗T1 ⊆ ΞT. 823

This is straightforward: from Lemma 3 we know 824

that all elements of Ξ∗T1 are product correlation plans 825

(Definition 3), which implies that Ξ∗T1 ⊆ ΞT by 826

Lemma 1. Since convex hulls preserve inclusions, we 827

have 828

co Ξ∗T1 ⊆ co ΞT,

which is exactly the statement Ξ∗T1 ⊆ ΞT upon us- 829

ing the known fact that ΞT is a convex polytope and 830

therefore co ΞT = ΞT. 831

(⊇) To complete the proof, we now argue that the re- 832

verse inclusion, namely ΞT ⊆ co Ξ∗T1, also holds. Let 833

f : µT 7→ ξT be the mapping from the distribution 834

of play µT ∈ ∆(ΠT1 × ΠT2) to its corresponding 835

extensive-form correlation plan defined in Eq. (2). By 836

definition, ΞT = f(∆(ΠT1 × ΠT2)). Let 1(πT1,πT2) 837

denote the distribution of play with singleton sup- 838

port (πT1, πT2), that is, the distribution of play that 839

assigns the deterministic strategy profile (πT1, πT2) 840

for the team with probability 1. Since f is linear, and 841

since 842

∆(ΠT1×ΠT2) = co{1(πT1,πT2) : πT1 ∈ ΠT1, πT2 ∈ ΠT2},

we have 843

ΞT = co{f(1(πT1,πT2)) : πT1 ∈ ΠT1, πT2 ∈ ΠT2}.

Hence, to conclude the proof of this part, it will be 844

enough to show that for each πT1 ∈ ΠT1, πT2 ∈ ΠT2, 845

it holds that f(1(πT1,πT2)) ∈ Ξ∗T1. Since 1(πT1,πT2) as- 846

signs probability 1 to one profile and 0 to all other 847

profiles, f(1(πT1,πT2)) is an extensive-form correla- 848

tion plan whose entris are all in {0, 1}. So, in particu- 849

lar, f(1(πT1,πT2)) ∈ Ξ∗T1. This concludes the proof of 850

the inclusion ΞT ⊆ co Ξ∗T1. 851

Together, the two statements that we just prove show that 852

ΞT = co Ξ∗T1. 853

Finally, using the fact that unions and convex hulls com- 854

mute, we have 855

co(Ξ∗T1 ∪ Ξ∗T2) = (co Ξ∗T1) ∪ (co Ξ∗T2) = ΞT ∪ ΞT = ΞT,

thereby concluding the proof. 856

B Game Instances 857

The size of the parametric instances we use as benchmark is 858

described in Table 1. In the following, we provide a detailed 859

explanation of the rules of each game. 860

Kuhn poker Two-player Kuhn poker was originally pro- 861

posed by Kuhn (1950). We employ the three-player varia- 862

tion described in Farina et al. (2018). In a three-player Kuhn 863

poker game with rank r there are r possible cards. At the 864

beginning of the game, each player pays one chip to the pot, 865

and each player is dealt a single private card. The first player 866

can check or bet, i.e., putting an additional chip in the pot. 867

Then, the second player can check or bet after a first player’s 868



check, or fold/call the first player’s bet. If no bet was previ-869

ously made, the third player can either check or bet. Other-870

wise, the player has to fold or call. After a bet of the second871

player (resp., third player), the first player (resp., the first872

and the second players) still has to decide whether to fold or873

to call the bet. At the showdown, the player with the highest874

card who has not folded wins all the chips in the pot.875

Goofspiel This bidding game was originally introduced by876

Ross (1971). We use a 3-rank variant, that is, each player has877

a hand of cards with values {−1, 0, 1}. A third stack of cards878

with values {−1, 0, 1} is shuffled and placed on the table. At879

each turn, a prize card is revealed, and each player privately880

chooses one of his/her cards to bid, with the highest card881

winning the current prize. In case of a tie, the prize is split882

evenly among the winners. After 3 turns, all the prizes have883

been dealt out and the payoff of each player is computed as884

follows: each prize card’s value is equal to its face value and885

the players’ scores are computed as the sum of the values of886

the prize cards they have won.887

Goofspiel with limited information This is a variant of888

Goofspiel introduced by Lanctot et al. (2009). In this varia-889

tion, in each turn the players do not reveal the cards that they890

have played. Rather, they show their cards to a fair umpire,891

which determines which player has played the highest card892

and should therefore received the prize card. In case of tie,893

the umpire directs the players to split the prize evenly among894

the winners, just like in the Goofspiel game. This makes the895

game strategically more challenging as players have less in-896

formation regarding previous opponents’ actions.897

Leduc poker We use a three-player version of the clas-898

sical Leduc hold’em poker introduced by Southey et al.899

(2005). We employ game instances of rank 3, in which the900

deck consists of three suits with 3 cards each. Our instances901

are parametric in the maximum number of bets, which in902

limit hold’em is not necessarely tied to the number of play-903

ers. The maximum number of raise per betting round can be904

either 1, 2 or 3. As the game starts players pay one chip to905

the pot. There are two betting rounds. In the first one a single906

private card is dealt to each player while in the second round907

a single board card is revealed. The raise amount is set to 2908

and 4 in the first and second round, respectively.909

Liar’s dice Liar’s dice is another standard benchmark in-910

troduced by Lisỳ, Lanctot, and Bowling (2015). In our911

three-player implementation, at the beginning of the game912

each of the three players privately rolls an unbiased k-face913

die. Then, the three players alternate in making (potentially914

false) claims about their toss. The first player begins bidding,915

announcing any face value up to k and the minimum num-916

ber of dice that the player believes are showing that value917

among the dice of all the players. Then, each player has two918

choices during their turn: to make a higher bid, or to chal-919

lenge the previous bid by declaring the previous bidder a920

”liar”. A bid is higher than the previous one if either the face921

value is higher, or the number of dice is higher. If the current922

player challenges the previous bid, all dice are revealed. If 923

the bid is valid, the last bidder wins and obtains a reward of 924

+1 while the challenger obtains a negative payoff of -1. Oth- 925

erwise, the challenger wins and gets reward +1, and the last 926

bidder obtains reward of -1. All the other players obtain re- 927

ward 0. We test our algorithms on Liar’s dice instances with 928

k = 3 and k = 4. 929

C Additional Experimental Results 930

All experiments were run 10 times, and the experimental ta- 931

bles show average run times. We always use the same ran- 932

dom seed to sample no-regret strategies for the team mem- 933

bers in the seeding phase of our column-generation algo- 934

rithm. The seed was never changed, and we don’t treat it as a 935

hyperparameter. So, all algorithms are deterministic, and the 936

only source of randomness in the run time is due to system 937

load. Consequently, we observed small standard deviations 938

in the run times, less than 10% in all cases. 939

We used the same time limit for FTP that was found to 940

be beneficial by the original authors (Farina et al. 2018), 941

namely 15 seconds. For FTP and CG-18, we used the orig- 942

inal implementations, with permission from the authors. In 943

all algorithms, we observed that the majority of time is spent 944

within Gurobi. 945

Table 4 and Table 5 show the comparison between our 946

column-generation algorithm, FTP, and CG-18 when the op- 947

ponent plays as the first and as the second player, respec- 948

tively. 949

Comparison between the Algorithm of Section 6 950

and the Prior State of the Art 951

Depending on the cap n on the number or semi-randomized 952

correlation plans, the algorithm we describe in Section 6 953

might not reach the optimal TMECor value for the team (al- 954

though, as we argue in Section 8, a very small n already 955

guarantees a large fraction of the optimal value empirically). 956

For completeness, we report the run time of the algorithm 957

for a sample instance. We employ instance [H] with O = 3 958

as it is has a good trade-off between dimensions and man- 959

ageability. When n = 1 the algorithm reaches an optimal 960

solution in 9.74s. The optimal solution with n = 1 achieves 961

63% of the optimal utility with no restrictions on the number 962

of plans. With n = 2 the run time is 5m38s and the solution 963

reaches 84% of the optimal value. 964

The column-generation algorithm has better run time per- 965

formances and guarantees to reach an optimal solution with- 966

out having to pick the right support size. However, we ob- 967

serve that the algorithm of Section 6 already outperforms 968

FTP and CG-18. Specifically, FTP cannot reach a strategy 969

guaranteeing 50% of the optimal utility within the time limit, 970

while our algorithm guarantees 84% of the optimal value 971

within roughly 5 minutes. On the other hand, CG-18 cannot 972

complete even a single iteration within the time limit. This 973

confirms the our pricing formulation is significantly tighter 974

than previous formulations. 975



Game Ours Fictitious Team Play (FTP) CG-18 Pricers Team utility after seeding TMECor
Seeded Not seed. ε = 50% ε = 10% ε = 1% Relax. MIP m = 1 1000 10 000 value

[A] 2ms 1ms 0ms† 15.00s† 2m 35s† 66ms 5 0 −0.567 −0.133 −0.133 0
[B] 21ms 3ms 0ms 16m 39s > 6h 1.01s 0 3 −0.375 0.037 0.038 0.038
[C] 5.69s 5.79s 7m 36s > 6h > 6h > 6h 8 41 −0.166 0.058 0.058 0.066

[D] 186ms 304ms 2ms > 6h > 6h 1m 56s 19 0 −0.492 0.251 0.252 0.252
[E] 464ms 860ms 6ms > 6h > 6h 23m 17s 33 0 −1.000 0.249 0.253 0.253

[F] 2.14s 4.21s 19m 25s > 6h > 6h > 6h 1 0 −0.748 0 0 0
[G] 1m 11s 41m 23s > 6h > 6h > 6h > 6h 0 2 −0.721 0.063 oom 0.063

[H] 43.72s 1m 24s 2h 49m > 6h > 6h > 6h 9 79 −3.142 0.210 0.228 0.277
[I] 43m 58s 46m 08s > 6h > 6h > 6h > 6h 0 614 −3.091 0.111 0.122 0.142
[J] 3m 48s 11m 36s > 6h > 6h > 6h > 6h 1612 37 −4.000 0.627 0.651 0.836

(a) — Comparison of run times (b) (c)

Table 4: Results for O = 1. (a) Runtime comparison between our algorithm, FTP, and CG-18. The seeded version of our
algorithm runs m = 1000 iterations of CFR+ (Section 7), while the non seeded version runs m = 1. ‘†’: since the TMECor
value for the game is exactly zero, we measure how long it took the algorithm to find a distribution with expected value at least
−ε/10 for the team. (b) Number of times the pricing problem for our column-generation algorithm was solved to optimality
by the linear relaxation (‘Relax’) and by the MIP solver (‘MIP’) when using our column-generation algorithm (seeded version
with m = 1000). (c) Quality of the initial strategy of the team obtained for varying sizes of S compared to the expected utility
of the team at the TMECor. ‘oom’: out of memory.

Game Ours Fictitious Team Play (FTP) CG-18 Pricers Team utility after seeding TMECor
Seeded Not seed. ε = 50% ε = 10% ε = 1% Relax. MIP m = 1 1000 10 000 value

[A] 0ms 1ms 0ms† 19s† 3m 09s† 147ms 1 0 −0.633 0.000 0.000 0
[B] 0ms 11ms 1m 39s > 6h > 6h 7.53s 1 0 −0.250 0.027 0.027 0.027
[C] 6.47s 5.64s 48m 08s > 6h > 6h > 6h 6 33 −0.126 0.027 0.033 0.038

[D] 144ms 368ms 1ms > 6h > 6h 1m 46s 14 0 −0.384 0.252 0.252 0.252
[E] 641ms 904ms 1.39s > 6h > 6h 12m 30s 40 0 −3.000 0.252 0.252 0.253

[F] 55.00s 8m 59s 1h 30m > 6h > 6h > 6h 21 0 −0.630 0.256 0.256 0.256
[G] > 6h > 6h > 6h > 6h > 6h > 6h — — −0.766 0.264 oom —

[H] 7m 30s 8m 05s > 6h > 6h > 6h > 6h 25 335 −2.002 0.177 0.201 0.345
[I] 57m 32s 1h 09m > 6h > 6h > 6h > 6h 1 492 −2.505 0.096 0.110 0.142
[J] 7m 11s 5m 16s > 6h > 6h > 6h > 6h 2508 37 −7.500 0.630 0.819 0.971

(a) — Comparison of run times (b) (c)

Table 5: Results for O = 2. (a) Runtime comparison between our algorithm, FTP, and CG-18. The seeded version of our
algorithm runs m = 1000 iterations of CFR+ (Section 7), while the non seeded version runs m = 1. ‘†’: since the TMECor
value for the game is exactly zero, we measure how long it took the algorithm to find a distribution with expected value at least
−ε/10 for the team. (b) Number of times the pricing problem for our column-generation algorithm was solved to optimality
by the linear relaxation (‘Relax’) and by the MIP solver (‘MIP’) when using our column-generation algorithm (seeded version
with m = 1000). (c) Quality of the initial strategy of the team obtained for varying sizes of S compared to the expected utility
of the team at the TMECor. ‘oom’: out of memory.


