
Sound Algorithms in Imperfect Information Games

Michal Šustr,1,2 Martin Schmid,2 Matej Moravčı́k,2 Neil Burch,2 Marc Lanctot,2 Michael Bowling2

1 Czech Technical University, 2 DeepMind
Corresponding authors: michal.sustr@aic.fel.cvut.cz, mschmid@google.com

Abstract

Search has played a fundamental role in computer game re-
search since the very beginning. And while online search has
been commonly used in perfect information games such as
Chess and Go, online search methods for imperfect informa-
tion games have only been introduced relatively recently. This
paper addresses the question of what is a sound online algo-
rithm in an imperfect information setting of two-player zero-
sum games. We argue that the fixed-strategy definitions of ex-
ploitability and ε-Nash equilibria are ill-suited to measure an
online algorithm’s worst-case performance. We thus formal-
ize ε-soundness, a concept that connects the worst-case per-
formance of an online algorithm to the performance of an ε-
Nash equilibrium. As ε-soundness can be difficult to compute
in general, we introduce a consistency framework — a hier-
archy that connects an online algorithm’s behavior to a Nash
equilibrium. These multiple levels of consistency describe in
what sense an online algorithm plays “just like a fixed Nash
equilibrium”. These notions further illustrate the difference
between perfect and imperfect information settings, as the
same consistency guarantees have different worst-case online
performance in perfect and imperfect information games. The
definitions of soundness and the consistency hierarchy finally
provide appropriate tools to analyze online algorithms in re-
peated imperfect information games. We thus inspect some of
the previous online algorithms in a new light, bringing new
insights into their worst-case performance guarantees.

1 Introduction
From the very dawn of computer game research, search
was a fundamental component of many algorithms. Tur-
ing’s chess algorithm from 1950 was able to think two
moves ahead (Copeland 2004), and Shannon’s work on
chess from 1950 includes an extensive section on how
an evaluation function can be used within search (Shan-
non 1950). Samuel’s checkers algorithm from 1959 al-
ready combines search and learning of a value function,
approximated through a self-play method and bootstrap-
ping (Samuel 1959). The combination of search and learn-
ing has been a crucial component in the remarkable mile-
stones where computers outperformed their human coun-
terparts in challenging games: DeepBlue in Chess (Camp-
bell, Hoane Jr, and Hsu 2002), AlphaGo in Go (Silver et al.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2017), DeepStack and Libratus in Poker (Moravcik et al.
2017; Brown and Sandholm 2018).

Online methods for approximating Nash equilibria in se-
quential imperfect information games appeared only in the
last few years (Lisý, Lanctot, and Bowling 2015; Brown and
Sandholm 2017; Moravcik et al. 2017; Brown and Sandholm
2018, 2019; Brown et al. 2020). We thus investigate what it
takes for an online algorithm to be sound in imperfect infor-
mation settings. While it has been known that search with
imperfect information is more challenging than with per-
fect information (Frank and Basin 1998; Lisý, Lanctot, and
Bowling 2015), the problem is more complex than previ-
ously thought. Online algorithms “live” in a fundamentally
different setting, and they need to be evaluated appropriately.

Previously, a common approach to evaluate online algo-
rithms was to compute a corresponding offline strategy by
“querying” the online algorithm at each state (“tabulariza-
tion” of the strategy) (Lisý, Lanctot, and Bowling 2015;
Šustr, Kovařı́k, and Lisý 2019). One would then report the
exploitability of the resulting offline strategy. We show that
this is not generally possible and that naive tabularization
can also lead to incorrect conclusions about the online algo-
rithm’s worst-case performance. As a consequence we show
that some algorithms previously considered to be sound are
not.

We first give a simple example of how an online algo-
rithm can lose to an adversary in a repeated game setting.
Previously, such an algorithm would be considered optimal
based on a naive tabularization. We build on top of this ex-
ample to introduce a framework for properly evaluating an
online algorithm’s performance. Within this framework, we
introduce the definition of a sound and ε-sound algorithm.
Like the exploitability of a strategy in the offline setting, the
soundness of an algorithm is a measure of its performance
against a worst-case adversary. Importantly, this notion col-
lapses to the previous notion of exploitability when the al-
gorithm follows a fixed strategy profile.

We then introduce a consistency framework, a hierarchy
that formally states in what sense an online algorithm plays
“consistently” with an ε-equilibrium. The hierarchy allows
stating multiple bounds on the algorithm’s soundness, based
on the ε-equilibrium and consistency type. The stronger the
consistency is in our hierarchy, the stronger are the bounds.
This further illustrates the discrepancy of search in perfect

and imperfect information settings, as these bounds some-
times differ for perfect and imperfect information games.

The definitions of soundness and the consistency hierar-
chy finally provide appropriate tools to analyze online al-
gorithms in imperfect information games. We thus inspect
some of the previous online algorithms in a new light, bring-
ing new insights into their worst-case performance guaran-
tees. Namely, we focus on the Online Outcome Sampling
(OOS) (Lisý, Lanctot, and Bowling 2015) algorithm. Con-
sider the following statement from the OOS publication:
“We show that OOS is consistent, i.e., it is guaranteed to
converge to an equilibrium strategy as search time increases.
To the best of our knowledge, this is not the case for any ex-
isting online game playing algorithm. . . ’ The problem is that
OOS provides only the weakest of the introduced consisten-
cies — local consistency. As the local consistency gives no
guarantee for imperfect information games (in contrast to
perfect information games), OOS (and potentially other lo-
cally consistent algorithms) can be highly exploited by an
adversary. The experimental section then confirms this issue
for OOS in two small imperfect information games.

2 Background
We present our results using the recent formalism of
factored-observations games (Kovařı́k et al. 2019). The en-
tirety of the paper trivially applies to the extensive form for-
malism (Osborne and Rubinstein 1994) as well1 (as we are
only relying on the notion of states and rewards). We believe
this choice of formalism makes it easier to incorporate our
definitions in the future online algorithms, as sound search
in imperfect information critically relies on the notion of
common/public information (Burch, Johanson, and Bowling
2014; Seitz et al. 2019). Indeed, all the recently introduced
online algorithms in imperfect information games rely on
these notions (Moravcik et al. 2017; Brown and Sandholm
2018; Šustr, Kovařı́k, and Lisý 2019).
Definition 1. A factored-observations game is a tuple

G = 〈N ,W, wo,A, T ,R,O〉,
where:
• N = {1, 2} is a player set. We use symbol n for a player

and -n for its opponent.
• W is a set of world states and w0 ∈ W is a designated

initial world state.
• A = A1 × A2 is a space of joint actions. The subsets
An(w) ⊂ An and A(w) = A1(w) × A2(w) ⊂ A spec-
ify the (joint) actions legal at w ∈ W . For a ∈ A, we
write a = (a1, a2). An(w) for n ∈ N are either all non-
empty or all empty. A world state with no legal actions is
terminal.

• After taking a (legal) joint action a at w, the transition
function T determines the next world state w′, drawn
from the probability distribution T (w, a) ∈ ∆(W).

• R = (R1,R2), and Rn(w, a) is the reward player n re-
ceives when a joint action a is taken at w.
1Under the assumption the games are perfect-recall and 1-

timeable (Kovařı́k et al. 2019).

• O = (Opriv(1),Opriv(2),Opub) is the observation function,
where O(·) : W × A ×W → O(·) specifies the private
observation that player n receives, resp. the public obser-
vation that every player receives, upon transitioning from
world state w to w′ via some joint action a.

A legal world history (or trajectory) is a finite sequence
h = (w0, a0, w1, a1, . . . , wt), where wk ∈ W , ak ∈
A(wk), and wk+1 ∈ W is in the support of T (wk, ak). We
denote the set of all legal histories by H, and the set of all
sub-sequences of h that are legal histories asH(h) ⊆ H.

Since the last world state in each h ∈ H is uniquely de-
fined, the notation forW can be overloaded to work withH
(e.g., A(h) := A(the last w in h), h being terminal, ...). We
use Z to denote the set of all terminal histories, i.e. histories
where the last world state is terminal.

The cumulative reward of n at h is
∑t−1
k=0 r

k
n :=∑t−1

k=0Rn(wk, ak). When h is a terminal history, cumu-
lative rewards can also be called utilities, and denoted
as un(z). We assume games are zero-sum, so un(z) =
−u-n(z) ∀z ∈ Z . The maximum difference of utilities is
∆ = |maxz∈Z u1(z)−minz∈Z u1(z)|

Player n’s information state or private history at
h = (w0, a0,
w1, a1, . . . , wt) is the action-observation sequence
sn(h) := (O0

n, a
0
n,

O1
n, a

1
n, . . . , O

t
n), where Okn = On(wk−1, ak−1, wk) and

O0
n is some initial observation. The space Sn of all such

sequences can be viewed as the private tree of n.
A strategy profile is a pair σ = (σ1, σ2), where each (be-

havioral) strategy σn : sn ∈ Sn 7→ σn(sn) ∈ ∆(An(sn))
specifies the probability distribution from which player n
draws their next action (conditional on having information
sn). We denote the set of all strategies of player n as Σn and
the set of all strategy profiles as Σ.

The reach probability of a history h ∈ H under σ is de-
fined as πσ(h) = πσ1 (h)πσ2 (h)πσc (h), where each πσn(h) is
a product of probabilities of the actions taken by player n be-
tween the root and h, and πσc (h) is the product of stochastic
transitions. The expected utility for player n of a strategy
profile σ is un(σ) =

∑
z∈Z π

σ(z)un(z).
We define a best response of player n to the

other player’s strategies σ-n as a strategy br (σ-n) ∈
arg maxσ′n∈Σn un(σ′n, σ-n) and best response value
brv(σ-n) = maxσ′n∈Σn un(σ′n, σ-n). The profile σ is
an ε-Nash equilibrium if (∀n ∈ N) : un(σ) ≥
maxσ′n∈Σn un(σ′n,
σ-n) − ε, and we denote the set of all ε-equilibrium strate-
gies of player n as NEεn. The strategy exploitability is
expln(σn) :=

[
un(σ∗) − minσ′-n∈Σ-n un(σn, σ

′
-n)
]

where
σ∗ is an equilibrium strategy. The game value u∗ = u1(σ∗)
is the utility player 1 can achieve under a Nash equilibrium
strategy profile.

3 Online Algorithm
The environment we are concerned with is that of a repeated
game, consisting of a sequence of individual matches. As
a match progresses, the algorithm produces a strategy for a

Heads

Tails

1
2

1
2

1s1
Heads

Tails 1

1s2
Heads

Tails 1

1
2

1
2 1

s1
Heads

Tails
1

1
s2

Heads

Tails
1

Figure 1: Coordinated Matching Pennies. After the first
player acts, chance randomly chooses whether the second
player will be playing in the information state s1 or s2. The
first player receives utility of 1 if players’ actions match and
−1 if they mismatch.

visited information state on-line: that is, once it actually ob-
serves the state. This common framework of repeated games
is particularly suitable for analysis of online algorithms, as
the online algorithm can be conditioned on the past experi-
ence (e.g. by trying to adapt to the opponent or by re-using
parts of the previous computation). We are then interested in
the accumulated reward of the agent during the span of the
repeated game. Of particular interest will be the expected
reward against a worst-case adversary.

Coordinated Matching Pennies
We now introduce a small imperfect information game that
will be used throughout the article – “Coordinated Matching
Pennies” (CMP). It is a variation on the well-known Match-
ing Pennies game (Osborne and Rubinstein 1994), where
players choose either Heads or Tails and receive a utility of
±1 if their actions (mis)match. For CMP, we additionally in-
troduce a publicly observable chance event just after the first
player acts. See Figure 1 for details.

Let p and q denote the probability of playing Heads in in-
formation states s1 and s2 respectively. An equilibrium strat-
egy for the second player (Blue) is then any strategy where
the average of p and q is 1

2 . He thus has to coordinate the
actions between his two information states, while the first
player has a unique uniform equilibrium strategy. Similar
equilibrium coordination happens also in Kuhn Poker (Kuhn
1950).

Naive Tabularization
We now show that if one naively tries to convert an online
algorithm into a fixed strategy, the resulting exploitability
is not always representative of the worst-case performance
of the online algorithm. Consider the following algorithm
PlayCache for the repeated game of CMP. PlayCache
keeps an internal state, a cache – a mapping of information
state to probability distribution over the actions, and it grad-
ually fills the cache during the game.

Concretely, PlayCache plays for the second player as
follows:

• Initialize algorithm’s state θ0 to an empty cache.

• Given an information state s visited during a game, there
are three possible cases: i) The cache is empty: play Heads
and store {s,Heads} into the cache. ii) The cache is non-
empty and contains s: play the cached strategy for s. iii)
The cache is non-empty and does not contain s: play Tails
and store {s,Tails}.
Consider what happens if one tries to naively tabularize

the PlayCache by querying the algorithm for all the in-
formation states. If we query the algorithm for states s1, s2,
we get the resulting offline strategy s1 : Heads, s2 : Tails.
Querying the algorithm for states in reverse order, i.e. s2, s1

results in s1 : Tails, s2 : Heads. And while both of these
offline strategies have zero exploitability, one can still ex-
ploit the algorithm during the repeated game. This follows
from the fact that the very first time the PlayCache gets to
act, it always plays Heads. The first player can thus simply
play Heads during the first match and is guaranteed to win
the match. As we will show later, PlayCache falls within
a class of algorithms that can be exploited, but where the av-
erage reward is guaranteed to converge to the game value as
we repeatedly keep playing the game.

Where did this discrepancy between the exploitability of
the tabularized strategy and the exploitability of the online
algorithm come from? It is simply because the tabularized
strategy does not properly describe the game dynamics of
PlayCache. In fact, there is no fixed strategy that does so!
We will now formalize an appropriate framework to describe
the rewards and dynamics of online algorithms, which will
allow us to define notions for the expected reward and the
worst-case performance in the online setting.

Online Settings
The repeated game p consists of a finite sequence of k indi-
vidual matches m = (z1, z2, . . . , zk), where each match
zi ∈ Z is a sequence of world states and actions zi =
(w0

i , a
0
i , w

1
i , a

1
i . . . , a

li−1
i ,

wlii), ending in a terminal world state wlii . For each visited
world state in the match, there is a corresponding informa-
tion state, i.e. a player’s private perspective of the game (for
perfect information games, the notion of information state
and world state collapse as the player gets to observe the
world perfectly). An online algorithm Ω then simply maps
an information state observed during a match to a strategy,
while possibly using its internal algorithm state (Def. 2).

Given two players that use algorithms Ω1,Ω2, we use
P kΩ1,Ω2

to denote the distribution over all the possible
repeated games m of length k when these two players
face each other. The average reward of m is Rn(m) =

1/k
∑k
i=1 un(zi) and we denote Em∼PkΩ1,Ω2

[Rn(m)] to
be the expected average reward when the players play k
matches. From now on, if player n is not specified, we as-
sume without loss of generality it is player 1. The proofs of
the theorems have been omitted from this workshop version
of the paper and can be found on ArXiV2.
Definition 2. Online algorithm Ω is a function Sn × Θ 7→
∆(An(sn))×Θ, that maps an information state sn ∈ Sn to

2https://arxiv.org/abs/2006.08740

the strategy σn(sn) ∈ ∆(An(sn)), while possibly making
use of algorithm’s state θ ∈ Θ and updating it. We denote
the algorithm’s initial state as θ0. A special case of an on-
line algorithm is a stateless algorithm, where the output of
the function is independent of the algorithm’s state (thus in-
dependent of the previous matches). If the output depends on
the algorithm’s state, we say the algorithm is stateful.

As the game progresses, the online algorithm produces
strategies for the visited information states and updates its
algorithm state. This allows it to potentially output different
strategies for the same information state visited in different
matches. We thus use Ωm(sn) to denote the resulting strat-
egy in the information state sn after the algorithm has al-
ready played the matches m = z1, . . . , zk. Note that play-
ers can not visit the same information state twice in a single
match.

Remark 3. If we need to encode a stochastic algorithm, we
can do it formally as taking the initial state to be a real-
ization of a random variable. The initial state should be ex-
tended to encode how the algorithm should act (seemingly)
randomly in any possible game-play situation beforehand.

Soundness of Online Algorithm
We are now ready to formalize the desirable properties of
an online algorithm in our settings. Exploitability, resp. ε-
equilibrium considers the expected utility of a fixed strategy
against a worst-case adversary in a single match. We thus de-
fine a similar concept for the settings of an online algorithm
in a repeated game: (k, ε)-soundness. Intuitively, an online
algorithm is (k, ε)-sound if and only if it is guaranteed the
same reward as if it followed a fixed ε-equilibrium after k
matches.

Definition 4. For an (k, ε)-sound online algorithm Ω, the
expected average reward against any opponent is at least as
good as if it followed an ε-Nash equilibrium fixed strategy σ
for any number of matches k′:

∀k′ ≥ k ∀Ω2 : Em∼Pk′Ω,Ω2

[R(m)] ≥ Em∼Pk′σ,Ω2

[R(m)] .

(1)

If algorithm Ω is (k, ε)-sound for ∀k ≥ 1, we say the algo-
rithm is ε-sound.

Note that this definition guarantees that an online algo-
rithm that simply follows a fixed ε-equilibrium is ε-sound.
And while the online algorithm can certainly play as a fixed
strategy, online algorithms are far from limited to doing
so, e.g. PlayCache from Section 3. PlayCache is 1-
sound (ε = 1) as this algorithm is highly exploitable in the
first match. Additionally, an online algorithm may be sound
(ε = 0), but there might not be any offline equilibrium that
produces the same distribution of matches.

Response Game
To compute the expected reward Em∼Pk′Ω,Ω2

[R(m)] as in
Def. (4), we construct a repeated game (Osborne and Ru-
binstein 1994) in the FOG formalism, where we replace the
decisions of the online algorithm with stochastic (chance)

transitions. As we allow the online algorithm to be stateful
and thus produce strategies depending on the game trajec-
tory, the response game must also reflect this possibility. The
resulting game GkΩ is thus exponential in size as it reflects all
possible trajectories of k matches. We call this single-player
game a k-step response game.

The k-step response game allows us to compute the best
response value of a worst-case adversary in k-match game-
play. We will use overloaded notation brv(GkΩ) to denote this
value.
Theorem 5. If ∀k′ ≥ k brv(Gk′Ω) ≤ k′ε, then algorithm Ω
is (k, ε)-sound.

Proof. If we used a fixed ε-equilibrium strategy σ in
each match (repetition) of a response game Gk′σ , then the
brv(Gk′σ) = k′ε because adversary can gain at most ε in
each match. Since ε-sound algorithm should play at least as
well as some offline ε-equilibrium, it must have brv(GkΩ) ≤
kε ∀k ≥ 1. For a (k, ε)-sound algorithm we add the condi-
tion of ∀k′ ≥ k.

Tabularized Strategy
When an online algorithm produces the same strategy for an
information state regardless of the previous matches, there
is no need for the k-response game. Fixed strategy notion
sufficiently describes the behavior of the online algorithm
and thus the exploitability of the fixed strategy matches
the soundness. To compute this fixed strategy, one simply
queries the online algorithm for all the information states in
the game.

4 Relating (k, ε)-Soundness and ε-Nash
Unfortunately, our notion of (k, ε)-soundness is often infea-
sible to reason about, as it requires checking that the algo-
rithm does not make strategy errors for ∀k′ ≥ k. In this
section, we introduce the concept of consistency that allows
one to formally state that the online algorithm plays “consis-
tently” with an ε-equilibrium. Our consistency notion allows
us to directly bound the (k, ε)-soundness of an online algo-
rithm. We introduce three hierarchical levels of consistency,
with varying restrictions and corresponding bounds. Notice
that they differ mainly in the order of quantifiers.

Local Consistency
Local consistency simply guarantees that every time we
query the online algorithm, there is an ε-equilibrium that
has the same local behavioral strategy σ(s) for the queried
state s.
Definition 6. Algorithm Ω is locally consistent with ε-
equilibria if

∀k ∀m = (z1, z2, . . . , zk) ∀h ∈ H(zk) ∃σ ∈ NEεn
holds that Ω(z1, ..., zk−1)(s(h)) = σ(s(h)).

While this suggests that the algorithm plays like some
equilibrium, it is not so, and the resulting strategy can be
highly exploitable. This is because one cannot combine local
behavioral strategies from different ε-equilibria and hope to

preserve their exploitability. In another perspective, as soon
as one starts to condition the selection of the strategy on pri-
vate information, it risks computing strategies that can be
exploited in a repeated game. This is a motivation behind
introducing (k, ε)-soundness, as it allows us to analyze al-
gorithms that use such conditioning.

Consider the CMP game with two strategies σ1 =
{(s1, p = 1), (s2, q = 0)} and σ2 = {(s1, p =
0.5), (s2, q = 0.5)}. While both strategies are equilibria,
if one plays in the states s1 and s2 based on the first and
second equilibrium respectively, it corresponds to an ex-
ploitable strategy {(s1, p = 1), (s2, q = 0.5)}.
Theorem 7. An algorithm that is locally consistent with ε-
equilibria might not be (k, ε)-sound.

Note that this can happen even in perfect information
games. Interestingly, local consistency is sufficient if the al-
gorithm is consistent with a subgame perfect equilibrium.
Theorem 8. In perfect information games, an algorithm
that is locally consistent with a subgame perfect equilibrium
is sound.

A particularly interesting example of an algorithm that is
only locally consistent is Online Outcome Sampling (Lisý,
Lanctot, and Bowling 2015) (OOS). See Section 6 for de-
tailed discussion and experimental evaluation, where we
show that this algorithm can produce highly exploitable
strategies in imperfect information games.

Global Consistency
Local consistency guarantees consistency only for individ-
ual states. The problem we have then seen is that the com-
bination of these local strategies might produce highly ex-
ploitable overall strategy. A natural extension is then to guar-
antee consistency with some equilibria for all the states in
combination: a global consistency.
Definition 9. Algorithm Ω is globally consistent with ε-
equilibria if

∀k ∀m = (z1, z2, . . . , zk) ∃σ ∈ NEεn ∀h ∈ H(zi)

holds that Ω(z1, ..., zi−1)(s(h)) = σ(s(h)) for ∀i ∈ {1, . . . , k}.
However:
Theorem 10. An algorithm that is globally consistent with
ε-equilibria might not be ε-sound.

Proof. A counter-example: The PlayCache algorithm is
globally consistent, but it is not sound (ε = 0), as we have
seen that it is exploitable during the first match (k = 1).

But what if the algorithm keeps on playing the repeated
game? While the global consistency with equilibria does not
guarantee soundness, it guarantees that the expected average
reward converges to the game value in the limit.
Theorem 11. For an algorithm Ω that is globally consistent
with ε-equilibria,

∀k ∀Ω2 : Em∼PkΩ,Ω2

[R(m)] ≥ u∗ − ε−
∣∣S1

∣∣∆
k

. (2)

Corollary 12. An algorithm Ω that is globally consistent
with ε-equilibria is (k, ε)-sound as k →∞.

Strong Global Consistency
The problem with global consistency is that it guarantees
the existence of consistent equilibrium for any game-play
after the game-play is generated. Strong global consistency
additionally guarantees that the game-play itself is gener-
ated consistently with an equilibrium; and as in global con-
sistency, the partial strategies for this game-play also corre-
spond to an ε-equilibrium. In other words, the online algo-
rithm simply exactly follows a predefined equilibrium.
Definition 13. Online algorithm Ω is strongly globally con-
sistent with ε-equilibrium if

∃σ ∈ NEεn ∀k ∀m = (z1, z2, . . . , zk) ∀h ∈ H(zk)

holds that Ω(z1, ..., zk−1)(s(h)) = σ(s(h)).

Strong global consistency guarantees that the algorithm
can be tabularized, and the exploitability of the tabularized
strategy matches ε-soundness of the online algorithm.
Theorem 14. Online algorithm Ω that is strongly globally
consistent with ε-equilibrium is ε-sound.

Canonical examples of strongly globally consistent on-
line algorithms are DeepStack/Libratus. In general, an al-
gorithm that uses a notion of safe (continual) resolving is
strongly globally consistent as it essentially re-solves some
ε-equilibrium (albeit an unknown one) that it follows. An-
other, more recent example is ReBeL (Brown et al. 2020), as
it essentially imitates CFR-D iterations in conjunction with
a neural network.

Proving Strong Global Consistency
While we are not aware of an algorithm that is only glob-
ally consistent (besides the toy PlayCache), reasoning
about global consistency can be beneficial for showing the
strong global consistency. Doing so just based on its defini-
tion might not be straightforward. However, proving global
consistency can be easier. If applicable, we can then use the
following theorem to extend the proof to the strong global
consistency.
Theorem 15. If a globally consistent algorithm is stateless
then it is also strongly globally consistent.

Proof. The definition of a stateless algorithm implies that
for an information state s the algorithm always produces the
same behavioral strategy σ(s) as the algorithm is determin-
istic (all stochasticity is encoded within the algorithm state
θ, see Remark 3).

This means that whatever ε-equilibria the algorithm is
globally consistent with is independent of the current game-
play or match number. This allows us to swap the quantifiers
from

∀k ∀m = (z1, z2, . . . , zk) ∃σ ∈ NEεn ∀i ∈ {1, . . . , k} ∀h ∈ H(zi) :

Ω(z1, ..., zi−1)(s(h)) = σ(s(h))

to

∃σ ∈ NEεn ∀k ∀m = (z1, z2, . . . , zk) ∀i ∈ {1, . . . , k} ∀h ∈ H(zi) :

Ω(z1, ..., zi−1)(s(h)) = σ(s(h)).

Using the same argument we can treat the different
matches zi as an iteration over k, leading us to strong global
consistency

∃σ ∈ NEεn ∀k ∀m = (z1, z2, . . . , zk) ∀h ∈ H(zk) :

Ω(z1, ..., zk−1)(s(h)) = σ(s(h)).

5 Relating (k, ε)-Soundness and Regret
Regret is an online learning concept that has triggered de-
sign of a family of powerful learning algorithms. Indeed,
many algorithms that approximate Nash equilibria use regret
minimization (Zinkevich et al. 2008). There is a well-known
connection between regret and the Nash equilibrium solu-
tion concept. In a zero-sum game at time k, if both players’
overall regret Rk is less than kε, the average strategy profile
is a 2ε-equilibrium (Zinkevich et al. 2008). The use of k in
(k, ε)-soundness allows us to relate it with regret, and show
how it is different from the consistency hierarchy.

Corollary 16. Any regret minimizer with a regret bound of
Rk is (k, Rk2k)-sound.

6 Experiments
A particularly interesting example of an algorithm that
is only locally consistent is Online Outcome Sampling
(OOS) (Lisý, Lanctot, and Bowling 2015). We use it to
demonstrate the theoretical ideas in this paper with empiri-
cal experiments. We show that local consistency does in fact
fail to result in ε-soundness in the online setting. The prob-
lem we demonstrate is also not specific to OOS, but in gen-
eral to any adaptation of an offline algorithm to the online
setting where the algorithm attempts to improve its strategy
during online play.

At high level, OOS runs the offline MCCFR algorithm in
the full game (while also gradually building the tree), pa-
rameterized to increase the sampling probability of the cur-
rent information state. The algorithm then plays based on
the resulting strategy for that particular state. The problem
is that these individual MCCFR runs can converge to differ-
ent ε-equilibria as the MCCFR is parameterized differently
in each information state. In other words, the OOS algorithm
exactly suffers from the fact that it is only locally consistent.

We use two games in our experiments: Coordinated
Matching Pennies from Section 3 and Kuhn Poker (Kuhn
1950). We present the Coordinated Matching Pennies re-
sults here. The code for all the experiments can be found
at https://github.com/deepmind/open spiel/.

Within a single match of Coordinated Matching Pennies,
the second player will act either in s1 or s2. OOS will
therefore bias MCCFR samples to whichever information
state that actually occurs in the match. These two situa-
tions are distinct and result in two different strategies for
the whole game (including the non-visited state), similarly
to the example in Section 4. To emulate what OOS does,
we parametrize MCCFR runs to bias samples into s1 and
s2 respectively, and initialize the regrets in s1, s2 so that the
MCCFR is likely to produce diverse sets of strategies. As

102 103 104 105 106

iterations

10 3

100

e
x
p
l 2

No biasing (MCCFR)

Bias to s1 (MCCFR)

Bias to s2 (MCCFR)

Tabularized strategy (OOS)

Figure 2: While individual MCCFR strategies have low ex-
ploitability of ∼ 10−3, the tabularized OOS strategy has
high exploitability of 0.17 even after 106 iterations.

MCCFR is stochastic, we average the strategies over 3 · 104

random seeds.
In Figure 2 we plot exploitability for the average strate-

gies, and unbiased MCCFR for reference. The two biased
variants of MCCFR actually converge at a similar rate to un-
biased MCCFR, confirming that OOS is locally consistent:
it quickly converges to an ε-equilibria for s1 and s2 indi-
vidually. However, the tabularized strategy — the strategy
OOS follows online — is many orders of magnitude more
exploitable even with hundreds of thousands of online iter-
ations. The problem is that adapting its strategy online at
s1 and s2 causes it to not be globally consistent with any
ε-equilibria.

7 Related literature
There are several known pathologies that occur in imper-
fect information games that are not present in the perfect
information case. The pathologies that happen in the of-
fline setting also present a problem in the online setting.
In (Frank and Basin 1998) the authors identified two prob-
lems: strategy-fusion and non-locality.

These two problems can easily arise for algorithms de-
signed to solve only perfect-information games, such as
minimax or reinforcement learning algorithms, and lead to
computation of exploitable strategies. The proposed local
consistency is similar in its spirit to non-locality, as com-
position of partial strategies (that correspond to parts of dis-
tinct equilibria) produced by an online algorithm may not be
an overall equilibrium strategy. However local consistency
identifies sub-optimal play also across repeated games.

In (Moravcik et al. 2017; Brown and Sandholm 2018),
they use some form of continual re-solving, which is
strongly globally consistent. This guarantees soundness of
the algorithms. Continual resolving uses value functions de-
fined over public belief spaces (Brown et al. 2020) to com-
pute consistent strategies. Indeed, the minimal amount of
information needed to properly define value functions are
ranges (beliefs) over common knowledge public states (Seitz
et al. 2019).

The notion of sufficient plan-time statistics studied in (?)
is very closely related to the public beliefs. The paper sug-
gests the structure of the value function for games where the
hidden information becomes public after a certain number
of moves.

We are not aware of algorithms in the literature that are
only globally consistent. This may lead to interesting future
work: the algorithm may try to reduce its sub-optimal play of

the first matches, while possibly not using all of the required
player’s ranges.

Tabularization has been used in (Šustr, Kovařı́k, and Lisý
2019) to compute an offline strategy and its exploitability.
In (Lisý, Lanctot, and Bowling 2015) they consider com-
puting this tabularization (they refer to it as “brute-force”
approach), but it is a very expensive procedure. Instead they
use an “aggregate method”, which “stitches” strategy from a
small number of matches and defines the strategy as uniform
in non-visited information states. They do not state whether
such approximation of tabularization is indeed correct.

8 Conclusion
We introduced the game of Coordinated Matching Pennies
(CMP). This game illustrates the consistency issues that can
arise for online algorithms in imperfect information games.
We observed that exploitability is not an appropriate mea-
sure of an algorithm’s performance in online settings. This
motivated us to introduce a formal framework for studying
online algorithms and allowed us to define ε-soundness. Just
like ε-exploitability, it measures the performance against the
worst-case adversary. Soundness generalizes exploitability
to repeated sequential games and it collapses to it when
an online algorithm follows a fixed strategy. We then intro-
duced a hierarchical consistency framework that formalizes
in what sense an online algorithm can be consistent with a
fixed strategy. Namely, we introduced three levels of consis-
tency: i) local, ii) global and iii) strongly global. These con-
nect an online algorithm’s behavior to that of a fixed strategy
with increasingly tight bounds on the average expected util-
ity against a worst-case adversary. We also stated various
bounds on soundness based on the exploitability of a con-
sistent fixed strategy. Interestingly, the implications are dif-
ferent in some cases for perfect and imperfect information
games.

Within this framework, we saw that local consistency
in imperfect information games does not guarantee cor-
rect evaluation of worst-case performance by computing ex-
ploitability. Based on this result, we argued that OOS, pre-
viously considered sound, can be exploited. This illustrates
that these subtle problems with online algorithms can easily
be missed and lead to wrong conclusions about their perfor-
mance. Our experimental section included experiments in
CMP and Kuhn Poker and showed a large discrepancy be-
tween OOS’s actual performance and the bound previously
thought to hold.

References
Brown, N.; Bakhtin, A.; Lerer, A.; and Gong, Q.
2020. Combining Deep Reinforcement Learning and
Search for Imperfect-Information Games. arXiv preprint
arXiv:2007.13544 .

Brown, N.; and Sandholm, T. 2017. Safe and nested sub-
game solving for imperfect-information games. In Advances
in Neural Information Processing Systems, 689–699.

Brown, N.; and Sandholm, T. 2018. Superhuman AI for
heads-up no-limit poker: Libratus beats top professionals.
Science 359(6374): 418–424.

Brown, N.; and Sandholm, T. 2019. Superhuman AI for mul-
tiplayer poker. Science 365(6456): 885–890.

Burch, N.; Johanson, M.; and Bowling, M. 2014. Solving
imperfect information games using decomposition. In AAAI,
602–608.

Campbell, M.; Hoane Jr, A. J.; and Hsu, F.-h. 2002. Deep
blue. Artificial intelligence 134(1-2): 57–83.

Copeland, B. J. 2004. The essential Turing. Clarendon Press.

Frank, I.; and Basin, D. 1998. Search in games with in-
complete information: A case study using bridge card play.
Artificial Intelligence 100(1-2): 87–123.

Kovařı́k, V.; Schmid, M.; Burch, N.; Bowling, M.; and
Lisý, V. 2019. Rethinking formal models of partially
observable multiagent decision making. arXiv preprint
arXiv:1906.11110 .

Kuhn, H. W. 1950. A simplified two-person poker. Contri-
butions to the Theory of Games 1: 97–103.

Lisý, V.; Lanctot, M.; and Bowling, M. 2015. Online Monte
Carlo counterfactual regret minimization for search in im-
perfect information games. In Proceedings of the 2015 Inter-
national Conference on Autonomous Agents and Multiagent
Systems, 27–36. International Foundation for Autonomous
Agents and Multiagent Systems.

Moravcik, M.; Schmid, M.; Burch, N.; Lisý, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science 356(6337): 508–513.

Osborne, M. J.; and Rubinstein, A. 1994. A course in game
theory. MIT press.

Samuel, A. L. 1959. Some studies in machine learning using
the game of checkers. IBM Journal of research and devel-
opment 3(3): 210–229.

Seitz, D.; Kovarı́k, V.; Lisỳ, V.; Rudolf, J.; Sun, S.; and Ha,
K. 2019. Value Functions for Depth-Limited Solving in
Imperfect-Information Games beyond Poker. arXiv preprint
arXiv:1906.06412 .

Shannon, C. E. 1950. XXII. Programming a computer for
playing chess. The London, Edinburgh, and Dublin Philo-
sophical Magazine and Journal of Science 41(314): 256–
275.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,

A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676): 354–359.

Šustr, M.; Kovařı́k, V.; and Lisý, V. 2019. Monte Carlo con-
tinual resolving for online strategy computation in imperfect
information games. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems,
224–232. International Foundation for Autonomous Agents
and Multiagent Systems.
Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione,
C. 2008. Regret minimization in games with incomplete
information. In Advances in neural information processing
systems, 1729–1736.

