Measuring the Solution Strength of Learning Agents in Adversarial Perfect
Information Games

Zaheen Farraz Ahmad, Nathan Sturtevant, Michael Bowling
Department of Computing Science
University of Alberta, Amii
Edmonton, AB
{zfahmad, nathanst, mbowling } @ualberta.ca

Abstract

Self-play reinforcement learning has given rise to capable
game-playing agents in a number of complex domains such
as Go and Chess. These players were evaluated against other
state-of-the-art agents and professional human players and
have demonstrated competence surpassing these opponents.
But does strong competition performance also mean the
agents can (weakly or strongly) solve the game? Or even
approximately solve the game? No existing work has con-
sidered this question. We propose aligning our evaluation of
self-play agents with metrics of strong/weakly solving strate-
gies to provide a measure of an agent’s strength. Using small
games, we establish methodology on measuring the strength
of a self-play agent and its gap between a strongly-solving
agent, one which plays optimally regardless of an opponent’s
decisions. We provide metrics that use ground-truth data from
small, solved games to quantify the strength of an agent and
its ability to generalize to a domain. We then perform an anal-
ysis of a self-play agent using scaled-down versions of Chi-
nese checkers.

Introduction

Adversarial games have become widely used environments
for developing and testing the performance of learning
agents. They possess many of the same properties of real-
world decision-making problems in which we would want
deploy said agents. However, unlike highly complex real-
world environments, games can be more readily modelled
and have very clear notions of success and failure. As
such, games make an excellent training ground for design-
ing and evaluating Al intended to be scaled to more realistic
decision-making scenarios.

Recent advances in Al research have birthed a number
of agents that imitate intelligent behavior in games with
large state spaces and complex branching factors. Through a
combination of different techniques and approaches, highly
performant agents were developed to play games such
as Checkers (Schaeffer et al. 1992), Chess (Campbell,
Hoane Jr, and Hsu 2002; Silver et al. 2018), Poker (Bowl-
ing et al. 2017; Morav¢ik et al. 2017), Go (Silver et al. 2016,
2017, 2018) and Starcraft (Vinyals et al. 2019). These agents

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

were all evaluated against humans and demonstrated strate-
gic capabilities that surpassed even top-level professional
human players.

A commonly used method to evaluate the performance of
agents in two-player games is to have the agents play against
other agents with theoretical guarantees of performance, or
humans in a number of one-on-one games and then mea-
suring the proportions of wins and losses. The agent which
wins the most games against the others is said to be the more
capable agent. However, this metric only provides a loose
ranking among the agents — it does not provide a quantita-
tive measure of the actual strength of the agents or how well
they generalize to their respective domains.

Alternatively, in the realm of two-player, perfect-
information games, one can evaluate the strength of an agent
with regard to certain solution concepts. These solution con-
cepts are defined with respect to the game theoretical value
obtainable by different strategies (Allis et al. 1994). For in-
stance, a “strong” agent would be able to obtain the value
of a position of a game from any legal position while a
“weaker” agent can do so only in a smaller subset of states.
These measures of an agent’s skill are more principled and
informative than solely their ranking with regards to other
agents. However, finding such measures are computation-
ally expensive and usually require exhaustively searching
over all sequences of play. While they have been used in a
number of games to different degrees of success (Allis et al.
1994; Schaeffer et al. 2007), the computational requirements
prohibit them from being employed in larger games such as
Chess or Go.

We focus our investigation solely on two-player, zero-
sum, perfect-information games. In this paper, we propose
aligning our understanding of the strength of a player using
metrics of strongly/weakly solved and error rates. We build
an AlphaZero agent that learns to play Chinese checkers and
use it to learn to play small board sizes. We then use an ex-
isting Chinese checkers solver to evaluate the strength of the
AlphaZero player using ground truth data.

Background
Adversarial Games

An adversarial game is a sequential decision-making set-
ting in which two players alternate taking actions at differ-

ent game states until a terminating state is reached at which
point each of the players observe some utility. We model a
zero-sum, deterministic, perfect information game as a set
of states, S, where at each state a player ¢« € {0,1}, se-
lects an action from the set of all actions, A. A policy is a
mapping 7 : S — AA from a state to a distribution over ac-
tions and we say 7(als) is the probability of taking an action
a € Aats € S. There is a deterministic transition function
T : S x A — S that returns a new state s’ € S when action
a is taken at s.

We define Z C S to be the set of all the terminal states.
At a terminal state, no players can take an action and the
game ends. A utility function v : S — R associates a real-
valued utility (or reward) to each state so that the utility ob-
served by each player ¢ at a state s is u;(s), V;. The utility for
all non-terminal states is O and the utility of a terminal state
canbe 1, 0 or -1. These are known as the game-theoretic val-
ues of the terminal states. A utility of 1 signifies a win, -1 a
loss and O represents a draw (if there are any.) In a zero-sum
game the utilities of both players sum to 0 (u1(s) = —us(s))
and so if one player wins the other will lose. Typically in
most combinatorial games, the player who takes an action
that transitions to a terminal state is the winner.

Each state is also associated with a state-value, V' (s),
which is the expected utility observed by a player reaching
state s and then assuming both players follow their respec-
tive policies until a terminal state is reached where V' (2) =
u(z),V,cz. An action-value or Q-value is the value asso-
ciated with a state-action pair. We denote the)-value of a
state-action pair as ()(s, a) and it is defined as the expected
utility of taking action a at s and then having both players
follow their policies until termination. As we are only ex-
amining games with deterministic transitions, we can define
Qs.0) = V(T(s.0)) and V(s) = 3,y w(als) - Q(s.a).

The goal of an agent in a game is to maximize the utility it
achieves when playing the game (that is, it strives to win the
game.) An agent does so by finding policies that selects ac-
tions with higher ()-values at any state of the game ensuring
that it has a higher chance of reaching terminal states that
provide positive utilities.

Solved Games

A player that behaves optimally in a game is said to exhibit
perfect play — the player will always behave in a way such
that it guarantees an optimal outcome for them, regardless of
the opponent’s actions. The optimal outcome can be a win,
draw or loss. Knowledge of perfect play is conditioned on
a game being solved. That is, the outcome of the game can
be determined when both players are acting perfectly. Allis
et al. (Allis et al. 1994) present three different definitions
for “solved” in the setting of zero-sum perfect information
games,

* ultra-weakly solved
» weakly solved
e strongly solved.

An ultra-weakly solved game is one where the game-
theoretic value of the initial position is known. Given per-
fect play, the outcome of a game is known to be win, loss

or draw but there need not be a strategy produced that guar-
antees this outcome. For example, for the game of Hex, it
has been proved that the first player will win on all square
boards given both players play optimally. However, there is
no constructive strategy that is guaranteed to reach this out-
come'.

A weakly solved game is one where there is a strategy
that guarantees the game-theoretic value of the game when
both players play optimally. Checkers is a weakly-solved
game (Schaeffer et al. 2007) and is shown to be a draw for
both players under perfect play — there is an explicit strat-
egy that is shown to never lose and will always at least draw
with any opponent. However, a strategy that weakly solves
the game does not necessitate that the player following said
strategy will capitalize on situations where the opponent
plays sub-optimally. For instance, if the opponent makes a
mistake and moves to a losing position, a strategy that guar-
antees a draw will not necessarily win from there.

In a strongly solved game, the game theoretic value of ev-
ery legal position is known and there is a strategy that guar-
antees that a player will observe that outcome from that po-
sition. Examples of solved games are Tic-tac-toe, Connect-
Four (Allis 1988) and smaller variants of Chinese check-
ers (Sturtevant 2019). A player must capitalize on any mis-
take an opponent may make and play optimally from every
legal position.

Strongly solving a game requires exhaustively enumer-
ating all sequences of play from the initial position of the
game and, through backwards induction, eliminating from
the strategy paths that lead to sub-optimal outcomes. Pre-
dictably, the intense computational requirements currently
renders it intractable to solve games such as Chess or Go
due to the sheer size of their state space (approximately 10°°
states for Chess and 10'7° for Go.) However, knowledge that
a strategy is weakly or strongly solving is an irrefutable mea-
sure of the competency of an agent’s behavior and so it is
desirable to solve games.

Related Work

Planning methods have been instrumental in finding approx-
imately good strategies in sequential domains where ex-
haustive search is infeasible. A sample-based planner re-
peatedly samples actions to evaluate at a decision point
to approximate the expected value of their outcomes. One
such planning method is Monte-Carlo tree search (MCTS),
a simulation-based scheme which incrementally builds a
search tree of sequential states and actions and records
statistics of estimated outcomes. At iteration, MCT'S selects
an action to be sampled using a selection policy and follows
a separate rollout policy (e.g. a random policy) at each sub-
sequent state until a terminal state is reached. The outcome
is observed and the estimates of the outcome of the action
at the state are updated. A commonly used variant of MCTS
called UCT (Kocsis and Szepesvari 2006) attempts to bal-
ance the sampling budget between exploiting promising ac-

"The proof for the game-theoretic of Hex was derived using a
strategy stealing argument and knowledge that there are no draws
in Hex.

tions to improve the estimates of their outcomes and explor-
ing new actions. For every action at a state, UCT keeps track
of its estimated ()-value and its selection count, and sam-
ples the action with the highest one-sided confidence value
according to

arg max <Q_(s,a)+C~ 1ogN> ,)
a Ng

where Q(s, a) is the current sampled expected action-value,
N is the total number of samples taken and n, is the num-
ber of times action a was sampled. C' is an exploration co-
efficient which influences the rate at which new actions are
sampled. While UCT has been shown to work well, it re-
quires all actions to be sampled at least once, limiting its
effectiveness in large domains.

Variants of MCTS use learned policies to reduce the
search complexity (Silver et al. 2017, 2018). These agents
use a function approximator that, when given a game state,
produces a policy and a value estimate. The value estimate
is an approximation of V'(s) and the policy is used to guide
search using PUCT (Rosin 2011). The action a; to be sam-
pled at s is selected according to:

a; = argmax(Q(s,a)) + U(s,a)).
a

The Q-values used for PUCT are calculated as Q(s,a) =
7 Ys|sass V(8') where V(s') is acquired from the func-
tion approximator, n, is the visit count for action a and
s'|s,a — ¢ represents that s’ is reached by playing a at
5. U(s,a) = C(s) - P(a) - VN/(1 4+ ng), where C(s)
is the exploration rate that grows with time and P(a) is
the prior placed on action a according to the policy. The
function approximator is trained and refined using self-play
and reinforcement learning. These agents continuously play
games against themselves and their approximators update
their parameters so as to move their policy and value esti-
mates closer to the sampling distributions of PUCT and the
outcomes respectively. In recent work (Silver et al. 2016,
2017, 2018), these agents were evaluate against other MCTS
agents and humans. Unfortunately, these evaluations only
rank the skills of the different agents but do not provide a
measure of their strength.

Measures of the Strength of An Agent

While competitive comparisons between game-playing
agents provide a ranking over the skill of the agents, they do
not provide measures on the strength of their strategies. Does
an agent that wins against all other agents have good strate-
gies? Or are the strategies of the other agents just worse?
We propose that being able to quantify the strength of
the agent in terms of weakly/strongly solving games would
present us metrics on the quality of the strategies these
agents. Specifically, we may be able to measure of the qual-
ity of the strategies learned by agents through self-play and
gain new insight into their behavior. For instance, which
states do these agents learn to play well? Which do they have
difficulty on? Does self-play result in exploitability to which

other agents are not susceptible? Moreover, these metrics
would be independent of any other players and wholly rely
on the agent’s capacity of reasoning in the game. To that
end, we now propose our measures of strength of an agent
that reflect the three definitions for solving a game:

Measure of Ultra-Weak This is the proportion of times an
agent achieves the game-theoretic value of a game when
playing against itself. With a deterministic agent, this re-
duces down to whether the line of play recovers the game-
theoretic value.

Measure of Weak When playing against all possible re-
sponses, what percentage of the game outcomes observed
following the agent’s strategy matches the game theoretic
value of the game.

Measure of Strong When at any possible state of a game,
how accurate is the agent at predicting the state value and
selecting the optimal action from that state. There is a pos-
sibility that a trained agent never learns to correctly pre-
dict the state values, but may always learn to take the best
action.

In this work, we intend to measure the strength of strate-
gies learned through self-play using these metrics. We do
not expect a self-play agent to learn strong strategies for a
game as these agents learn from only a fraction of all pos-
sible states in large games. But a measure of what propor-
tion of all possible states it can correctly evaluate would pro-
vide some notion of how well the agent learns to generalize.
However, the nature of self-play training indicates the agent
may learn to at least weakly solve the game on which it is
trained. Using our defined metric, we propose that we can
verify if an agent does indeed learn to weakly solve a game
and, if not, how close it can come to doing so.

Experimental Evaluation

Our evaluation is done in the game of Chinese checkers. We
train an agent on a smaller sized version of Chinese checkers
to evaluate using our metrics of strength. We now give a
description of Chinese checkers and the training regime.

Chinese Checkers

Chinese checkers is played on a six-cornered star-shaped
board (illustrated in Figure 1) with 10 checkers or pieces
per player. While the game can be played between 2, 3, 4
or 6 players, we only focus on the two-player version of the
game. In two-player Chinese checkers, each player’s pieces
start in opposite corners (typically called the top and bot-
tom corners) of the board. The players then alternate moving
pieces one at a time across the board. To win, a player must
move all their pieces into the opponent’s corner.

Usually a player cannot move their pieces into any of the
other corners and so play is limited to the central diamond
region which we represent as an (n X n)-grid. The game can
then be represented with a (9 x 9)-grid, the region within the
dashed lines in Figure 1. There exist smaller versions of the
game played with fewer pieces on smaller grids. Figure 2a
shows the starting “grid configuration” of a (5 x 5) game
with 6 pieces. For the rest of the paper, the player starting

Figure 1: Starting configuration of a full 9/10 game of Chi-
nese checkers in the star-shaped board.

at the top will be the first player and, for shorthand, we will
write n/k to refer to a game on a (nxn) board with k pieces.

(@
(L (L
(AL O®
0000 O
OO0000O (90

0000 OQOO
00 oQO
e)

® @

(a) The starting configuration of (b) All possible moves for the
pieces in a 5/6 game. checker demarcated with a star.

Figure 2: Grid of a 5/6 game.

At each turn, a player may move only one piece either to
an empty adjacent spot or hop over an adjacent checker to
an empty spot. When hopping, a player may continue hop-
ping over adjacent checkers as long there is an empty spot
within which to stop. Figure 2b shows a legal configuration
of checkers in a 5/6 game. The arrows show all possible
movement paths for the blue checker marked with a star and
the lightly shaded spots are spaces to where it can legally
move. As can be seen there are a number spaces that can be
reached by chains hops over both the player’s own and the
opponent’s pieces. It should be noted that unlike many other
games, checkers are not removed from the board after hops.

To win, a player must move all of their pieces into the op-
ponent’s corner. However, there are states that are reachable
where the player cannot place all of his pieces in the op-
ponent’s corner e.g. the opponent neglects to move a piece
out of its starting position blocking the player from winning.
To handle these situations, we redefine the win condition
to include all states where a player’s goal corner is filled
with pieces and at least one of those pieces belong to the
player (Sturtevant 2019).

Model Architecture

We use a neural network as our function approximator for
a game playing agent. The neural network architecture used

00® 1 1.1 0 0|0 0 0 0 O
Y Yole) 1 0000O0|00O0TO0OFU
00@00 = |lo 1 00 0[|00 1 01
OO000O 100 00[fl00o0T1°0
00 00 0O0GO[[00 111
@O

@)

Figure 3: Input to the neural network of a 5/6 game state.

for the learning agent takes as input states of the game and
outputs a prediction for the value of the state and a policy
over actions available at the state. Each input state is repre-
sented by a stack of two binary matrices, each with dimen-
sions matching the (n x n) dimensions of the board. Figure 3
depicts a game state and its input representation to the neu-
ral network. The first matrix corresponds the locations of the
current player’s pieces (top,) where a 1 denotes that a piece
exists in a space and a 0 is an empty space. The second ma-
trix corresponds to the location of the opponent (bottom.)
For consistency, the current player is always represented as
starting from the top-left corner of the matrix moving toward
the bottom-right corner.

The network used is a residual network containing 3 resid-
ual blocks. Each residual block consists of a 3 convolutional
layers: a layer of 64 (1 x 1) filters, a layer with 64 (3 x 3)
filters and a layer of 256 (1 x 1) filters. The inputs are passed
through 1 convolutional layer of 256 (3 x 3) filters before be-
ing passed to the residual blocks. The outputs of the residual
blocks are passed to a value head and a policy head. The
value head is feedforward layer of 64 hidden units and an
output layer of 1 unit using tanh activation. The policy head
consists of one convolutional layer with 256 (3 x 3) filters
and and one with 16 (3 x 3) filters. All hidden units used Rec-
tified Linear Unit (ReLU) activation and all convolutional
layers preserved input dimensions.

The value output by the network is a scalar prediction,
v(s) € [—1, 1], of the expected outcome for the player acting
from that state. -1 is a loss for the player, 1 is a win and 0
is draw. The policy output is a stack of n number of (n x
n) matrices representing move probabilities. Each matrix in
the stack represents a specific location of the board and the
values of that matrix are the probabilities of moving a piece
from that location to all other locations. If a location does
not contain a piece belonging to the acting player, all of the
values of the matrix for that location are 0. The probabilities
of all illegal moves are zeroed out.

Self-Play Training

We trained an AlphaZero agent on 4/3-sized games of Chi-
nese checkers through self-play reinforcement learning (Sil-
ver et al. 2017). At each turn of a game, the agent used PUCT
with a budget of 256 samples to search for the best action.
The neural network was used to provide prior probabilities
over which actions are sampled during search and the value
predictions are used to evaluate the outcomes of the leaf
nodes when expanding the search tree. Dirichlet noise was
added to the priors over actions at the root scaled inversely

Outcome # of States
P1 Win 154,726
P1 Loss 154,726
Draw 0
Illegal 10,868

Table 1: Outcomes of states in 4/3 Chinese checkers.

proportional to the number of actions at the state. Each game
was given a turn limit of 50 turns; a game that was played be-
yond 50 turns was prematurely ended and the outcome was
declared a draw.

At each training iteration, the agent played 800 games be-
fore using the game data to update the network parameters,
6. The network parameters were updated to reduce the mean
square error (MSE) between the predicted outcomes (0) and
the observed outcomes (v) of the game states, and to reduce
the cross-entropy error between the output policy (p) and
search sampling distribution (7). The objective is defined as

argmin () = (0 — v)* — wlogp + A||6]|?
]
where) is the coefficient for L2-regularization. We used
a value of A = 1075 set after performing a parameter
sweep over A values. We updated the parameters by gradi-
ent descent using Adam optimization with a learning rate
a = 10~* that dropped to o = 107" after 20 training itera-
tions. We trained our agent for a total of 50 iterations.

Solved Chinese Checkers Data

A solver was used to generate ground truth values of the
outcomes of the game and all states in 4/3 Chinese checkers.
The data was produced by exhaustively enumerating all se-
quences of play to identify the outcomes of optimal play by
each players. It was found that under optimal play, the game
theoretic value of the 4/3 Chinese checkers is 1 for the player
that moves first i.e. under perfect play, the first player will al-
ways win. There are a total of 320,320 different states in the
game, 10,868 of which are illegal (unreachable through le-
gal play.) Table 1 summarizes the outcomes of all states in
the game.

Results

We now use our three measures of strength to quantify the
strength of the agent trained to play 4/3 Chinese checkers.
These measures were computed using ground truth data gen-
erated by the solver.

Measuring Ultra-Weakly Solving

Figures 4 through 6 plot statistics of self-play during train-
ing. Figure 4 plots change in the win rates of the two play-
ers during training time. The blue solid line represents the
win rate of the first player, the red dotted line represents that
of the second player and the green dashed line represents
the draw rate. Even though under perfect play there are no

Win %

= P1Win == P2Win == == Draw

20 30 40

Training Iteration

Figure 4: Win rates of the players during training.

draws in the 4/3 game, untrained agents play games that ex-
ceed the turn limit resulting a higher number of draws ini-
tially. By the 12th training iteration, the first player win rate
reaches 100%. This indicates that in 4/3 Chinese checkers,
the self-play agent can determine the outcome of the game
under rational play from the initial state and thus can be said
to ultra-weakly solve the game.

Figure 5 plots the accuracy of the agent’s predictions of
state values during training. By the 18th training iteration,
the agent learns to perfectly predict the values of states it en-
counters playing under its learned strategy. The initial fluc-
tuations in its predictive ability could be because it learns a
strategy that wins as first player, then it learns to beat that
strategy as the second player, and so on.

Figure 6 plots the average length of the games played at
each training iteration. As the agent learns to play more ef-
ficiently, the average length of the games shorten since the
agent learns actions leading to quicker victory. However, af-
ter 20 training iterations, the average length of the games
drop to approximately 5 turns (The minimum number of
moves to a win is 3 in the 4/3 game.) We believe that when
the agent learns the first player is guaranteed to win, as the
second player, it begins to behave indifferently to its actions.
Since there is no action that will lead to a victory for the sec-
ond player, all actions seem the same to the agent and it is
now more likely to choose actions that drastically shorten
the game. This is a consequence of the rule introduced to
prevent players from blocking their starting area in order to
keep the other player from winning. A player wins when
their goal area is filled and they have at least one piece in
the goal. On the 4/3 game, this can happen quickly whereas
in larger games it does not. This indicates a potential issue
with self-play in that these agents are not trying to explicitly
play as strong of a game as possible.

Measuring Weakly and Strongly Solving

In 4/3 Chinese checkers, to weakly solve the game an agent’s
actions must always lead to a win as the first player against
any actions played by the second. To verify whether the
agent learned to weakly solve the game, we enumerated all
possible trajectories of the game under the agent’s strategy.
For every action the agent took at any state, we enumerated
all of the possible responses for the opponent. To select an
action at a state, the agent used PUCT using its value pre-

075

0.50

Accuracy

025

0.00

o

10 20 30 40

Training Iteration

Figure 5: State value prediction accuracy during training.

50
40
30

20

Average Depth

0 10 20 30 40

Training Iteration

Figure 6: Average length of games during training.

dictions and policy. PUCT was given a budget of 1024 itera-
tions for search after which the most sampled action was se-
lected. We built the solution tree using the agent after 10, 20,
30 and 40 iterations and with an untrained agent for a base-
line. After building the solution trees, we looked at the pro-
portion of all outcomes that were a win for the first player.
We report these results in Table 2 along with the number of
unique states visited in the solution tree. It should be em-
phasized that examining all trajectories of the game is more
informative than just examining all states in the solution tree.
For instance, it may be possible for the agent to predict op-
timal actions for all states except at the root. In this case,
a state-wise evaluation would result in a high performance
measure but looking at all trajectories would give the agent
a 0% win rate.

While the agent does not weakly solve the 4/3 game, the
results indicate that the strategy learned by the agent come
close. It is important to note that while the untrained agent’s
actions lead to a win for the first player 88.6% of the time,
self-play resulted in a significant improvement to its strategy.
The proportion of wins for the first player, flattens out at
approximately 98%.

To measure the agent’s ability to strongly solve 4/3 Chi-
nese checkers, we use the agent to predict the outcomes and
optimal actions over all states of the game. Note, that due
to symmetry reduction, the agent need only be evaluated on
half of all possible states. Figures 7 through 9 plot the pre-
dictive capacity of the agent on all states over training, illus-
trated as solid lines on the plot. We also plot the predictive

Training Iterations Win % No. of States
- 0.886 147,813

10 0.955 45,390

20 0.980 22,633

30 0.975 35,272

40 0.976 25,236

Table 2: Outcomes reached by enumerating the game tree
using the strategy of the agent learned after different training
iterations.

1.0+) -¥%- Weak States
\\ All States
g 0.8 1 \‘1
L “
= ‘~
Y 0.6 A v
1] \
= \
= \
n kY
[l 0.4 “
o N
[1¥])]
= .
0.2 T
~ e Hee
»..x_,-—' e
T T T T T
0 10 20 30 40

Training Iterations

Figure 7: Mean squared error of value of predictions.

1.0 = o
I
- £
£ 0.8 ;’J
Z #
b4 /
= 0.6+ 7
(=] ¥ |
2 F
S /
B 047
o
g
= 0.2 97 —%- Weak States
> All States
0.0 . y ' '
0 10 20 30 40

Training Iterations

Figure 8: Accuracy of state value predictions.

performance of the agent on the subset of unique states it
observes when enumerating the weak solution trees (we call
these weak states.) These are all the states that an agent may
encounter under its strategy and may also include states not
seen during training. These are illustrated as dashed lines on
the plots.

Figure 7 plots the mean-squared error (MSE) of the state
value predictions against the true value of the state using the
solved game data. The values are plotted with their 95% con-
fidence intervals (not visible at this scale.) The MSE of the
value predictions decreases with training. The MSE is sig-

1.0 i = SR -
> ’/
@081 .~
0 Ve
b
= 0.6
2
=
@
- 0417
[Fa]
=
2
5 027 —%- \Weak States
< All States
0.0 T T T T T
0 10 20 30 40

Training lterations

Figure 9: Accuracy of selecting actions.

nificantly higher when the agent is used to predict the values
of all states than when it is predicting the subset of weak
states. Figure 8 plots the accuracy of state value predictions.
To retrieve a value prediction, we take the value output by
the agent’s network and classify it as a value in {1,0,—1}
using thresholds — ¢ > 0.25 is classified as 1, ¥ < —0.25
is -1 and O otherwise. For the weak states, the agent comes
close to perfectly predicting all state values. The agent is
weaker at predicting state values of states it will not come
across during play but still performs with reasonable accu-
racy. The MSE indicates that the agent is more confident in
its predictions of weak state values.

In Figure 9, we plot the accuracy of selecting an optimal
action over all states and all weak states. That is, we verify
if the action selected by the agent at each state using PUCT
is optimal. An action is optimal if it leads to a state with a
true value higher than states reached by the other possible
actions. The true value is found using the solved game data.
Note that there may be more than one optimal action. As
before, the agent’s performance increases with training time.
Also similarly, it is more capable of finding the best action
in the weak states (again, near perfectly) than over all states.

Discussion and Future Work

Our results show that our proposed metrics provide mea-
sures of strength that closely reflect what we expect from a
learning agent in the small game. However, we cannot yet
say these measures scale well to larger games. Our mea-
sures show that the self-play agent ultra-weakly solves the
4/3 game but does it converge to the game-theoretic values
in other strongly solved board sizes of 4/6 or 5/3? In ad-
dition, our measure shows that the agent comes very close
to weakly solving the game but ultimately does not con-
verge to the game-theoretic value. Is this a correct mea-
surement? Does this value move towards the game-theoretic
value in larger games? Is the agent only losing in trajecto-
ries where its opponent plays sub-optimally? The self-play
agent is trained to expect rational play and so perhaps lim-
iting weak evaluation to optimal trajectories only is a more
correct assessment. We can also ask how our metrics evalu-

ate other agents e.g., a pure UCT-player..

Moreover, we intend on looking at additional metrics us-
ing solved data including mistake rates during play (how of-
ten, which states, how early in play, etc.) and the strength of
the strategies with regards to the difficulty of a state. We also
intend on performing ablation tests to measure the strength
of the value and policy heads of the agent and the improve-
ments gained by using search. Furthermore, while our work
is limited to games where ground truth is available, we in-
tend to examine whether these measures can be approxi-
mated in games currently too large to solve.

Conclusions

In this work, we propose measuring the strength of a learn-
ing agent using metrics of strongly and weakly solved. We
introduce methods to measure the strength of an agent us-
ing solved game data and demonstrate evaluation using a
scaled-down version of Chinese checkers. Our preliminary
results show that in this smaller game, a learning agent ap-
proaches strongly and weakly solving the game. Addition-
ally our evaluations indicate that these measures may pro-
vide us with unique insights into the learned behavior of
these agents and directions in which they can be improved.

References

Allis, L. V. 1988. A Knowledge-Based Approach of Connect-
Four. Master’s thesis, Vrije Universiteit.

Allis, L. V;; et al. 1994. Searching for solutions in games
and artificial intelligence. Ponsen & Looijen Wageningen.

Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.
2017. Heads-up limit hold’em poker is solved. Communi-
cations of the ACM 60(11): 81-88.

Campbell, M.; Hoane Jr, A. J.; and Hsu, F.-h. 2002. Deep
blue. Artificial intelligence 134(1-2): 57-83.

Kocsis, L.; and Szepesvari, C. 2006. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, 282-293. Springer.

Morav¢ik, M.; Schmid, M.; Burch, N.; Lisy, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science 356(6337): 508-513.

Rosin, C. D. 2011. Multi-armed bandits with episode con-
text. Annals of Mathematics and Artificial Intelligence
61(3): 203-230.

Schaeffer, J.; Burch, N.; Bjornsson, Y.; Kishimoto, A.;
Miiller, M.; Lake, R.; Lu, P.; and Sutphen, S. 2007. Checkers
is solved. Science 317(5844): 1518—-1522.

Schaeffer, J.; Culberson, J.; Treloar, N.; Knight, B.; Lu, P,;
and Szafron, D. 1992. A world championship caliber check-
ers program. Artificial Intelligence 53(2-3): 273-289.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. Na-
ture 529(7587): 484-489.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science
362(6419): 1140-1144.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676): 354-359.

Sturtevant, N. R. 2019. On Strongly Solving Chi-
nese Checkers. In Advances in Computer Games
(ACG). URL http://www.cs.ualberta.ca/~nathanst/papers/
sturtevant2019chinesecheckers.pdf.

Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature
575(7782): 350-354.

