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Abstract

We integrate into the MCTS — policy iteration learning pipeline
of AlphaGo Zero a framework aimed at targeting high scores
in any game with a score. Training on 9x9 Go produces a
superhuman Go player. We develop a family of agents that
can target high scores, recover from very severe disadvan-
tage against weak opponents, and avoid suboptimal moves.
Traning on 19x19 Go is underway with promising results. A
multi-game SAI has been implemented and an Othello run is
ongoing.

1 Introduction

The game of Go has been a landmark challenge for Al re-
search since its very beginning. It is no surprise that Deep-
Mind first major effort and achievement was (Silver et al.
2016, AlphaGo), an Al that plays Go at superhuman level.
It is nevertheless quite surprising that the approach for
this achievement works even better without human knowl-
edge (Silver et al. 2017, AlphaGo Zero) and that it is universal
enough to be applied successfully to Chess and Shogi (Silver
et al. 2018, AlphaZero).

However, in the game of Go, maximizing the final score
difference and the related abilities of playing with positional
or score handicap is still an open and important question.
AlphaGo is known to play suboptimal moves in the endgame,
see for instance (Térménen 2017, moves 210 and 214, page
252), and in general many games in (Torménen 2017) not
ending by resignation. This phenomenon is rooted in the
win/lose reward implemented in the Deep Reinforcement
Learning (DRL) pipeline of AlphaGo. Score is unlikely to be
a successful reward, because a single point difference may
change the winner, thus inducing instability in the training.

Efforts in the direction of score maximization have been
made in (Baudi$ 2011) and in (Jilmer Justin 2020). However,
these attempts do not use any of the modern DRL techniques,
and thus their accuracy is quite low. One DRL paper we are
aware of is (Wu et al. 2017), where a Deep Convolutional
Neural Network is used to predict the final score and 41
different winrates, corresponding to 41 different scores hand-
icap {—20,—19,...,0,...,19,20}. However, their results
have not been validated against human professional-level
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players. Moreover, one single self-play training game is used
to train 41 winrates, which is not a robust approach. Finally,
in (Wu 2019, KataGo) the author introduces a heavily modi-
fied implementation of AlphaGo Zero, which includes score
estimation, among many innovative features. The value to be
maximized is then a linear combination of winrate and expec-
tation of a nonlinear function of the score. This approach has
yielded a extraordinarily strong player in 19x 19 Go, which
is available as an open source software. Notably, KataGo is
designed specifically for the game of Go.

In this paper we summarise the framework called Sensi-
ble Artificial Intelligence (SAI), which has been introduced
to address the above-mentioned issues in any game where
victory is determined by score.

This framework has been introduced in two previous
works (Morandin et al. 2019) and (Morandin et al. 2020).
This paper is extracted from (Morandin et al. 2020), there-
fore it does not contan original results. However, we updated
the current developments section to include a preliminary
description of the multi-game implementation.

2 The SAI framework

Modeling winrate as a sigmoid function of bonus points
In the AlphaGo family the winning probability (or expected
winrate) 7 of the current player depends on the game state s.
In our framework, we include an additional dependence on
the number x of possible bonus points for the current player:
in this way, trying to win by n points is equivalent to play

trying to maximize the winrate in x = —n. We modeled
7s(x) with a two-parameters sigmoid function, as follows:
1
7s(2) : (D

- 1+ eXp(_ﬁs(as + 33))

The number « is a shift parameter: since 75(—as) = 1/2,
it represents the expected difference of points on the board
from the perspective of the current player. The number S is
a scale parameter: the higher it is, the steeper is the sigmoid,
the higher the confidence that o is a good estimate of the
difference in points, irrespective of the future moves.

AlphaGo and derivatives all share the same core structure,
with neural networks that for every state s provide a prob-
ability distribution p, over the possible moves (the policy),
trained as to choose the most promising moves for searching
the tree of subsequent positions, and a real number v € [0, 1]



(the value), trained to estimate the winning probability for
the current player.

In our framework, the neural network was modified to
estimate, beyond the usual policy p, the two parameters ag
and [ of the sigmoid, instead of v,. The winning probability
may be computed as 75(ks) where ks = +k is the signed
komi, i.e., the bonus points of the current player (if it is
negative we often use the term malus). Rules generally assign
a komi of £ = 7.5 to white player, to compensate for the
disadvantage of playing for second. So the sign of k4 depends
on the color of the current player at s.

Branching from intermediate positions In order to train
the two sigmoid parameters for each position, we relaxed
the habit of starting all training games from the initial empty
board position, and sometimes branched games at a certain
state s, changing the komi of the branch according to the
value of a;. In this way, we generated fragments of games
with natural balanced situations but a wide range of komi val-
ues. This reinforces robustness of the model. Only a sample
of all the possible positions were branched, nevertheless the
network was able to generalize from this sample and obtain
sharp estimates of a, with high values of [, for positions
near the end of the game.

Parametric family of value functions In Leela Zero’s
Monte Carlo tree search, every playout that reaches a state s
then chooses among the possible actions a (identified with
children nodes) according to the policy ps(a) and to the eval-
uation @Q(s, a) of the winrate. The latter is the average of
the value v,.(s) over the visited states r inside the subtree
rooted at a; the quantity v,.(s) is the value at r from the point
of view of the current player at s, so v,-(s) = v, or 1 — v,
depending on whether the current player at s is the same as
at r or the other one. The choice between the actions is done
according to AlphaGo Zero PUCT formula, see (Silver et al.
2017).

In our framework, the value function formally equivalent
to v,.(s) is the value 7,.(ks) of the sigmoid (1). We designed
an additional parametric family of value functions v,.(s) =
vt (s), A > p € [0, 1] computed as

1 T
S (s) o {_ S e(udu A > p

" Tr(x)\) >\ =W

with z and z,, pre-images via 7, of convex combinations
between 7, (ks) and 0.5, i.e.:

2o =7, 1(0-0.5+ (1= 0)7s(ks)),  O=Xp (2

so that for example xy = k, is the authentic bonus for the
current player, and ©; = —a is the virtual bonus that would
make the game position balanced. Here, x and z, (and
hence v, (s)) are computed according to the evaluation 7, at
the root node s, so that the integral averages v,.(s) entering
in the averages (s, a) in order to be compared, are all done
on the same interval. See Figure 1.

We remark that for A > 0 and p € [0, A], »»*(s) under-
estimates or over-estimates the winning probability, accord-
ing to whether the player’s winrate is above or below 0.5.

7J0-5+(1 'U)Ts(ks)

NO.5+(1-A)To(ks)

Winrate for current player
(6]

T T T
Xn o XKs
Additional bonus points for current player

—— T Where s is the current position

T, where r is a position in the subtree
rooted at move a from s

Figure 1: If s is a state, a a possible move from s, and r a
position in the subtree rooted at a, the value v*(s) is the
integral average of 7,. between x, and x,,, where x and z,,

are determined according to (2).

In the extreme scenario A = u = 1, the agent v would
always believe to be in a perfectly balanced situation. Thus,
it would try to grab every single point, resulting in a greedy
score-maximizing agent.

As we will show, when adopted, the parametric family
vMH s instrumental in pushing SAI towards higher scores.

3 SAIin 9x9 Go
Methods

Training SAI We performed two runs of 9x9 SAIL The
process we implemented is similar to what was done in Leela
Zero (Gian-Carlo Pascutto and contributors 2018), with a
sequence of generations, each one with a single network
doing self-play games, beginning with a random net. Differ-
ently from Leela Zero, and following AlphaZero (Silver et al.
2018), in our setting there is no gating, meaning that after
a fixed number of games the generation ends and a newly
trained net is automatically promoted, without testing that
it wins against the previous one. Around 2,000 self-plays
for generations were enough to get a fast and stable learning
(with the possible exception of the first 3-4 generations).

Each training was performed on the self-play games data
of a variable number of generations, ranging from 4 to 20,
inversely proportional to the speed of the changes in the nets
from generation to generation, so that in the training buffer
there would not be contradictory information.

In each generation, the proportion of complete games to
branches was 2:1. Complete games always spanned several
komi values, chosen in %Z with a distribution obtained by
interpreting the sigmoid 7 (of the current net, for the empty
board) as a cumulative distribution function. Branches were



originated from random positions s (each position in a game
or branch had the same probability p = 0.02 of originating
a new branch) and new komi set equal to +« (rounded to
half an integer) with the sign appropriate for the color of the
current player, so that the starting position s with the new
komi would be estimated as fair for the two players.

The training hyperparameters changed several times during
the two runs, with typical training rate 0.0001, batch size
512 and 4,000-10,000 training steps per generation. In the
second run we experimented with a kind of “weak gating”,
in the sense that for every generation during the training
we exported 10 networks, at regular intervals of steps, and
then match every one against the previous network, finally
promoting the one with the best performance. It is unclear if
this choice improves learning, but it seems to reduce strength
oscillations.

Network structure The structure of the neural networks
was always the same during the runs, though with different
sizes. The input is formed by 17 bitplanes of size 9x9: one is
constant, with 1 in all intersections (useful for the network to
be aware of borders, thanks to the zero-padding of subsequent
convolutions). The remaining planes hold 4 different features
for the last 4 positions in the game: current player stones,
opponent stones, illegal moves, last liberties of groups.

The first layer is a 3 x 3 convolutional layer with £ filters,
followed by batch normalization and ReL.U. Then there is a
tower of n identical blocks, each one a 3 x 3 residual convo-
lutional layer with £ filters followed by batch normalization
and ReLU. On top of that there are the two heads. The pol-
icy head is composed by a 1 x 1 convolutional layer with 2
filters, batch normalization and ReLLU, followed by a dense
layer with 82 outputs, one per move, and then softmax. The
value head starts with a 1 x 1 convolutional layer with 3 or 2
filters (first and second run respectively), batch normalization
and ReLU, on top of which there are two almost identical
sub-heads, for v and 3. Both sub-heads are composed by two
dense layers. The first layer has 384 or 256 outputs (for « or
[ sub-heads), and is followed by ReLLU. The second layer
has just 1 output. The 3 sub-head is concluded by computing
the exponential of the last output.

The loss function is the sum of three terms: an [? reg-
ularization term, the cross-entropy loss between the visits
proportion and the network estimate of the policy, and the
mean-squared error loss between the game result and the
winrate estimate 7, (ks ), where k; is the signed komi and 7

is the sigmoid with parameters &, and 35 as estimated by the
network.

Scaling up complexity Since with limited computational
resources the training of 9x9 SAl is very long, we decided
to start the process with simplified settings, scaling up after-
wards as the performance stalled. This approach was intro-
duced with success in Leela Zero, by increasing progressively
the network size.

We observed that one could also progressively increase the
number v of visits, as very small values are more efficient

at the beginning, while very large values may be needed for
getting to optimal play in the end (Morandin et al. 2019).

In the first run we started with n = 4, k = 128 and
v = 100 and progressively increased visits to a maximum
value of v = 850. Then we started increasing the network
size to a maximum of n = 8, k = 160. In total there were
690 generations, equivalent to about 1.5 million games, 70
million moves and 25 billion nodes. In the second run we
tried to keep the network structure large and fixed at k = 256,
n = 12 and scaled only the visits, starting from a lower value
of v = 25 and going up to v = 400 in 300 generations.

Elo evaluation and training outcome Every run of a
project like Leela Zero or SAI yields hundreds of neural
networks, of substantially growing strength, but also with
oscillations and “rock-paper-scissors” triples. It is then quite
challenging to give them absolute numerical scores to mea-
sure their performance.

The standard accepted metric for human players is the Elo
rating (Elo 2008, Section 8.4).

In order to get global estimates of the networks strengths,
following (Troisi 2019), we confronted every network against
several others, of comparable ability, obtaining a graph of
pairings with about 1,000 nodes and 13,000 edges.

We implemented the maximum likelihood estimator, in
a way similar to the classic Bayesian Elo Rating (Coulom
2010), but with a specialization for dealing with draws in the
game of Go, which are possible in our framework.

Figure 2 shows the Elo rating of the networks of both
runs, anchored to O for the random network. It is apparent
that the growth is very fast in the beginning, ranging from
random play to a good amateur-level playing strength. Elo
rating seems less able to express the subtle differences in the
playing style and game awareness of more mature networks.
In fact our experiments show for example that the very similar
ratings of nets S1, S2 and S3 are the overall result of different
patterns of winrates against other networks.

Fair komi for 9x9 Go A valuable byproduct of the two
runs is that we got an estimate of the bonus points for the sec-
ond player that makes the perfect game a tie, that is, fair komi.
There are speculations on this subject in the Go community
and a general agreement that, with Chinese scoring, a komi
of 7.5 should be quite balanced. Figure 2 shows that SAI be-
lieves that the fair komi should be 7 points. This is confirmed
by both runs, despite the fact that the final networks of the
two runs have different preferences for the first moves.

Score in a Go game In this work we exploited the features
of SAI itself to estimate score: to avoid instability, in partic-
ular when [, is low, and decided to make it more precise,
we aggregate information from a large sample of positions
in the subtree of visited nodes rooted at the position s when
the loser resigns. This is the same principle introduced by Al-
phaGo Zero to assess the winrate, but instead of the average,
we chose the median, which proved to be stable when based
on 1,000 visits. The algorithm was validated by an expert
player on a set of 20 games.



6000 5t

W2 W1
S2
5000 P

4000

3000

Value of Elo

2000

1000

0 100 200 300 400 500 600 700
Generation

Run 1 —— Run2

Value of a at empty board

0 100 200 300 400 500 600 700
Generation

Run 1 —— Run2

Figure 2: On the upper graph, estimate of the Elo rating as
function of the generation for the two runs of 9x9 SAI. The
nets S1, S2, S3, W1, W2, W3 are described in Section 3. On
the lower graph, evolution of the estimates &y of the initial
empty board position for the two runs of SAL.

The experimental setting In order to conduct our experi-
ments, we selected a set of strong and a set of progressively
weaker nets (see Figure 2). According to a qualitative as-
sessment, W3 is stronger than a strong amateur, but is not at
professional level.

To calibrate the nets, we had each of the strong nets play
against itself and against all the weak nets 100 times, half
times with black and half times with white, with komi 7.5 and
with 1,000 visits. As expected, each net won against itself
around half of the times, although it would win more often
with white, consistently with the assessment that komi 7.5 is
unbalanced in favor of White (see Subsection 3). Strong nets
won 71-73% of the times against W1, 73-90% against W2
and 96-98% against W3.

Since the results on 100 games showed a little too much
variability, in the next experiments we played 400 games
for each setting, in order to reduce the uncertainty by half.
The code of the experiment, as well as the files of the games
in Smart Game Format, is available at the link (Gini and
contributors 2019a), and the datasets containing the results
underlying the figures of the next section is available at the

link (Gini and contributors 2019b).

Results

SAI can target high scores SAI nets can play with differ-
ent agents, associated to the value functions introduced in
Section 2.

To tailor the agent to the game situation, along with the
agents described above, we introduced variable agents: the
strong nets played against themselves and against W3 using
three agents (A, u) = (0.5,0), (1,0) and (1,0.5)) which
were only activated if the winrate was higher than a threshold
of, in turn, 50% and 70%.

The results of the games between strong nets and them-
selves, and between strong nets and W3, are shown in Fig-
ure 3. The threshold effectively eliminated or contained the
loss in strength. The gains in score were maintained or in-
creased with thresholds, especially for the 50% case. We
tested whether loss in strength and increase in score were
significant on average across the three strong nets. The results
are reported in Table 1. Loss in strength as white was more
often significant when the strong net was playing against
itself than when it was playing against W3; loss in strength
as black was not significant, except when (A, 1) = (1,0.5).
The increase in score was always statistically significant, but
was more substantial with threshold 50%.

SAI can recover from very severe disadvantage We in-
vestigated whether in situations of seved handicap having
the strong net overestimate its advantage by manipulating A
would help it keeping a solid game until the weak net made
some error, allowing the strong net to leverage on its own
superiority and win.

To this aim we had the 3 strong nets play White against
W3 in starting from severe disadvantageous situations: H1
is having no komi (actually, 0.5, to avoid ties), H2 is having
White start the game but with two black stones placed on
the board. To make them less prohibitive, we countered both
scenarios with bonus points in favor of White (H1 with O or
1 point; H2 with 6 or 8 points).

The result is shown in Figure 4. With A = 0, both S1
and S3 won less than 5% of the times with 2 handicaps
and a bonus of 6 points (komi 8.5). In both cases, setting
A to 0.5 increased substantially the winning probability, to
12.0% and 22.5% respectively. In the case of S2, that had a
better performance than S1 and S3 in this extreme situation,
increasing A to 0.5 didn’t have any noticeable effect. Setting
A to 1 did not further improve the winning probability for
any of the strong nets. In the other, less extreme situations of
disadvantage, the effect of setting A to 0.5 was inconsistent,
while further increasing A to 1 never improved the winning
probability.

SAI can minimize suboptimal moves As mentioned in
the Introduction, in the view of the content experts, AlphaGo
wins often by a small margin and plays suboptimal moves,
since no direct notion of score is incorporated in its DRL
pipeline. This is common knowledge among Go players,
based on professional analysis of public AlphaGo games
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Figure 3: Games of the 3 strong nets versus themselves and
W3, with agents adopting different value functions parame-
terized by A and p, when the pointwise estimate of victory is
above a pre-defined threshold of 0%, 50% and 70%. In each
subfigure, the lower part shows the winning probability of
the strong net with variable agent, the upper part shows the
average final score of the games won by the strong net.

Winrate A in winrate Score A in score
Color N w (%) with (0,0) with (0,0)
White 0 0 69.2 - 8.9 -
0.5 0 64.2 —5.07" 17.5 +8.67
1 0 60.8 —8.37F 18.7 +9.8%%
0.5 52.5 —16.77" 22.4 +13.57"
Black 0 0 30.0 - 11.2 -
0.5 0 31.7 +1.7 14.6 +3.47%
1 0 29.3 —0.7 16.3 +5.1°7
0.5 26.8 —3.27 15.9 +4.77
Threshold=70%, opponent: itself
Winrate A in winrate Score A in score
Color X w (%) with (0,0) with (0,0)
White 0 0 69.2 - 8.9 -
0.5 0 66.2 —3.0 16.5 +7.67
1 0 64.3 —4.87F 15.4 +6.57
0.5 60.0 —9.27F 17.4 +8.47%
Black 0 0 30.0 - 11.2 -
0.5 0 27.5 —2.5 15.6 +4.47%
1 0 32.0 +2.0 14.9 +3.7°
0.5 28.7 —1.3 17.0 +5.87
Threshold=50%, opponent: W3
Winrate A in winrate Score A in score
Color A u (%) with (0,0) with (0,0)
White 0 0 97.2 - 7.5 -
0.5 0 97.7 +0.5 17.7 +10.2%%
1 0 95.5 —1.77 24.2 +16.87"
0.5 90.7 —6.5" " 36.2 +28.87"
Black 0 0 97.2 - 17.4 -
0.5 0 96.3 —0.8 27.2 +9.8%*
1 0 96.2 —1.0 34.8 +17.3%
0.5 91.3 —5.87% 41.0 +23.57
Threshold=70%, opponent: W3
Winrate A in winrate Score A in score
Color A w (%) with (0,0) with (0,0)
White 0 0 97.2 - 7.5 -
0.5 0 96.8 —0.3 16.7 +9.37*
1 0 95.8 —1.3¥ 21.5 +14.07"
0.5 89.2 —8.07F 31.7 +24.37
Black 0 0 97.2 - 17.4 -
0.5 0 96.2 —1.0 27.9 +10.57"
1 0 96.7 —0.5 34.1 +16.77"
0.5 89.3 —7.87F 39.9 +22.47%

Table 1: Analysis of the data in Figure 3. The winrates and
the scores are averages across the three strong nets. The
differences (indicated by A) both in winrates and in scores
are between each row and the corresponding row with A =
u = 0. A binomial test for difference smaller than 0 was
conducted for winrates, a ¢-test for difference larger than O
was conducted for score. Differences are marked with * if the
p-value is < 0.05 and with ** if the p-value is < 0.001.
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Figure 4: Games of the three strong nets versus W3, playing

white with handicap incremented or decreased by komi points.

Since the strong nets play white, lower komi points mean
higher disadvantage. Type of handicap 1: the disadvantage is
malus points. Type of handicap 2: the starting board contains
2 black stones and white plays first.

against humans (Térménen 2017). In order to quantify this
claim and, at the same time, prove that SAI acts less subopti-
mally, in July 2019 the following experiment was organized.
Since AlphaGo and AlphaGo Zero are not publicly available,
we selected a recent, unofficial but very strong Leela Zero
(LZ) net for 9x9 Go.! We ran 200 games between LZ and
W3, the weakest net in our experiments. LZ was assigned
white and won all the games. We drew a 10% random sample
from the 200 games. Our strongest net, S1, had won 194
times out of 200 games played as white against W3, with
(A, ) = (1,0) (see Subsection 3). We drew a random sample
of 20 games from the 194. In total, we obtained a sample of
40 games, 20 played by LZ and 20 played by S1. We shuffled
the 40 games and labeled them with an anonymous identifier.

We asked two strong amateur players (4D and 3D) to
score the 40 games and to identify whether the winner had
played suboptimal moves. We also asked them to rate their
own estimate of score as ‘reliable’ or ‘non reliable’. The
two assessors did not communicate with each other during
assessment. As a result, the scores of 32 games were rated
‘reliable’ by both assessors. The average difference in score
between the two assessors was 1.53, in detail 0.8 among
‘reliable’ and 4.3 among ‘non reliable’ games. We computed
the mean of the two scores and we linked the data to the
identity of the winners: LZ or SAI. We found that the average
scores of LZ and SAI were, respectively, 6.3 and 16.0 (single-
tail ¢-test: p < 0.001), or 6.0 and 15.0 when restricting to
‘reliable’ games (single-tail ¢-test: p = 0.006). The games
with no suboptimal moves were 18 (90%) for SAI and 11
(55%) for LZ (x? test: p = 0.013). The files of the games in
Smart Game Format, the manual assessment and analysis are
available at this link (Gini and contributors 2019c). Finally,
to understand the comparative strength of LZ with respect
to S1 playing with this agent, we had them play 400 games:
LZ won 359 times (89.8%). In summary, even though LZ
was stronger than S1, it got significantly lower scores, and
made significantly more suboptimal moves, with respect to
SAI playing with an agent targeting high scores.

SAlis superhuman A match was scheduled on May 2019
between SAI and Hayashi Kozo 6P, a professional Japanese
player. The match was composed by 3 games, at alternate
colors, and komi 7.5. In the first game white was assigned
to Hayashi Kozo 6P, out of respect, because it is traditional
in Go that the more expert player plays white first. SAI was
set to play with net S1, 50,000 visits, A = p = 0 and resign
threshold set at 5%. SAT won all games, two playing black
and one playing white.

Another match was also scheduled on May 2019 between
SAI and Oh Chimin 7D, a 7-Dan Korean amateur player
whose strength is estimated to be that of a low dan profes-
sional player. The match was composed by 5 games, with
different values of komi. SAI played with the same set-
tings of the previous match and won 4 games, three of them
while playing White with komi 7.5, 5.5 and 3.5, one playing
black with komi 13.5 (which amounts to 6 malus points for

ISee https://github.com/leela-zero/leela-zero/issues/863\
#issuecomment-497599672.



SAI). Oh Chimin 7D won a game playing Black with komi
1.5. According to expert Go knowledge, winning against a
professional-level player with 6 points of handicap on a 9x9
board is an achievement that classifies SAI as superhuman.

4 Developments

SAIin 19%x19 Go Training of SAl on 19x19 Go is beyond
reach of the computational power we can deploy. We there-
fore activated a distributed approach similar to Leela Zero’s,
using the same community as well as the Italian community
of Go. After 18 months of training, SAI is currently acknowl-
edged as a strong player. In a yet unpublished experiment
we compared SAI’s ability to target high scores and avoid
suboptimal moves with both Leela Zero’s and KataGo’s. We
chose a champion of each framework (named, respectively,
SAI LZ and KG) of approximately equal strength, and a
weaker SAI (named W). We had LZ play 200 games at alter-
nate colors against W: LZ won 191 games, among which 159
lasted more than 150 moves. Those 159 games were replayed
from move 150 by both SAI and KG, using, respectively,
multiple agents and multiple configurations. Both SAI and
KG outperformed LZ in terms of final score, but SAI more
than KG. Details can be found in the public report of the
experiment (Rosa Gini and contributors 2020) and will be
shortly included in a separate paper.

SAI in other games After the seminal papers on
Atari (Mnih et al. 2015) and AlphaGo (Silver et al. 2016),
Deep Reinforcement Learning (DRL) has been a major re-
search topic. The SAI framework, at its essence, is a varia-
tion into the high-level, domain-independent aspects of DRL,
stemming from the assumption that probability of success is
a function of the targeted score, belonging to a parametric
family of functions whose parameters can be learned by a
neural network. The only requirement for SAI to contribute
to an application is that success is linked to some score in the
first place.

To create a multi-game SAI, we built on the multi-game Al-
pha Zero implementation (Surag Nair and contributors 2020).
We imposed the two heads of SAI, expressed winrate as a
sigmoid function of the heads, and implemented branching in
the training pipeline. A run of the Othello game is currently
ongoing and results will be presented shortly.
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