Deep policy networks for NPC behaviors that adapt to changing design
parameters in Roguelike games

Alessandro Sestini,' Alexander Kuhnle,” Andrew D. Bagdanov'

!Dipartimento di Ingegneria dell’Informazione, Universita degli Studi di Firenze, Florence, Italy
’Department of Computer Science and Technology, University of Cambridge, United Kingdom
{alessandro.sestini, andrew.bagdanov } @unifi.it, alexander.kuhnle @cantab.net

Abstract

Recent advances in Deep Reinforcement Learning (DRL) have
largely focused on improving the performance of agents with
the aim of replacing humans in known and well-defined envi-
ronments. The use of these techniques as a game design tool
for video game production, where the aim is instead to create
Non-Player Character (NPC) behaviors, has received relatively
little attention until recently. Turn-based strategy games like
Roguelikes, for example, present unique challenges to DRL.
In particular, the categorical nature of their complex game
state, composed of many entities with different attributes, re-
quires agents able to learn how to compare and prioritize these
entities. Moreover, this complexity often leads to agents that
overfit to states seen during training and that are unable to
generalize in the face of design changes made during devel-
opment. In this paper we propose two network architectures
which, when combined with a procedural loot generation
system, are able to better handle complex categorical state
spaces and to mitigate the need for retraining forced by de-
sign decisions. The first is based on a dense embedding of the
categorical input space that abstracts the discrete observation
model and renders trained agents more able to generalize. The
second proposed architecture is more general and is based on
a Transformer network able to reason relationally about input
and input attributes. Our experimental evaluation demonstrates
that new agents have better adaptation capacity with respect
to a baseline architecture, making this framework more robust
to dynamic gameplay changes during development. Based on
the results shown in this paper, we believe that these solutions
represent a step forward towards making DRL more accessible
to the gaming industry.

1 Introduction

In the gaming industry, Artificial Intelligence (Al) systems
that control Non-Player Characters (NPCs) represent a vital
component in the quality of games, with the potential to
elevate or break the player experience. Recently, examples
of NPC agents trained with Deep Reinforcement Learning
(DRL) techniques have been demonstrated for commercial
video games, however mass adoption by game designers
requires significant technical innovation to build trust in these

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

iterative Agent
design RL

Agent 1 new loot 1 '

|
F-2

|

|

|

'

|

|

'

|

v

Agent 2 new loot 2 :

|
2

'

'

'

'

'

'

'

'

v

Agent 3 new loot 3

ﬁ
2
'
'
'
'
'
'
'
'
v

Vv

N J

Figure 1: A summary of our approach. The left side illustrates
the original DeepCrawl framework in which the agent must
be retrained every time the loot distribution changes (e.g.
for balancing the overall game). Our approach is shown on
the right: with the new adaptive architectures we can create
agents which can learn from a new procedural loot system.
Agents trained in this way are able to adapt to a changing
loot distribution without the need to retrain.

approaches (Jacob, Devlin, and Hofmann 2020). A step in
this direction was the DeepCrawl] prototype (Sestini, Kuhnle,
and Bagdanov 2019), a Roguelike game where all NPCs were
moved by DRL algorithms.

In this paper we address the challenges of adaptation and
scaling, described by the aforementioned authors, and also
encountered in DeepCrawl. DRL algorithms are extremely
sensitive to design changes in the environment, since they
fundamentally change the way agents “see” the game world
around them. Even seemingly minor changes can force a
complete retraining of all agents. This is mostly due to the
categorical nature of the input state space which makes the
network overfit to the specific entities seen during training,
leaving it without the capacity to generalize to unseen states.
Collectible objects in DeepCrawl and their effect on the game,
for example, must be predefined by developers, and are rep-
resented by unique integer IDs and not by their effect on
the player. This can be an important problem during game
development: if developers want to change parameters, for
example to balance gameplay, they require agents which can

Figure 2: Screenshot of the DeepCrawl game. For more in-
formation about gameplay elements see section 3 and the
original DeepCrawl paper (Sestini, Kuhnle, and Bagdanov
2019).

handle these modifications and do not require retraining. This
makes it difficult to adapt an existing agent to new scenarios,
resulting in inappropriate agent behavior when NPC agents
are used in environments for which they were not designed.

Moreover, with the NPC model architecture of the original
DeepCrawl work it is not possible to extend the set of avail-
able loot or loot types without completely retraining agents
from scratch. This is largely due to specific DeepCrawl net-
work architecture: the policy network contains initial embed-
ding layers that make it possible for the network to learn a
continuous vectorial representation encoding the meaning of
and differences between categorical inputs. As mentioned
above, in this setting each loot item must be identified by a
unique ID in order to be understandable by agents. For this
reason, if designers want to add new loot types, for example
changing the object definition in order to have a different
number of attribute bonuses, it is difficult or impossible to
define a unique ID for each object a priori — particularly if
the attribute bonuses are determined randomly during game
play.

To mitigate these problems we implemented a new pro-
cedural loot generation system and incorporated it into the
training protocol: instead of a fixed list of discrete items,
in our new system an item is parametrized by a fixed set
of attributes, potentially even an extensible set of attributes.
These values are drawn from a uniform distribution when
generating a new training episode and increase the intrinsic
properties of actors when collected. We also propose two al-
ternative policy network architectures that are able to handle
the new procedural loot system. As we illustrate in figure
1, the new system combined with procedural loot genera-
tion during training renders trained NPCs more adaptive and
scalable from a game developer’s perspective. This new Al
system helps in the design of NPC agents while being ro-
bust to iterative design changes across the loot distribution
that can happen during video game development. As our ex-
periments show, these new agents are perfectly capable of
adapting to loot distributions they have never seen during
training, without the need to retrain.

2 Related work

The potential of DRL in video games has been steadily gain-
ing interest from the research community. Here we review
recent works most related to our contributions.

Procedurally Generated Environments. There is a grow-
ing interest in DRL algorithms applied in environments with
Procedural Content Generation (PCG) systems: (Cobbe et al.
2019) demonstrated that diverse environment distributions
are essential to adequately train and evaluate RL agents, as
they observed that agents can overfit to exceptionally large
training sets. On the same page are (Risi and Togelius 2019),
who stated that often an algorithm will not learn a general
policy, but instead a policy that only works for a particular
version of a particular task with specific initial parameters.
(Justesen et al. 2018) explored how procedurally generated
levels during training can increase generalization, showing
that for some games procedural level generation enables gen-
eralization to new levels within the same distribution. Subse-
quently, the growing need for a PCG environments was also
demonstrated by (Kiittler et al. 2020), (Chevalier-Boisvert,
Willems, and Pal 2019), and (Juliani et al. 2019).

DRL in video games. Modern video games are environments
with complex dynamics, and these environments are useful
testbeds for testing complex DRL algorithms. Some notable
examples are: (Vinyals et al. 2019) that uses a specific deep
neural network architecture based on Transformers (Vaswani
et al. 2017) able to create super-human agents for StarCraft,
and (OpenAl et al. 2019) that use embedding layers similar
to (Sestini, Kuhnle, and Bagdanov 2019) to manage the inner
attributes of the agent and other heroes in DOTA 2 in order
to train agents that outperform human players.

DRL for video games. At the same time, there is an increas-
ing interest from the game development community on how
to properly use DRL for video game development. (Zhao
et al. 2020) argued that the industry does not need agents
built to “beat the game”, but rather to produce human-like
behavior to help with game evaluation and balance. (De-
lalleau et al. 2019) dealt with the importance of having an
easy-to-train neural network and how it is important to have
a framework that enriches the expressiveness of the policy.
(Pleines, Zimmer, and Berges 2019) studied different action-
space representations in order to create agents that mimic
human input, without being super-human. As already dis-
cussed, (Sestini, Kuhnle, and Bagdanov 2019) contributed to
this aim, defining a DRL framework suited for the production
of turn-based strategy games. Our aim is to improve on the
latter framework in order to render it more robust to changes
to gameplay mechanics during development — i.e., to render
DRL agents more mechanics-free.

3 Proposed models

Our work builds upon the DeepCrawl framework. Our overar-
ching goal is to make the system as independent as possible
from dynamic changes during the development phase, and we
argue that a crucial step in this direction is a procedural loot
generation system which helps encourage generalizing agent
behavior in a fully procedural environment. In particular, we

want to fulfill the following desiderata:

* Performance. We desire agents able to properly handle
a procedural loot system, so they must understand which
object is most useful for defeating the game;

* Adaptation. Agents must adapt to changes in gameplay
mechanics, in particular changes to the loot generation
system during playtesting and rebalancing, without the
need of retraining; and

* Scalability. We desire a framework that can scale in both
the number of possible objects and in the number of at-
tribute bonuses of each object type. Moreover, the frame-
work must have limited complexity to facilitating targeting
of systems like mobile devices.

With these three new desiderata in mind, we now describe
two architectural solutions that satisfy them. Both are sig-
nificant modifications of the early, frontend layers of the
DeepCrawl network that allow it to better manage our new
procedural loot system. We begin with a brief introduction of
the original DeepCrawl environment and network, and then
continue with the description of two different architectures
that address the problems defined above.

The DeepCrawl environment and policy network

DeepCrawl (figure 2) is a Roguelike game that shares all the
typical elements of the genre, such as the procedurally cre-
ated environment, the turn-based system, and the non-modal
characteristic that makes every action available to actors re-
gardless the level of the game. In this environment the player
faces one or more agents controlled by a DRL policy net-
work. Player and agents act in procedurally-generated rooms,
and both of them have exactly the same characteristics, can
perform the same 17 actions, and have access to the same in-
formation about the world around them. The reward function
is extremely sparse and only gives positive reward in case
of victory. Player and agent are aware of a fixed number of
personal characteristics such as HP, ATK, DEX, and DEF.

The visible environment at any instant in time is repre-
sented by a grid with maximum size of 10 x 10 tiles. Each
tile can contain an agent or player, an impassible object, or
collectible loot. Each of these entities are represent with a
categorical integer ID. Loot can be of three types: melee
weapons, ranged weapons, or potions. There is a fixed set
of loot, each of which increases an actor characteristic by
a predefined value according to the type of object. In this
context, the agent must learn which loot ID is the best to have
in order to win the game.

Success and failure in DeepCrawl is based on direct com-
petition between the player and one or more agents guided by
a deep policy network trained using DRL. Player and agents
have exactly the same characteristics, can perform the same
actions, and have access to the same information concerning
the world around them.

The input state is divided into one global view, the whole
grid map, and two local views, smaller maps centered around
the agent’s position at different scales, that are passed as in-
put to a convolutional neural network. A fourth input branch
takes as input an array of discrete values containing informa-
tion about the agent and the player. Due to the categorical

nature of the input state space described above, we call this
architecture a Categorical network and the overall details are
illustrated in figure 3. We refer to the first input branches as
State Embedding module and the fourth input branches as
Property module. In this paper we focus mainly on the State
Embedding module.

As was discussed in the introduction, this input structure
limits the adaptation nature of the trained agents. We over-
come this limitation by first defining and implementing a
different way to generate collectible items in the environ-
ment.

Procedural loot system

In our proposed parametric loot system, each object has a
number of attributes whose values during training are drawn
from a uniform distribution when generating an environment
for a new training episode. When an actor collects an item, the
actor characteristics will increase or decrease according to the
attributes of the instance of the looted object. In our current
implementation, each object has the same four attributes
corresponding to the four characteristics of the actors. This
is not a requirement, however, rather it reflects the original
design and implementation of categorical loot system in the
original DeepCrawl game.

This system brings a lot of benefits to DeepCrawl: it
makes the game more complex and varied, with the cor-
responding possibility of creating more convincing NPCs
and player/environment interactions. The environment is now
fully procedural, which should increase the generalization
of the agents. Moreover, during playtesting developers can
choose either to use random objects or to define a set of fixed
objects with fixed attributes in order to balance the game.

However, to enjoy these benefits the policy networks
trained for agent behaviors must be able to accommodate this
new procedural loot system. The network described above
cannot easily do this due to the categorical nature of its input
space. Thus we propose two new solutions.

Dense embedding policy network

Our first model is a straightforward extension of the one used
in the original DeepCrawl paper. We were inspired by the
ideas of (OpenAl et al. 2019) and DeepCrawl to treat the
map of categorical inputs via embedding layers. In contrast
to these approaches, however, we use multi-channel maps
where each channel represents a different categorical value:

 The first channel represents the type of entity in that posi-
tion:
— 0 =impassable object;

1 = empty tile;

— 2 =agent;

— 3 =player;

— 4 =melee weapon;

— 5 =range weapon; and

— 6 = potion item.

¢ The other channels each contain an attribute of the object in
that tile, represented by a categorical value. For instance,
if a tile contains a melee weapon, its attribute bonuses

State Embedding Module

Convolutional Module

s N

Global map 10x10 Embedding size 32

Local map 5x5 Embedding size 32

B)

Local map 3x3 Embedding size 32

Conv 3x3 size 32 stride 1 Conv 3x3 size 64 stride 1

Conv 3x3 size 32 stride 1 Conv 3x3 size 64 stride 1

Conv 3x3 size 32 stride 1 Conv 3x3 size 64 stride 1

e 6 6

Previous Action

LST™M
size 256
Softmax
size 17

- J
Property Module
N
Properties Embedding size 64 FC size 256
. AN

Figure 3: The Categorical network used for NPCs in DeepCrawl (see section 3 for a detailed description). This network
architecture is not able to properly handle a procedural loot generation system due to the State Embedding Module that requires
categorical IDs for each entity in the game. Our approach replaces this module with two possible alternatives shown in figure 4.

State Embedding Module

State Embedding Module

Map of cell types Map of Dense embedding
N+1attributes 10x10x32

Map of cell types Map of Dense embedding
5x5 N+1 attributes 5x5x32

Map of cell types Map of Dense embedding
3x3 N+1 attributes 3x3x32

5-80 7
-0 9

B8 0

Melee Weapons FC Scattered map Cell embeddings
with N attributes size 32 10x10x32 10x10x32

®

Transformer
Range Weapons FC size 32 Scattered map Cell embeddings
with M attributes size 32 3x3x32 5x5x32

°@-

Potion items FC Scattered map Cell embeddings
with K attributes size 32 3x3x32 3x3x321

o ()}

(a) Dense Embedding module

(b) Transformer Embedding module

Figure 4: The two new architectures proposed in this paper: (a) The Dense Embedding module, and (b) the Transformer
Embedding module. These modules replace the State Embedding Module in the original architecture shown in figure 3, while the
rest of the policy network is left unchanged. See section 3 for a detailed description.

like health points (HP), attack (ATK), defense (DEF), and
dexterity (DEX) are represented by an array of all attributes
(plus tile type): [TYPE, HP, ATK, DEF, DEX].If
the tile does not contain loot (like an impassable object),
this array is filled with the special value no-attribute:
[TYPE, NONE, NONE, NONE, NONE].

This multi-channel map input, which like the original
DeepCrawl network as shown in figure 3, is divided in global
and local views and passed through what we refer to as
“dense embedding” layers: multiple categorical values are
combined together and mapped to their corresponding fixed-
size continuous representation by a single dense embedding
operation. To implement the dense embedding operation, we
simply convert each channel into a one-hot representation

and apply a 1 x 1 convolution with stride 1 and tanh acti-
vation through all channels. In the special case of a single
channel, the operation is equivalent to standard embedding
layers. The full model architecture is shown in figure 4a.

This architecture satisfies the requirements we are looking
for: the framework is independent from attribute changes to
the loot system as long as the types of character attributes
remain the same. Moreover, if developers want to change the
set of attributes during production, it is no longer necessary to
change the entire agent architecture, only the corresponding
channels of the dense embedding layer need to be added or
removed. As an additional benefit, the network size remains
relatively small. A detailed analysis of experimental results
for this architecture are given in section 4.

Archer Reward

Warrior Reward

Ranger Reward

©

| | — dense_embedding
I I transformer

®

|
! 7
J

Wy Vklrw\‘v-'v“vi'u,/""vl(/

<

N

SR

Mean Reward
IS

Mean Reward

N ow

-

I
o
LI"\/' V' wV
I
I
I
I
I
I
I
I
I
I
I
I

|
|
1
1
|
| 3
|
|
|
|
|

4
Y

R

TP s T

+— dense_embedding
transformer

| — dense_embedding
transformer

I
|
I
|
I
/'/\N"Mf ek it

Mean Reward

l

|

l

l
"}"\\V'ML

|

|

|

|

l

|

I

I

|

1

3
Timesteps

4

2

Timesteps

3
Timesteps

3 4

Figure 5: Mean reward during the training phase for all classes as a function of timestep. From left to right: archer, warrior, and
ranger. The dashed vertical lines on the plots delineate the different curriculum phases, which are the same as in (Sestini, Kuhnle,

and Bagdanov 2019).

Transformer-based policy network

We propose an alternative model based on the recently popu-
lar Transformer architecture (Vaswani et al. 2017), and partic-
ularly its self-attention layer which has also been successfully
applied as state encoder in RL applications (Baker et al. 2019;
Vinyals et al. 2019; Zambaldi et al. 2018). This model uses
self-attention to iteratively reason about the relations between
entities in a scene, and is expected to improve upon the ef-
ficiency and generalization capacity over convolutions by
more explicitly focusing on entity-entity relations.

Concretely, the self-attention layer takes as input the set
of entities e; for which we want to compute interactions
(not including auxiliary no-attribute objects), and then
computes a multi-head dot-product attention (Vaswani et al.
2017): given N entities, each is projected to a query ¢;, a key
k; and a value v; embedding, and the self-attention values
are computed as

t

A = softmax <QK> V,

Vd

where A,), K, and V represent the cumulative interactions,

queries, keys and values as matrices, and d is the dimen-

sionality of the key vectors. As in the original paper, we use

4 independent such self-attention heads. Subsequently, the

output vectors per head are concatenated and passed on to a

fully-connected layer, and finally added to the entity vector

e; via residual connection to yield a fixed-size embedding
vector per entity.

The Transformer operation thus produces embeddings
which encode relations between loot in the environment. In
this case we represent each object by an array of its attribute
bonuses, normalized between 0 and 1, which are further pro-
cessed by fully connected layers with shared weights across
loot types. Based on these representations, a Transformer
layer is applied to reason about loot-loot relations, resulting
in a fixed-size embedding per entity. Following the concept
of spatial encoders from AlphaStar, all entity representations
are then scattered into a spatial map so that the embedding
at a specific location corresponds to the unit/object placed
there.

ey

More specifically, we create an empty map and place the
embeddings returned by the Transformer at the correspond-
ing positions where the loot is located in the game. We pro-
duce such scattered maps for both global and local views
which, as before, are concatenated with the embedding map
of categorical tile type and then passed on to the remaining
convolutional layers. The full network is shown in figure 4b.
This model is, again, independent from changes to the loot
generation system, and even if developers change the number
of attributes during production, this architecture does not
require any adaptation, but can simply be retrained on the
new game. The biggest weakness is that this architecture is
quite complex and requires more computational resources,
which goes against the last desideratum defined in section 3.

4 Experimental results

In this section we report on experiments performed to evalu-
ate differences, advantages, and disadvantages of the two new
architectures with respect of the Categorical network. All of
our policy networks were implemented using the Tensorforce
library (Kuhnle, Schaarschmidt, and Fricke 2017)!

We follow the same training setup of our original Deep-
Crawl work. At the beginning of each episode, the shape
and the orientation of the map, as well as the number of
impassable and collectible objects and their positions are
randomly generated; the initial position of the player and the
agent is random, as well as their initial equipment. We also
use curriculum learning (Bengio et al. 2009) with the same
phases as the original paper and during training the agents
fight against an opponent that always makes random moves.
The only difference is the addition of the loot generation sys-
tem described in section 3: each collectible item now has four
attributes which correspond to and modify the actor proper-
ties (HP, DEX, ATK, DEF). At the beginning of each episode
these values are drawn randomly from a uniform distribution
for each loot object on the map.

We trained three NPC classes (Archer, Warrior, and Ranger
(the same as those from the original DeepCrawl paper) using

'Code available at http://tiny.cc/ad_npc

the Transformer, Dense Embedding, and the original Categor-
ical deep policy networks. The NPC classes are distinguished
from one another by their character attributes — see (Sestini,
Kuhnle, and Bagdanov 2019) for a complete description of
the training procedure. In the following, we assess each of
the main requirements discussed above in section 3 in light
of our experimental results.

Performance. Figure 5 shows the training curves for our two
proposed policy networks. The two architectures achieve the
same reward, demonstrating that both are able to properly
handle the new version of the environment. Table 1 shows
that, if two agents of the same class fight each other in the
testing configuration (where they start with the max amount
of HP and their initial equipment are neutral weapons, while
the loot in the map is still procedural), the Transformer based
policy has a slight advantage against the Dense Embedding
network.

We cannot compare these training curves with those in the
original work because of the dynamic nature of the environ-
ment introduced by the procedural loot system. The only way
to compare with the Categorical network is to train agents
with it in the new environment after discretizing the loot at-
tributes into potentially very many unique object IDs. We can,
however, have agents of the same class but with different pol-
icy fight each other in this new environment. As table 1 shows,
the proposed policies have higher average success rate with
respect to the Categorical policy network. This demonstrates
that these solutions better capture the differences between
loot objects.

Adaptation. To demonstrate the improved generalization
capacity of our proposed network architectures, we tested
them by changing the loot distribution from the fully proce-
dural one used during training to a fixed distribution. This
new environment has only three different type of weapons:
low, medium and high power (both ranged and melee) that
have clear differences between each other — similar to the
fixed weapons in the original DeepCrawl. For high power
weapons we mean loot that gives high value bonuses for
all attributes, and so forth for medium and low power ones.
Based on the four attributes in DeepCrawl, in this variant a
high power sword has attribute bonuses of [+2, +2, +2,
+21, a medium power sword has [+0, +0, +0, +01,
and a low power sword [-2, -2, -2, -2]. We refer
to this distribution as the uniform loot distribution. We then
compare the agents, which have been trained with the full
procedural loot, in this testing environment. As table 1 shows,
our proposed models have a small advantage compared to the
original Categorical framework.

In a subsequent experiment, we change the distribution
of fixed loot power: there are still three weapon types, low,
medium and high power, but the high power weapons are far
more powerful than the medium and low power ones, which
are comparatively similar. More concretely, a high power
sword here has attribute bonuses of [+5, +5, +5, +5],
a medium sword [-2, -2, -2, -2] and a low power
sword [-3, -3, -3, -3].Wecall this distribution the
skewed loot distribution. As shown in table 1, with this con-
figuration the success rate for our proposed architectures is

much higher, outperforming agents trained with the previous
framework and hence showing better adaptation than the Cat-
egorical architecture to such a change in the balance of the
game.

Scalability. To handle the procedural loot system with the
Categorical architecture developers must define a fixed set of
class IDs prior to training. This is not a trivial task and can
quickly become intractable when the number of attributes
for each object increases. Moreover, since the Categorical
framework does not generalize (see table 1), if developers
want to change loot generation they must define a new set
of classes, and that forces retraining of agents. Instead, with
our proposed solutions developers simply train their agents
with procedurally generated loot and can decide after training
whether to use, in the final game, random objects or a fixed set
of weapons for balancing the game: our agents will manage
both situations without the need of retraining.

Both the proposed frameworks properly handle changes in
the number of attributes. In this case retraining is mandatory,
but developers need not to worry about changing the network
architectures: with the Dense Embedding network they need
only to add a new channel for each new attribute, while
the Transformer based does not require any changes since
it is completely independent of loot parameterization. The
Transformer embedding can even handle loot with various
number of attributes per type, providing a big advantage with
respect to Dense Embedding which requires loot with the
same number of attributes.

The biggest drawback of the Transformer network is its
complexity. While the Dense and Categorical embedding net-
works require about 1.3 minutes to train 100 episodes, the
Transformer network takes twice as long. The average train-
ing times for 100 episodes are 3.31 minutes, 1.36 minutes
and 1.10 minutes for the Transformer, Dense Embedding and
Categorical networks, respectively. Training was performed
on an NVIDIA RTX 2080 SUPER GPU with 8GB of RAM.

In a video game design and development context, this is an
important aspect to consider: the continuous changes in the
gameplay mechanics require many retrainings, and having
a small network is essential. In addition, these frameworks
must be implemented to target devices with reduced perfor-
mance, increasing the need for small and efficient models.

Optimization and hyperparameters

We use the Proximal Policy Optimization algorithm (Schul-
man et al. 2017) to optimize the agent model. The agent is
trained over the course of multiple episodes, each of which
lasts at most 100 steps. An episode may end with the agent
achieving success (i.e. agent victory), failure (i.e. agent death)
or reaching the maximum step limit. After every fifth episode,
an update of the agent weights is performed based on the pre-
vious five episodes. PPO is an Actor-Critic algorithm with
two networks to be learned: the actor policy and the critic
state-value function. For both the dense embedding and trans-
former variant, the critic uses the same structure as the policy
network.

Hyperparameter values are the same in all experiments
and were chosen after a preliminary set of experiments with

Table 1: Success rates averaged over 100 episodes for pairs of policy networks playing against each other in different testing
environments. Procedural Loot refers to the environment with fully procedural loot, where each item attribute is drawn randomly
at the beginning of an episode. Uniform loot refers to the variant with a fixed set of only three types of weapons (low, medium
and high power ones). Skewed Loot refers to another another such variant, one in which the strongest weapons are far more
powerful than the other two. For more details about the experimental setup and loot distributions, see section 4. The proposed
network architectures generalize better across distributional loot changes compared to the original categorical architecture.

Transformer vs Dense Embedding Dense Embedding vs Categorical Transformer vs Categorical
Procedural | Uniform | Skewed || Procedural | Uniform | Skewed || Procedural | Uniform | Skewed
loot loot loot loot loot loot loot loot loot
Archer 55% 56% 52% 62% 58% 67 % 60% 57% 66%
Warrior 50% 52% 50% 60% 56% 66 % 60% 58% 66%
Ranger 52% 50% 49% 58% 56% 63% 56% 58% 64 %

different configurations: the policy learning rate I, = 5 -
1075, the baseline learning rate lr, = 5 - 10~%, the agent
exploration rate ¢ = 0.2, and the discount factor v = 0.99.
For the transformer architecture, we used a two-headed self-
attention layer, with queries, keys and values of size 32 and a
two-layers MLP with size 128 and 32.

5 Conclusions

In this paper, we described several extensions to our Deep-
Crawl framework (Sestini, Kuhnle, and Bagdanov 2019).
First, we implemented a procedural loot generation system
which augments the game with a degree of complexity that
makes the game more compelling as benchmark for DRL
algorithms, particularly in the context of game development.
Moreover, we proposed two neural network architectures, one
based on Dense Embeddings and one based on Transform-
ers, which both show substantially improved performance
due to their capabilities to reason about loot and attribute
bonuses. Overall, our experimental analysis slightly favors
the Dense Embedding approach due to its reduced complexity
and computational requirements.

The advantages for game development are twofold. On
the one hand, Roguelikes such as DeepCrawl may contain a
large number of items, or indeed employ a procedural loot
generation system, so the ability to effectively learn how to
compare and prioritize loot is important for NPCs. On the
other hand, this ability makes NPCs robust to modifications
to the loot system during development, without the need to
retrain the behavioral models from scratch every time. This
is important, first, for the balancing process during playtest-
ing which is crucial to final quality; and second, both our
proposed architectures can easily be adapted in the face of
major changes to the loot system which may occur during
production.

References

Baker, B.; Kanitscheider, 1.; Markov, T.; Wu, Y.; Powell, G.;
McGrew, B.; and Mordatch, 1. 2019. Emergent tool use from
multi-agent autocurricula. arXiv preprint arXiv:1909.07528 .

Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J. 2009.
Curriculum Learning. In Proceedings of ICML.

Chevalier-Boisvert, M.; Willems, L.; and Pal, S. 2019.
Minimalistic gridworld environment for openai gym.
Github Repository. URL https://github.com/maximecb/gym-
minigrid.

Cobbe, K.; Hesse, C.; Hilton, J.; and Schulman, J. 2019.
Leveraging procedural generation to benchmark reinforce-
ment learning. arXiv preprint arXiv:1912.01588 .

Delalleau, O.; Peter, M.; Alonso, E.; and Logut, A. 2019.
Discrete and continuous action representation for practical
rl in video games. Proceedings of AAAI-20 Workshop on
Reinforcement Learning in Games .

Jacob, M.; Devlin, S.; and Hofmann, K. 2020. “It’s
Unwieldy and It Takes a Lot of Time.” Challenges and
Opportunities for Creating Agents in Commercial Games.
In 16th AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment. Association for the
Advancement of Artificial Intelligence (AAAI), Association
for the Advancement of Artificial Intelligence (AAAI).
URL https://www.microsoft.com/en-us/research/publication/
its-unwieldy-and-it-takes-a-lot-of-time-challenges-and-

opportunities-for-creating-agents-in-commercial-games/.

Juliani, A.; Khalifa, A.; Berges, V.-P.; Harper, J.; Teng, E.;
Henry, H.; Crespi, A.; Togelius, J.; and Lange, D. 2019. Ob-
stacle Tower: A Generalization Challenge in Vision, Control,
and Planning. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IICAI-19,
2684-2691. International Joint Conferences on Artificial In-
telligence Organization. doi:10.24963/ijcai.2019/373. URL
https://doi.org/10.24963/ijcai.2019/373.

Justesen, N.; Torrado, R.; Bontrager, P.; Khalifa, A.; Togelius,
J.; and Risi, S. 2018. Illuminating Generalization in Deep
Reinforcement Learning through Procedural Level Genera-
tion. Proceedings of NeurlPS Workshop on Deep Reinforce-
ment Learning URL https://sites.google.com/view/deep-1l-
workshop-nips-2018/home.

Kuhnle, A.; Schaarschmidt, M.; and Fricke, K. 2017. Ten-
sorforce: a TensorFlow library for applied reinforcement
learning. Web page. URL https://github.com/tensorforce/
tensorforce. Accessed: January 6, 2019.

Kiittler, H.; Nardelli, N.; Miller, A. H.; Raileanu, R.; Selvatici,
M.; Grefenstette, E.; and Rocktédschel, T. 2020. The NetHack
Learning Environment. arXiv preprint arXiv:2006.13760 .

OpenAl; Berner, C.; Brockman, G.; Chan, B.; Cheung, V.;
Debiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.;
Hesse, C.; J6zefowicz, R.; Gray, S.; Olsson, C.; Pachocki, J.;
Petrov, M.; de Oliveira Pinto, H. P.; Raiman, J.; Salimans,
T.; Schlatter, J.; Schneider, J.; Sidor, S.; Sutskever, 1.; Tang,
J.; Wolski, F.; and Zhang, S. 2019. Dota 2 with Large Scale
Deep Reinforcement Learning. arXiv preprint 1912.06680
URL https://arxiv.org/abs/1912.06680.

Pleines, M.; Zimmer, F.; and Berges, V. 2019. Action Spaces
in Deep Reinforcement Learning to Mimic Human Input
Devices. In 2019 IEEE Conference on Games (CoG), 1-8.

Risi, S.; and Togelius, J. 2019. Procedural content generation:
from automatically generating game levels to increasing gen-
erality in machine learning. arXiv preprint arXiv:1911.13071

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv e-prints arXiv:1707.06347.

Sestini, A.; Kuhnle, A.; and Bagdanov, A. D. 2019. Deep-
Crawl: Deep Reinforcement Learning for Turn Based Strat-
egy Games. In Proceedings of AIIDE Workshop on Experi-
mental Al in Games.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. Attention
is all you need. In Advances in neural information processing
systems, 5998-6008.

Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P,; et al. 2019. Grandmaster level in StarCraft II
using multi-agent reinforcement learning. Nature 575(7782):
350-354.

Zambaldi, V.; Raposo, D.; Santoro, A.; Bapst, V.; Li, Y.;
Babuschkin, I.; Tuyls, K.; Reichert, D.; Lillicrap, T.; Lock-
hart, E.; et al. 2018. Deep reinforcement learning with re-
lational inductive biases. In International Conference on
Learning Representations.

Zhao, Y.; Borovikov, I.; Silva, F. D. M.; Beirami, A.; Ru-
pert, J.; Somers, C.; Harder, J.; Kolen, J.; Pinto, J.; Pourabol-
ghasem, R.; et al. 2020. Winning Isn’t Everything: Enhancing
Game Development with Intelligent Agents. /EEE Transac-
tions on Games .

