
The Effect of Antagonistic Behavior in Reinforcement Learning

Ted Fujimoto*, Timothy Doster, Adam Attarian, Jill Brandenberger, Nathan Hodas
Pacific Northwest National Laboratory

{ted.fujimoto, timothy.doster, adam.attarian, jill.brandenberger, nathan.hodas}@pnnl.gov

Abstract
The significant achievements of deep reinforcement learning
(RL) have motivated researchers to also investigate its short-
comings. Such work has shown that typical methods in deep
RL tend to produce brittle policies that overfit to the training
environment. In this paper, we introduce the notion of purely
antagonistic behavior in value-based agents, where the objec-
tive is not to maximize reward but to minimize the victim’s
value over time. This notion is motivated by the scenario in
which an antagonistic human architect, without access to the
environment’s reward function, wants to build an RL agent
that can impede another well-trained RL victim agent. First,
we formalize a notion of antagonistic behavior in RL. Then,
we provide experiments that show how a purely antagonistic
agent performs compared to a well-trained victim that learns
directly from the game’s rewards. Our results suggest that if
one’s goal is to find vulnerabilities in well-trained agents, di-
rect access to the environment’s rewards is not necessary, and
antagonistic behavior can be measured independently from
environment wins and losses.

Introduction
The recent accomplishments of RL and self-play in Go (Sil-
ver et al. 2016), Starcraft 2 (Vinyals et al. 2019), DOTA
2 (Berner et al. 2019), and poker (Brown and Sandholm
2019) are seen as pivotal benchmarks in AI progress. While
these feats were being accomplished, work was also being
done showing the vulnerabilities of these methods. (Huang
et al. 2017) showed that policies are especially vulnera-
ble against adversarial perturbations of image observations
when white-box information is utilized. (Gleave et al. 2020)
showed that an adversarial agent can easily learn a policy
that can reliably win against a well-trained opponent in high-
dimensional environments by learning from the rewards pro-
vided by the environment. One thing missing from their find-
ings is investigating if the adversarial agent might produce
negative side effects that cannot be observed if the focus is
just on environment rewards. Our work builds on these past
accomplishments by taking a more realistic view at how a
hypothetical architect might actually develop an RL agent
that learns how to exploit a well-trained agent. We formalize
such an architect by assuming the following scenario:

*Corresponding author.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1. A well-trained RL agent ν.

2. An antagonistic RL agent α that does not have access to
the environment’s reward function.

3. The (human) architect of α who can observe ν’s behavior,
and interpret when ν is succeeding or failing at a given
state in the environment. For example, the architect can
accomplish this by using ν’s value function to measure
ν’s level of frustration at each state.

Contributions We contribute a definition of purely an-
tagonistic behavior that intuitively represents an agent that
intentionally sabotages a victim agent. We define such be-
havior as the actions that minimize the victim’s state-value
over time, not as the actions that optimize the expected value
of the cumulative sum of environment rewards. Here, purely
antagonistic behavior forces the victim into sub-optimal sit-
uations but is not concerned with long-term wins or loses.
This notion of antagonistic behavior is motivated by the as-
sumption that even when two humans in conflict have no
knowledge of their respective victim’s long-term goals, they
can quickly recognize their victim’s immediate, short-term
pain or frustration. Although placing short-term, antagonis-
tic motivation as the sole focus of an RL agent runs counter
to the goal of long-term sequential decision making, the re-
sults presented here show that an antagonist can be surpris-
ingly effective against a victim by just exploiting immediate
weaknesses. Our results suggest that (1) if one’s goal is to
find vulnerabilities in well-trained agents, direct access to
the environment’s rewards is not necessary in all cases, (2)
purely antagonistic behavior toward an agent in a particular
environment can be encapsulated in a single value function,
(3) having access to the victim’s state-value function does
not guarantee a winning policy for the antagonist, and (4)
antagonistic behavior can be measured independently from
environment wins and losses.

In Section 2, we review past related work in adversarial
RL and differentiate it from our notion of antagonistic be-
havior. In Section 3, we formally define antagonistic behav-
ior and justify our definition. In Section 4, we provide the
results of experiments that show how such agents behave in
certain board games. In Section 5, we provide some conclu-
sions and suggestions for future work.



Related Work
The work presented here attempts to further understand neg-
ative side effects in AI, which are one of the concrete prob-
lems in AI safety mentioned in (Amodei et al. 2016). Specif-
ically, our work formally defines a RL agent that learns to
frustrate the victim, which can deliberately increase the neg-
ative side effects a victim may encounter. This failure mode
can also be seen as an example of adversarial optimization
(Manheim 2019). Gary Marcus makes this problem clearer
by necessitating the need to define harm produced by AI sys-
tems so that it can be avoided (Fridman 2019). Although
these authors explain the intuition behind these problems,
they do not formally define a RL framework that a hypothet-
ical antagonist would use to train an agent that exacerbates
the problems they describe.

Some accomplishments have been made in introducing an
adversarial element to the process of policy improvement in
RL agents. Some examples include Robust Adversarial RL
(Pinto et al. 2017), and Risk Adverse Robust Adversarial RL
(Pan et al. 2019). Although our work in this paper mainly
focuses on observing agent behavior, investigating how our
definition of antagonistic behavior may lead to more robust
policies can be explored in future research.

There has also been research in RL that assumes an adver-
sary that subverts the training of an agent. As mentioned in
the previous section, (Huang et al. 2017) use the victim’s im-
age observations to negatively affect its policy. (Huang and
Zhu 2019) and (Zhang et al. 2020) use reward poisoning to
trick the victim into learning a nefarious policy. Our work
does not assume the antagonist has the ability to manipulate
the victim’s observations, or the ability to poison the envi-
ronment rewards the victim receives.

We will model our multiagent environment as a Markov
game similar to what was defined in (Littman 1994). Like in
(Gleave et al. 2020), we will fix the victim’s policy so that
the antagonist can act as if in a single-agent environment.
Unlike (Gleave et al. 2020), the antagonistic agents in this
paper do not have black-box access to the victim’s actions
and do not learn from rewards provided by the environment.
In this paper, we use the term ”antagonistic” instead of ”ad-
versarial”. This choice was made since the term ”antagonist”
is closer to our intention of having an agent learn to ”frus-
trate” a victim. Also, the term ”adversarial” has been defined
differently in past research on adversarial policies (Gleave
et al. 2020) and adversarial value functions (Bellemare et al.
2019), which both learn from the environment’s rewards.

Defining Antagonistic Behavior
Preliminaries
We model the agents as a two-player Markov game similar
to the framework in (Shapley 1953) and (Gleave et al. 2020).
Assume the antagonist (α) and the victim (ν) play a Markov
game M = (S, (Aα, Aν), P, (Rα, Rν)) where S is the state
set, Aα and Aν are action sets, Rα and Rν are reward func-
tions, and P is the state-transition probability distribution.
There are also the antagonist’s policy (πα) and the victim’s
policy (πν). Like in (Gleave et al. 2020), we hold the vic-
tim’s policy fixed during the antagonist’s training. Next, we

will define the antagonist’s reward function Rα to represent
antagonistic behavior and not rewards provided by the envi-
ronment.

Value-Based Antagonistic Behavior in
Reinforcement Learning
The scenario of focus will be creating an agent that learns
purely antagonistic behavior without direct access to a re-
ward function. To accomplish this, we introduce the notion
of antagonistic behavior in reinforcement learning. Defining
antagonistic behavior provides a foundation for creating an
agent that has no access to the environment’s reward func-
tion, but learns to choose the action that leads to the state
with the smallest victim state-value.

In normal-form zero-sum games, antagonistic behavior
can be defined as the actions that minimize the victim’s util-
ity function. This is appropriate since each player makes
only one action. In RL, where one must account for a se-
quence of states and actions, this is not generally appropri-
ate. To understand this complication, we consider the game
of Go. In Figure 1, assume the victim is well-trained and the
antagonist wants to pick the move that immediately leads to
the victim being worse off. If the antagonist simply picks
the point on the board that would have produced the small-
est victim state-value, it would have picked a point having
little impact on the groups of stones that are the current fo-
cus. This follows the intuition that a trained Go player will
ascribe a higher value to moves that have a higher impact on
winning, and lower values to moves that have little impact
on winning. In this case, the best move for both agents is to
put a stone on the same point. The antagonist that strictly
adheres to the negative of the victim’s state-value function
will not make that move. Even if the antagonist does not re-
ceive rewards from the environment, this presents a dilemma
since the best move and the move that would most ”frus-
trate” the victim are the same. Hence, just using the negative
of the victim’s value function as the antagonist’s reward is
not enough for the antagonist to learn the purely antagonis-
tic behavior we desire since the antagonist may learn actions
that have no impact on the victim’s state-value.

To remedy this, we acknowledge the existence of different
states over time as a useful contrast between normal-form
games and RL. That is, we want a notion of purely antag-
onistic behavior to ”frustrate” the victim given the current
state. More clearly, the antagonist at state sn would want
to take the action that leads to a lower victim state-value at
state sn+1. Hence, a purely antagonistic agent minimizes the
value Vπν

(sn+1)− Vπν
(sn), or equivalently, maximizes the

value Vπν
(sn)−Vπν

(sn+1). This fixes the Go situation pre-
sented above. Assume, using the victim’s state-value func-
tion, the current state sn has a value of 100, the value of the
state sn+1 where the antagonist places a stone on the op-
posite corner is 99, and the value of the state s′n+1 where
the antagonist places a stone on the best current point is 50.
Then Vπν

(sn+1)−Vπν
(sn) is -1 while Vπν

(s′n+1)−Vπν
(sn)

is -50, which would lead the antagonist to value the action
that leads to s′n+1 higher than the action leading to sn+1.
This follows our intuition of how an antagonist would act in
a way that would ”frustrate” its victim the most. Such an-



Figure 1: Left: The blue dot shows the white player’s action
that would lead to the state with the highest state-value. The
red dot would lead to the state with the lowest state-value.
Right: If black chooses the move that leads to white’s low-
est state-value assuming it were white’s turn, then it would
choose to place its stone on the red dot. This move would
likely be to white’s benefit since (1) it has little impact on the
current state of the game, and (2) black’s best move would
also be the blue dot.

tagonistic behavior is focused more on the victim and not
necessarily on environment reward.

Now that the intuition has been explained, we can for-
mally quantify learned antagonistic behavior in RL agents.
Let Vν : S → R be the victim’s value function and ∆Vt =
Vπν (st+1) − Vπν (st). Let a policy πα : S × A → [0, 1] be
the antagonistic policy.

Definition 1. The Antagonistic Value Function of a state s
under a policy πα is defined as:

Vπα
(s) = −Eπα

[Σ∞t γ
t∆Vt|St = s] (1)

where γ is the discount rate. Hence, Rα(t) = −∆Vt.

Hence, maximizing this value is equivalent to minimizing
the positive change of the victim’s state-value at each time
step t. This can be seen as an example of adversarial opti-
mization since its goal is to lower the victim’s state-value
over time (Manheim 2019). Since the value function only
takes states as inputs, this definition is appropriate for both
turn-based and simultaneous move Markov game environ-
ments. Estimating the value function does not imply knowl-
edge of the reward function, because inverse RL is funda-
mentally under-constrained.

The motivation here is different from fictitious play
(Berger 2007). Our goal is not to minimize the opponent’s
returns but to observe the behavior of agents with access
to their victim’s value function. Research into the empirical
similarities and differences could be of further interest.

Assumption 1. The antagonistic value function represents
the ideal architect with the ability to observe and measure
the victim’s ”frustration” level at each state and use those
measurements as rewards for the antagonistic agent.

The following theorem can be seen as an explanation for
what happens when an opponent lowers the victim agent’s
state-value over time.

Theorem 1. Assume a finite, turn-based, zero-sum, deter-
ministic game with no intermediate rewards and let ν have

the static, optimal value function V ∗ν . If ν wins, 0 < γ < 1,
ν’s policy is greedy, and n is the number of time steps (or
game moves) left at state s to traverse and win the game,
then n = logγ V

∗
ν (s).

This theorem states that in a board game, like Break-
through or Connect-4, the number of steps left to win the
game monotonically decreases as V ∗ν increases. This will
help because if the antagonistic agent is successful at lower-
ing the value function of the victim, and the victim follows
the optimal value function, the length of the game will in-
crease. This is relevant to our investigation of antagonistic
behavior if we make the following assumption:
Assumption 2. In board games like Breakthrough, Havan-
nah and Connect-4, antagonistic behavior is measured by the
average number of moves it takes to complete a game.

This is motivated by the intuition that an expert player
wants to win as quickly as possible. For example, in Break-
through and Havannah, an antagonistic agent needs to know
effective blocking strategies that prevent the victim from
winning. The experiments in the next section will verify this
theorem for some games. However, in games like Go, this
assumption might not hold since an artificial agent in this
game might not stop playing until all possible moves have
been exhausted.

Justification
To justify the antagonistic value function above as a defini-
tion that represents antagonistic behavior, we make the fol-
lowing assumptions: (1) antagonistic behavior means min-
imizing the victim’s value at every state, (2) the Markov
property holds, and (3) antagonistic behavior and self-
interested behavior can be distinct. From these premises, we
conclude that the antagonistic value function encapsulates
antagonistic behavior in RL agents.

It is not clear how (1) could be false if the victim’s value
function is optimal. It could be that the victim has a policy
that follows a sub-optimal value function, but an agent using
the antagonistic value function would still seem antagonistic
from the victim’s perspective since the antagonist is still try-
ing to minimize the victim’s current state-value. Intuitively,
(3) is true in human social interaction since we occasionally
work with our adversaries to prevent a scenario that would
be against the self-interests of both parties. Although the dif-
ference becomes less clear in games or RL environments that
are zero-sum (Gleave et al. 2020), (3) still holds since agents
in these scenarios learn from rewards. It is possible (as will
be shown in the Experiments section) that even in zero-sum
games, making it harder for the victim to win does not nec-
essarily imply the antagonist will win the game.

Any value function that represents antagonistic behavior
would still need access to the victim’s value function Vπν

.
As illustrated earlier in the Go example, minimizing Vπν

alone will not work in general. Since the Markov property
ensures that each state includes information about all aspects
of the past agent-environment interaction that make a differ-
ence for the future (Sutton and Barto 2018), knowing the
difference ∆Vt alone is enough for the antagonist to learn
how to exploit the victim. That is, we do not need any other



previous states since the current state is all we need. If (3) is
true, then we don’t need to include the rewards provided by
the environment to learn antagonistic behavior. If (1) is true,
then we can conclude that our definition encapsulates antag-
onistic behavior the same way regular value functions en-
capsulate behavior optimized to find environment rewards.

Experiments
Training Progress
We train the antagonist and victim using the game environ-
ment OpenSpiel (Lanctot et al. 2019). Both agents’ policies
are deep Q-networks that are trained in a manner similar
to (Mnih et al. 2015). Specifically, the agents use ε-greedy
policies with 6-layer or 7-layer linear neural network value
functions implemented in PyTorch (Paszke et al. 2019). The
victim is trained first over 500,000 games of Breakthrough,
Havannah, and Connect-4 against random agents. The vic-
tims have their discount rate γ set to 0.95. Against random
agents, each victim agent reaches around 95% to 99% win
rate. Then the antagonist is trained against the victim. For
the antagonist to learn the value function defined above, the
victim provides the values of the states before and after the
antagonist chooses its action. The antagonist accepts the dif-
ference Vν(sn)−Vν(sn+1) as its reward. To make the exper-
iments easier to interpret, the adversaries have their discount
rate γ set to 1.

Training over 100,000 games against a pretrained vic-
tim, we measured the training performance of 10 antago-
nistic DQN agents (each with their own random seed), and
10 normal DQN agents (each with the same random seed
as their respective antagonist) that learn from environment
rewards. We measure both the win rate and the number of
moves played. In Figure 2, we see the antagonist has both
a higher win rate and a steady increase in the number of
moves per game. Although the antagonist performed better
on average than the victim in Breakthrough, we also focus
on the move count since it measures how well the antagonist
learns antagonistic behavior. Interestingly, as seen in Figure
3, two antagonistic agents consistently had a win rate near
0% but were still able to increase the number of moves over
time. In Havannah, the antagonistic agent overall increases
the number of moves during the training process but ends at
around the same number. The results in Figure 4 show that
in Connect-4, the metrics for both agents are about the same.
This is likely due to the simplicity of the game compared to
Breakthrough and Havannah. However, the difference in the
number of moves between antagonist and victim began to in-
crease in Connect-4 when we used a longer training method.
The results from Connect-4 and Go, are explained in later
subsections.

Methodology
Training Evaluation To evaluate the antagonist, we cata-
log its performance as it trains over many games. However,
when evaluating two trained game-playing DQN agents, it
is not immediately obvious how to measure aggregate per-
formance within a snapshot in time. During evaluation, ε-
greedy agents need to set ε to 0 to avoid arbitrary random-

0 20000 40000 60000 80000 100000
Number of Games Played

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
in

 R
at

e 
(%

)

Agent Type
antagonistic
normal

0 20000 40000 60000 80000 100000
Number of Games Played

20

30

40

50

60

70

80

90

100

M
ea

n 
N

um
be

r o
f M

ov
es

Agent Type
antagonistic
normal

Figure 2: Breakthrough Training Results: Top: While the
normal DQN has a win rate consistently close to 0%, the
antagonistic DQN ends with a mean win rate of around
40 ± 15%. Bottom: The normal DQN mean number of
moves is consistently around 21. The antagonistic DQN
ends with a mean number of moves of around 90± 5.

ness that does not contribute to the measurement of perfor-
mance. On the other hand, if we set ε to 0 in games where
the first state is the same in every game, a greedy policy is
just a function from states to actions. That is, the greedy pol-
icy makes the same move for every state. Hence, two greedy
agents playing Go or Breakthrough from the very beginning
will just make the same moves every game.

Every 500 games during the training of the antagonistic
agent, the method we devised is the following:

1. Start a new game between the victim agent and a random
agent.

2. Have the agents play a constant number of moves (typi-
cally less than half of the average game length between
the victim and a random agent).

3. When the constant number of moves is reached, replace
the random agent with the antagonist. Have both the vic-
tim and antagonist agents continue playing until the end
of the game.



0 20000 40000 60000 80000 100000
Number of Games Played

0.0

0.2

0.4

0.6

0.8

W
in

 R
at

e 
(%

)

0 20000 40000 60000 80000 100000
Number of Games Played

20

40

60

80

100

M
ea

n 
N

um
be

r o
f M

ov
es

Figure 3: Breakthrough Training win rate (top) and number
of moves (bottom) of each antagonistic agent. We see that
all agents learn to increase the amount of moves per game,
but some agents fail to learn how to win.

4. Record the win.

5. Repeat process until you reach the amount needed for
your sample size (100 games).

This tests the ability of the agent’s policy to pick the ac-
tions that lead to the highest state-value over many different
scenarios without forcing ε to be nonzero. Hence, the agents
will always pick what they consider to be the best action at
the current state.

The justification for measuring move count is the follow-
ing: if your objective is to make the victim’s path to win-
ning as arduous as possible, how could an observer measure
such behavior? To win in Breakthrough, the player must ei-
ther (1) have one pawn reach the opposite side of the board,
or (2) capture all of the opponent’s pawns. The trained vic-
tim agent tends to choose the first strategy. Hence, to make
things difficult for the victim, the antagonist would want
to completely focus on blocking the victim’s pawns from
reaching the other side. As stated previously, one agent was
able to increase the number of moves without improving win
rate, providing evidence that the agents are learning antago-
nistic behavior and not self-interested behavior.

Connect-4 Experiments and Multilevel Training In Fig-
ure 4, our initial results for Connect-4 are consistent with
Theorem 2 in that a weaker victim and its corresponding
antagonist will exhibit similar performance. One reason for
this is because the victim agent is still a relatively weak
agent when trained using the same methodology as the other
games. To address this complication, we used a form of mul-
tilevel training in this game. To accomplish this, the victim
is trained 500,000 games per stage for 3 stages. After each
stage, a new antagonistic agent trains against a static version
of the victim. As seen in Figure 5, more thoroughly train-
ing the agent using our multilevel approach seems to have
led to an increase in the number of moves for the antagonis-
tic agent. These results provide evidence for our theorems
in that the antagonists perform similarly to weaker victims,
while training against stronger victims lead to the antagonist
increasing the amount of moves played during the game.

0 20000 40000 60000 80000 100000
Number of Games Played

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e 
(%

)

Agent Type
antagonistic
normal

0 20000 40000 60000 80000 100000
Number of Games Played

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

M
ea

n 
N

um
be

r o
f M

ov
es

Agent Type
antagonistic
normal

Figure 4: Connect-4 Training Results: Top: The win rate for
both agents are about the same. Bottom: The mean number
of moves for both agents are about the same.

Go Experiments Initially, we tried measuring antagonis-
tic behavior of the board game Go by counting the number
of moves, but realized such measurements seemed highly
dependent on the current state. As mentioned previously in
Section 3.2, it’s possible that the antagonist’s most valued
position and the victim’s most valued position on the board
are the same. Hence, the context of the state matters in this
game when evaluating antagonistic behavior. It is unclear



0 20000 40000 60000 80000 100000
Number of Games Played

0.4

0.5

0.6

0.7

0.8
W

in
 R

at
e 

(%
)

Agent Type
antagonistic
normal

0 20000 40000 60000 80000 100000
Number of Games Played

18

20

22

24

M
ea

n 
N

um
be

r o
f M

ov
es

Agent Type
antagonistic
normal

Figure 5: Multi-level Connect-4 Training Results: Top: The
win rate for the normal agents is higher than the antagonistic
agents. Bottom: The mean number of moves for the antago-
nistic agents is higher than the normal agents.

if a simple metric can represent such behavior without the
aid of a reasonably skilled human Go player evaluating each
state. Such a metric would need to account for the territory
the victim gained if the antagonist had not made the previous
move, which is a counterfactual. Merely counting the num-
ber of moves is insufficient since (1) the artificial Go agents
keep playing until there are no legal moves left, which tends
to be somewhat constant in Go, and (2) intuitively, antago-
nistic behavior in Go would be seen as preventing the vic-
tim from gaining territory. This underscores the need for a
methodology where the experimenter first chooses a metric
for antagonistic behavior and uses evidence, formal or ex-
perimental, to show that the chosen metric adequately repre-
sents such behavior.

In Figure 6, we also found that, under the same training
evaluation as Breakthrough, the antagonistic Go agent had
lower and more variable win rate. This result is likely due
to Go’s inherent difficulty and complexity relative to Break-
through. It also shows that an antagonist learning to mini-
mize the victim’s state-value is not a guarantee that the an-
tagonist will learn an effective policy. That is, if an antago-
nist wants to cheat in a game, having access to the victim’s
state-values alone is not necessarily a winning strategy.

0 20000 40000 60000 80000 100000
Number of Games Played

0.05

0.10

0.15

0.20

0.25

0.30

W
in

 R
at

e 
(%

)

Agent Type
antagonistic
normal

0 20000 40000 60000 80000 100000
Number of Games Played

100

105

110

115

120

125

130

M
ea

n 
N

um
be

r o
f M

ov
es

Agent Type
antagonistic
normal

Figure 6: Go Training Results:
Left: The win rate for the normal agents is higher than the
antagonistic agents.
Right: The mean number of moves for the normal agents is
higher than the antagonistic agents.

Discussion
Our work is aligned with the intent of past research in adver-
sarial machine learning in that it exposes a problem that may
arise when a malicious actor is introduced. The problem we
attempt to model is when a human architect builds an antag-
onistic agent that can compete against a well-trained victim
agent without access to environment rewards. We accom-
plished this by considering an idealized scenario where we
formally define antagonistic behavior utilizing the victim’s
state-value function. From this definition, we investigated
what behavior emerges by observing the change of certain
metrics during the training progress of a group of antagonis-
tic agents. We found that if we assume the number of moves
represents antagonistic behavior, antagonistic agents show a
significant increase in antagonistic behavior in games that
encourage blocking strategies and with an appropriate level
of difficulty. We also show that such an assumption is lim-
ited in games that currently have no simple, obvious metrics
for antagonistic behavior (like Go). This demonstrates the
inherent difficulty antagonistic architects might face when
measuring progress even in an ideal case.

Our research introduces some possible future directions.
One direction would be the observation of antagonistic
agents in non-zero-sum games or environments consisting
of more than two agents. Another direction, related to AI
Safety and cybersecurity, would be to use the definition of
antagonistic behavior as a more realistic model for adver-
sarial RL than agents with access to the same reward func-
tion as its victim. Lastly, the antagonistic value function in-



tuitively encapsulates how an architect, without knowledge
of how the victim learned from the environment, would in-
tend to create an antagonistic agent. In situations where this
intuition reveals itself to be inaccurate, further research into
why this intuition fails is worth investigating.

Acknowledgments We would like to thank Marc Lanctot
for his assistance on OpenSpiel. This work was funded by
the National Geospatial-Intelligence Agency and approved
for public release as document 20-488.

References
Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schul-
man, J.; and Mané, D. 2016. Concrete problems in AI safety.
arXiv preprint arXiv:1606.06565 .

Bellemare, M.; Dabney, W.; Dadashi, R.; Taiga, A. A.; Cas-
tro, P. S.; Le Roux, N.; Schuurmans, D.; Lattimore, T.; and
Lyle, C. 2019. A geometric perspective on optimal represen-
tations for reinforcement learning. In Advances in Neural
Information Processing Systems, 4360–4371.

Berger, U. 2007. Brown’s original fictitious play. Journal of
Economic Theory 135(1): 572–578.

Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Debiak, P.;
Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse, C.;
et al. 2019. Dota 2 with Large Scale Deep Reinforcement
Learning. arXiv preprint arXiv:1912.06680 .

Brown, N.; and Sandholm, T. 2019. Superhuman AI for mul-
tiplayer poker. Science 365(6456): 885–890.

Fridman, L. 2019. Gary Marcus: Toward a Hybrid of Deep
Learning and Symbolic AI — Lex Fridman Podcast #43.
URL https://youtu.be/vNOTDn3D RI?t=4691.

Gleave, A.; Dennis, M.; Wild, C.; Kant, N.; Levine, S.;
and Russell, S. 2020. Adversarial Policies: Attacking
Deep Reinforcement Learning. In International Conference
on Learning Representations. URL https://openreview.net/
forum?id=HJgEMpVFwB.

Huang, S.; Papernot, N.; Goodfellow, I.; Duan, Y.; and
Abbeel, P. 2017. Adversarial attacks on neural network poli-
cies. arXiv preprint arXiv:1702.02284 .

Huang, Y.; and Zhu, Q. 2019. Deceptive reinforcement
learning under adversarial manipulations on cost signals. In
International Conference on Decision and Game Theory for
Security, 217–237. Springer.

Lanctot, M.; Lockhart, E.; Lespiau, J.-B.; Zambaldi, V.;
Upadhyay, S.; Pérolat, J.; Srinivasan, S.; Timbers, F.; Tuyls,
K.; Omidshafiei, S.; et al. 2019. Openspiel: A frame-
work for reinforcement learning in games. arXiv preprint
arXiv:1908.09453 .

Littman, M. L. 1994. Markov games as a framework for
multi-agent reinforcement learning. In Machine learning
proceedings 1994, 157–163. Elsevier.

Manheim, D. 2019. Multiparty Dynamics and Failure
Modes for Machine Learning and Artificial Intelligence. Big
Data and Cognitive Computing 3(2): 21.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fid-
jeland, A. K.; Ostrovski, G.; et al. 2015. Human-level con-
trol through deep reinforcement learning. Nature 518(7540):
529–533.

Pan, X.; Seita, D.; Gao, Y.; and Canny, J. 2019. Risk averse
robust adversarial reinforcement learning. In 2019 Inter-
national Conference on Robotics and Automation (ICRA),
8522–8528. IEEE.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury,
J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;
Antiga, L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito,
Z.; Raison, M.; Tejani, A.; Chilamkurthy, S.; Steiner,
B.; Fang, L.; Bai, J.; and Chintala, S. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing
Systems 32, 8024–8035. Curran Associates, Inc. URL
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf.

Pinto, L.; Davidson, J.; Sukthankar, R.; and Gupta, A. 2017.
Robust adversarial reinforcement learning. In Proceedings
of the 34th International Conference on Machine Learning-
Volume 70, 2817–2826. JMLR.org.

Shapley, L. S. 1953. Stochastic games. Proceedings of the
national academy of sciences 39(10): 1095–1100.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture 529(7587): 484.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.

Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature
575(7782): 350–354.

Zhang, X.; Ma, Y.; Singla, A.; and Zhu, J. 2020. Adaptive
Reward-Poisoning Attacks against Reinforcement Learning.
In Proceedings of the 37th International Conference on
Machine Learning. URL https://proceedings.icml.cc/static/
paper files/icml/2020/4819-Paper.pdf.

Appendix
Theorems and Proofs

Theorem .2. Assume a finite, turn-based, zero-sum, deter-
ministic game with no intermediate rewards and let ν have
the static, optimal value function V ∗ν . If ν wins, 0 < γ < 1,
ν’s policy is greedy, and n is the number of time steps (or
game moves) left at state s to traverse and win the game,
then n = logγ V

∗
ν (s).

Proof. Assume at the end of the game, the winning agent
gets 1 point and the losing agent gets -1 point. From these
assumptions, V ∗ν (swin) = 1, where swin is the winning state



for ν.
If i is the number of steps left to traverse at state s, it suffices
to show that V ∗ν (s) = γi. This can be proven by induction
on the number of steps left for the greedy agent to reach the
winning terminal state using the optimal value function.
Base case: If there is 1 step left, the greedy agent will choose
the action that leads to st such that V ∗ν (st) = 0 + γ ∗
V ∗ν (swin) = γ ∗ 1 = γ1.
Inductive case: Assume V ∗ν (s′) = γi, for all states s′ such
that i is the number of steps left. Let s be a state such that
the greedy policy chooses the action that leads to s′ from
s and there are i + 1 steps left to traverse. Since there are
no intermediate rewards, we have V ∗ν (s) = 0 + γV ∗ν (s′) =
γ ∗ γi = γi+1.
Hence, if i is the number of steps left to traverse at state s,
V ∗ν (s) = γi, which implies i = logγ V

∗
ν (s).

Implementation Details

Algorithm 1: Antagonistic Deep Q-Learning
Initialize replay memory D to capacity N
Initialize action-value function Q with random
weights

for episode = 1, M do
Initialise state s1
for t = 1, T do

Observe new victim value Vν(st)
With probability ε select a random action at
Otherwise select at = arg maxaQ

∗(st, a; θ)
Execute action at in emulator and observe
new state st+1 and new victim value
Vν(st+1)

Set vt := −(Vν(st+1)− Vν(st))
Store transition (st, at, vt, st+1) in D
Sample random minibatch of transitions
(sj , aj , vj , sj+1) from D
yj ={
vj for terminal sj+1,

vj + γmaxa′ Q(sj+1, a
′; θ) for non-terminal sj+1.

Perform a gradient descent step on
(yj −Q(sj+1, aj , θ))

2



Hyperparameters
Neural Network Architecture Hyperparameters

Number of Hidden Layers 6 (for Go and Connect-4)
7 (for Breakthrough and Havannah)

Number of Units 256
Activation Function Used After
Each Hidden Layer

ReLU

Batch Normalization Applied After
Activation Function

True

RL Training Hyperparameters
Optimizer Adam
Learning Rate 10−6

Discount Factor γ 0.95 (for victim)
1.0 (for antagonist)

Batch Size 256
Replay Buffer Capacity 105

Gradient Update every... 10 games
Update Target Value Net-
work every...

1000 games

Evaluate Progress every... 500 games


