
Value Functions for Depth-Limited Solving
in Imperfect-Information Games

Vojtěch Kovařı́k*, Dominik Seitz*, Viliam Lisý†

Artificial Intelligence Center, FEE,
Czech Technical University in Prague,

Prague, Czech Republic

Abstract

We provide a formal definition of depth-limited games to-
gether with an accessible and rigorous explanation of the un-
derlying concepts, both of which were previously missing
in imperfect-information games. The definition works for an
arbitrary extensive-form game and is not tied to any specific
game-solving algorithm. Moreover, this framework unifies
and significantly extends three approaches to depth-limited
solving that previously existed in extensive-form games and
multiagent reinforcement learning but were not known to be
compatible. A key ingredient of these depth-limited games is
value functions. Focusing on two-player zero-sum imperfect-
information games, we show how to obtain optimal value
functions and prove that public information provides both
necessary and sufficient context for computing them.
We provide a domain-independent encoding of the domain
which allows for approximating value functions even by sim-
ple feed-forward neural networks. We use the resulting value
network to implement a depth-limited version of counterfac-
tual regret minimization. In three distinct domains, we show
that the algorithm produces a low-exploitability strategy if and
only if it is paired with a near-optimal value network. We show
that the value network is capable of generalizing to unseen
game situations and that the resulting algorithm performs on
par with CFR-D despite being trained on randomly-generated
game situations.

Introduction
Sequential decision-making is a key challenge in AI research.
As the number of subsequent decisions increases, the size
of the state space grows exponentially, to the point where
even modern computer clusters soon become unable to even
enumerate all states. In perfect information problems, this
issue is typically overcome by replacing the states below
a certain depth by a value function. This technique vastly
reduces the effective size of the game, which is essential
for both minimax-like search and reinforcement learning. In
imperfect information problems, value functions are much
more complex since they depend on the agent’s belief about
the current state. The situation gets even more complicated

*These authors contributed equally
†Corresponding author: viliam.lisy@agents.fel.cvut.cz

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in multiagent imperfect information problems, where val-
ues additionally depend on each agent’s belief about other
agents’ beliefs (etc.). Despite these challenges, recent results
(Moravčı́k et al. 2017; Brown and Sandholm 2017; Serrino
et al. 2019) illustrate that depth-limited approaches can be
successful even in this setting. However, many of the con-
cepts needed by these approaches were introduced informally
or in domain-specific ways that do not readily generalize to
arbitrary games.

In the full version of this paper, (Kovařı́k et al. 2020),
we (1) provide a theory of depth-limited methods and value
functions that unifies three recent approaches (Moravčı́k et al.
2017; Brown, Sandholm, and Amos 2018; Wiggers, Oliehoek,
and Roijers 2016), (2) formulate all required concepts in an
accessible and domain-independent way, and (3) experimen-
tally demonstrate that depth-limited solving is a viable option
for a range of imperfect information games beyond poker.

More specifically, we give an extensive theoretical analysis:
We define the basic notions of expected utilities of histories
and information sets, reach probabilities, and beliefs in a uni-
fied way that is consistent with previous literature but much
more intuitive and easy to use. We then provide several tech-
nical propositions which substantially simplify our proofs.
They also make some of the existing proofs more rigorous
and are likely to be instrumental in future research. Using
these concepts, we look at imperfect-information games and
propose domain- and algorithm-independent notions of value
functions and depth-limited games. We also describe (the
depth-limited versions of) various algorithmic problems such
as game-value computation, equilibrium computation, and
best response computation. Our goal for each of these prob-
lems is that whenever we find a solution of the depth-limited
version of the problem and plug it into the full game, it should
fulfil the role of a (partial) solution to the non-depth-limited
version of the problem. For example, a depth-limited Nash
equilibrium should coincide with a standard Nash equilib-
rium in all decision-points above the depth limit. However,
even some promising choices of value functions can fail to
work for all of the above problems. We thus describe a natu-
ral hierarchy of conditions on value functions and formally
prove that each of them fulfils the above goal for a different
class of computational problems. Moreover, we observe that
with the proposed formalization, the two previously separate
approaches to depth-limited solving of imperfect information



games – value functions (Moravčı́k et al. 2017) and mul-
tivalued states (Brown, Sandholm, and Amos 2018) – can
be viewed as two instances of a single unifying framework.
After studying the fundamental properties of value functions,
we discuss methods for representing value functions more
efficiently. One part of this endeavour is encoding the func-
tions’ input and output more compactly — we show that
value functions can be defined on either individual histories
or information sets and that the two representations can be
translated to each other. Moreover, we formally prove that
value functions can be factorized based on public information
(or common knowledge) and that this factorization cannot
be further refined in general. The second part is approximat-
ing value functions by neural networks, which is likely to
be easier if there is a unique approximation target. Unfortu-
nately, we show that there can sometimes be multiple suitable
value functions. Failing uniqueness, we investigate whether
the set of suitable value functions is at least well-behaved –
i.e., convex. We prove that this is true for certain types of
value functions and pose the general question as an open
problem. However, we remain optimistic about value func-
tion approximation, since the non-uniqueness did not prove
to be a problem in practice.

Finally, while all of these results are presented using
the extensive-form game formalism, we go on to explain
how all of them apply the factored-observation stochastic
game (Kovařı́k et al. 2019) (FOSG) and partially-observable
stochastic game (Hansen, Bernstein, and Zilberstein 2004)
formalisms (which are primarily used in multiagent reinforce-
ment learning).

The theoretical part describes depth-limited versions of
arbitrary domains and various algorithms. Among the various
game solving algorithms, counterfactual regret minimization
(CFR) seems particularly promising due to its recent suc-
cesses in poker (Moravčı́k et al. 2017; Brown and Sandholm
2017, 2019). For this reason, our experiments focus on the
depth-limited version of CFR. We show that any game repre-
sented as FOSG admits a unified representation of inputs and
outputs to the value function. We demonstrate, in three do-
mains with very different properties, that this representation
can serve as a suitable encoding for a neural network. This
encoding allows for an accurate approximation even with
the simplest feed-forward architecture. We show that when
this value network is plugged into depth-limited CFR, the
algorithm produces strategies with low exploitability. As sug-
gested by (Moravčı́k et al. 2017), we experiment with many
different loss functions in an attempt to identify those that
work the best in combination with CFR. To our surprise, the
algorithm’s performance is not very sensitive to this param-
eter. We also investigate whether the trained value function
is robust to differences between the training distribution and
the one demanded by depth limited CFR. In all three do-
mains, the trained value function generalizes well to unseen
situations. Furthermore, we investigate the dependence of
the quality of the learned value function on the amount of
training data and key hyper-parameters.

Summary of Theoretical Contributions

We will now give a brief summary of the theoretical contri-
butions in (Kovařı́k et al. 2020).

We start by providing accessible and rigorous definitions
of basic concepts around EFGs and CFR, which is some-
thing that has been missing for some time now. We prove that
history and infoset values can be defined in several equiva-
lent ways, which simplifies many of our subsequent proofs.
Moreover, these results will likely be of use for various theo-
retical CFR-related results in the future. We then introduce
depth-limited versions of many notions such as exploitability,
best-response, and Nash equilibria. Afterwards, we define
the abstract notion of depth-limited games — these can be
understood as game trees where terminal values depend not
just on the leaf in which the game ends, but also on the strat-
egy used to get to the leaf. To utilize this notion, we need
to identify depth-limited games that are useful for finding
equilibria of non-depth-limited games. We thus provide a
sufficient condition for solutions of a depth-limited game to
coincide with Nash equilibria of the original game (or, more
precisely, with strategies that can be extended into such Nash
equilibria). Unfortunately, we also see that this criterion alone
does not imply the existence of practical methods for solving
the depth-limited game.

To allow for such practical methods, we define optimal
value functions as those that correspond to values of opti-
mal extensions of the trunk strategy. We make a distinction
between (a) reachably-optimal, (b) counterfactually-optimal,
and (c) universally-optimal value functions, based on whether
the corresponding extension of the trunk-strategy performs
well (a) in situations that arise under the trunk strategy, (b) in
those that could arise if one player deviated from the trunk
strategy, or (c) in all situations. We look at each type of opti-
mality in detail, showing how to compute the corresponding
value functions and discussing which depth-limited algo-
rithms are enabled by them — for a summary, see Table 1. In
particular, we prove that counterfactually-optimal value func-
tions are both sufficient and necessary to make depth-limited
CFR work well.

We continue to relax the notion of optimality to only re-
quire being optimal w.r.t. a subset of all strategies and observe
that this still enables finding high-quality strategies. More-
over, we observe that (Brown, Sandholm, and Amos 2018)’s
multivalued states can be understood as a specific instance of
depth-limited solving that relies on this type of optimal value
functions. We argue that this connection deserves further
attention.

Finally, we show how to represent value functions more
compactly and prove that public states provide the minimum
context that is still informative enough to enable the compu-
tation of optimal values. We also note that optimal values are
not uniquely defined, which could prove important (and po-
tentially inconvenient) when approximating them by neural
nets. However, we do not currently see this topic as priority
since we have not encountered any difficulties in practice.



Optimality reachable counterfactual universal

Optimal at Pσ
T
(I) > 0 Pσ

T

−p (I) > 0 all I
Suff. stats joint range range beliefs

How to value- post-processing via add noise to ranges
compute? solving best-response, CFR & take the limit

Algorithms IS-MCTS, CFR, best response, minimax,
enabled subgame value poss. fictitious play possibly others

Table 1: A summary of properties of different types of optimal value functions.

Value Functions in EFGs, POSGs, and FOSGs
In this section, we summarize the connection between the
EFG model and the POSG model (traditionally used in multi-
agent RL). In particular, we conclude that all of our results
apply to POSGs as well. We then discuss the connection be-
tween the value functions studied in the present text and the
v- and q-values used in RL.

Recall that the standard MARL model for zero-sum1

games is a partially-observable stochastic game (POSG),
where players take actions which causes them to transition to
a new state, obtain some reward, and receive some observa-
tion (Hansen, Bernstein, and Zilberstein 2004). The recent
paper (Kovařı́k et al. 2019) shows that every POSG natu-
rally corresponds to a strategically equivalent EFG — this is
achieved by taking the possibly-cyclic POSG and unrolling it
into its tree-structured extensive-form representation. More-
over, essentially every EFG can be obtained by applying this
process to some POSG (Kovařı́k et al. 2019, Thm. 5.4). Infor-
mally speaking, this indicates that we should not view EFGs
and POSGs as two alternative models, but we should instead
treat POSGs as the underlying model from which EFGs are
derived. And whenever we want to apply an “EFG-result” to
POSGs, we simply apply it to the POSG’s extensive-form
representation.

Critically, the derivation process abstracts away some in-
formation. To the extent that our discussion only involves
concepts that are preserved in the EFG representation, we
should thus use the conceptually simpler EFG model. On the
other hand, whenever the EFG representation misses out on
some relevant information, we can use the underlying POSG
to recover it. We perform this using an example in this section
since it allows us to replace infosets by the more-informative
notion of action-observation sequences (which increases the
generalization power of resulting value-networks).

One related downside of the standard POSG model is that
POSGs do not, by default, have a notion analogous to public
states in EFGs. To overcome this problem, (Kovařı́k et al.
2019) suggest using a minor extension of the classical model
called factored-observation stochastic game (FOSG), which
automatically keeps track of which observations are public.2

1While value-functions in other types of POSGSs — e.g., in
Dec-POMDPs (Oliehoek, Vlassis et al. 2006) — are sometimes su-
perficially similar to values in our setting, assumptions often made in
these domains (e.g., joint training) give the resulting concepts vastly
different properties. As such, their discussion would be outside of
the scope of the present paper.

2Arguably, distinguishing between private and public informa-

Sequences of public observations then serve the same role as
public states in EFGs, allowing exactly the same localized
computation of values as EFGs.

Finally, we also claim that values traditionally used in
reinforcement learning are closely connected to the values
discussed in the present paper. Our definition of a situation’s
value can be intuitively formulated as the “expected total
reward”, i.e., both the already-obtained reward and the reward
we are yet to receive). This is because EFGs abstract away
information about when rewards are received, by pushing
them all the way down to terminal nodes. In contrast, RL
models retain this information, so one could also define the
value of a situation in a POSG as the “expected future reward”.
Which approach is more sensible and how are they related?
The good news is that the two approaches are equivalent
in many games — more specifically, in games that allow
players to see their own rewards in real time. Indeed, in such
games, the values given by the two approaches only differ by
a constant known to the player, which ensures that the player
will make identical “decisions” under both approaches (i.e.,
most algorithms will yield identical outputs).

Domain-Independent Encoding of Value Functions using
FOSGs We now explain how (and why) to use FOSGs for
encoding the input and output of value functions in a domain-
independent manner. We elaborate on our choice of domains
that appear in the experiments and explain how the encoding
applies to them.

Among other differences, this model enriches the notion of
an infoset by the concept of public and private observations.
It allows for identifying public states by sequences of public
observations, and infosets within a given public state by se-
quences of private observations and actions. This provides
a domain-independent method for encoding a value func-
tion’s input in a way that can be efficiently used with simple
feed-forward networks, removing the need for hand-crafting
inputs.

We chose imperfect information goofspiel (GS), a card
game commonly used for evaluating game-theoretic algo-
rithms (Lanctot et al. 2009; Lisý, Lanctot, and Bowling
2015), a betting game called imperfect information oshi-
zumo (OZ) (Buro 2004), and — to compare to a commonly
used baseline — the poker variant Leduc hold’em (LH)

tion is more natural than not doing so. Rather than saying that the
FOSG model tracks public information, we might thus rather say
that the other models choose to forget it.



(Moravčı́k et al. 2017). Notably, all chosen domains have
distinct properties. One difference is that while a game of
goofspiel never ends before reaching the depth limit, this can
happen in both LH and OZ. Moreover, there is a difference in
the observability of players’ actions: all actions are publicly
observable in poker (LH) while actions in GS and OZ are
unobservable by the opponent. Relatedly, all public states in
LH have the same number of information sets and all infosets
in LH have the same number of histories. In contrast, both GS
and OZ have very unevenly-sized public states and infosets.
To illustrate these distinctions, consider the following exam-
ple. In OZ, players start with some numbers of coins, e.g.,
8. Each round, each player secretly bids some of the coins
they have left. Subsequently, a referee publicly announces
which player bid more (or that a draw occurred), but not the
actual bid size. Suppose that in the first round, P1 bids all 8
coins and publicly observes “win”. P1 now knows that their
opponent bid 7 coins or less — that is, their information set
contains histories corresponding to bet sizes of 7 and less. On
the other hand, if the first round resulted in a draw, the infor-
mation set would only contain a single history, corresponding
to both players bidding 8. Contrast this with the situation
in Leduc hold’em poker. In LH, imperfect information only
arises from the initial assignment of private cards (i.e. the
players’ private observations). As a result, all infosets con-
tain the same number of histories (one for each card in the
deck except for the private card of the given player).

Table 2 summarizes the differences between the chosen
domains, showcasing their distinct features and provides ad-
ditional information their approximate sizes.

Settings GS OZ LH
rounds 5 8 2

specifics 5 cards 8 C/min 1 2 B & R
infosets 5 000 1 600 4 000
histories 56 000 20 000 61 000

depth-limit 3rd 4th 2nd
private actions Yes Yes No
early terminals No Yes Yes
constant size IS No No Yes

Table 2: Specific details, sizes, depth-limits (in rounds), and
game-specific parameters of the domains used for experimen-
tal evaluation.

Encoding of Inputs and Outputs To specify the input and
output of the value network, we need to describe the encod-
ing of public states, the information sets contained in them,
and the corresponding ranges and counterfactual values. In
general domains, each public state can be identified with
the corresponding sequence of public observations (this can
include publicly visible actions) received on the way until
the public state is encountered. Within a specific public state,
each player’s infosets are uniquely identified by the given
player’s action-observation history (i.e., by the sequence of
the player’s actions and private observations). To use the same
encoding for all public states, we can consider, in each public
state, all action-observation histories that are compatible with

some public state at the given depth. This has the advantage
that both the range (input) and the vector of counterfactual
values (output) will be in the form of a fixed-size vector. This
fixed-size representation results in some “virtual” infosets
that are logically incompatible with the given public state —
for example, if player 1 loses the first round in oshi-zumo
(public state), it is not possible that their secret action was
“bid the maximum amount of coins”. Fortunately, this can be
solved by setting the ranges and counterfactual values of all
incompatible infosets to 0.

In all games, the sequence of public observations is en-
coded as a sequence of one-hot vectors, one for each observa-
tion. This is straightforward in GS and OZ, where the public
observations only contain the round results (either “win for
pl. 1”, “draw”, or “loss for pl. 1”). In LH, the description of
the public state consists of the sequence of all actions taken
(since they are publicly visible) and the public card. Since
the number of actions (i.e., bet sizes) available in LH is small,
we can represent each action as a one-hot encoding over, for
example, the vector (“Check”, “Bet 2”, and “Bet 4”). Another
complication with public states in LH is that not all public
states at the bottom of the trunk are in the same depth, i.e. they
have a varying number of public observations. We solve this
by padding the shorter public-observation sequences by zero.
The encoding of each player’s private action-observation his-
tories is done in a positional manner. In LH, the only private
information is the cards the players are holding, which makes
the amount of hidden information constant throughout the
game. In contrast, all actions in GS and OZ are private. Fig-
ure 1 showcases the encoding of the ”Win” public state in a
three-round GS after the first round.

S = [Win]

I1 = [Play2, P lay3]

I2 = [Play2, P lay1]

[0,0,1]

[0, Rng(Play2), Rng(Play3)]

[Rng(Play1), Rng(Play2), 0]

Figure 1: Encoding of the ”win” (for P1) public state in GS-
3 after the first round. The left box shows the public state
(top) and P1’s information sets (middle) and P2’s informa-
tion sets (bottom). The box on the right shows how each of
the three parts is encoded. The ”win” public state contains
information states where P1 bid 2 and 3 (but not 1). P2 has
information states where he bid 2 and 3 (but not 3). There
are three possible outcomes for the round result. We use the
one-hot encoding [0, 0, 1] to denote a win of P1. After the
first round each player has three possible action sequences
(bid either card 1,2 or 3). Hence, we allocate a vector of
length 3 where each position corresponds to the range (Rng)
of selecting a card. Note that range is a real number denoting
a player’s probability of playing into a certain information
set. We assign the range of valid information sets to their
corresponding positions in the input vectors, leaving incom-
patible sequences at 0. The full input then comprises of an
encoded sequence of public observations and ranges of all
information sets for each player.



Summary of Experimental Results
While the theoretical part of the full paper describes depth-
limited versions of general algorithms, our experiments focus
on a depth-limited variant of counterfactual regret minimiza-
tion (CFR). Since this algorithm was recently highly suc-
cessful in poker, we think that a particularly promising path
is to extend it to other games using the theoretical insights
summarized above.

Experimental Setup
The encoding described above enables us to use a simple,
fully-connected feed-forward network to approximate the
value function. We introduce a depth limit by splitting each
game into a trunk (e.g., each player performs three moves)
and the bottom (the remainder of the game).

An optimal value function takes a sequence of public ob-
servations and a corresponding range as input and returns
counterfactual-value vectors, one for each player. One batch
of training data is, therefore, generated as follows. First, we
assign a randomly generated strategy to each infoset in the
trunk and fix it (i.e., we do not update those strategies while
solving the game). We then solve the bottom of the game
using 1000 iterations of CFR+ (Tammelin 2014). We refer
to this technique as value solving and show that it yields
a counterfactually (near-)optimal value function. For each
public state at the depth-limit, we extract the probabilities
of the sequences of private observations (ranges) for each
player and their corresponding near-optimal values.

Since the value function is defined over public states, one
random trunk strategy (for all public states) translates into as
many data samples as there are public states at the chosen
depth-limit.

Depth-limited Solver In order to find an ε-Nash equilib-
rium in the trunk, we use a depth-limited version of CFR+ in
conjunction with a counterfactually optimal value function.
We refer to this algorithm as DL-CFR+

NN . In each iteration, it
gathers the ranges for all infosets at the depth-limit and feeds
them into the neural network. For each public state S at the
depth-limit, we then call the network (with the ranges corre-
sponding to S). Afterward, we run the regret matching plus
algorithm in each infoset in the trunk. The implementation
of DL-CFR+

NN is available online at (GTLib2 2020).

Experiment Description
Our experiments are intended to address unanswered ques-
tions revolving around value functions. First, can value func-
tions be trained for other domains than poker (which has
convenient properties) using the same domain-independent
encoding and architecture? Second, which loss should be min-
imized in order to achieve low exploitability? Third, when
training value networks in general domains, is it sufficient to
use random trunk strategies, solve them, and use their corre-
sponding solutions as training data? Fourth, can these value
functions generalize to unseen situations?

The experimental results are presented in the order of their
importance to the research questions posed above and their
main content summarized. The main part of our analysis

consists of three experiments which we describe in greater
detail, while the additional experiments which revolve around
neural network training are very briefly summarized. We start
with the main experiments.

Main Experiments When approximating value functions
using neural networks, the key performance criterion is the
exploitability of the resulting strategy when using the net-
work in conjunction with DL-CFR+

NN . However, computing
exploitability is costly. It would, therefore, be preferable if
we could predict DL-CFR+

NN ’s performance solely based on
the loss of the network it employs. We therefore investigate
the effect of the neural network’s error on the quality of the
resulting strategy provided by the depth-limited solver that
uses it. We do this by training multiple networks, saving their
weights and corresponding validation losses during the pro-
cess, and recording the exploitability of the resulting strategy
of DL-CFR+

NN using each of the networks’ checkpoints. We
see a strong connection between network quality and result-
ing exploitability. A low (depth-limited) exploitability can be
reached long before the network error is minimized. More-
over, we were able to reach exploitability below 0.01 (similar
to CFR+), as well as Huber loss below 0.001, l1-errors be-
low 0.01, and l∞-error below 0.1. Figure 2 shows all three
monitored losses for GS. In all tested domains, all of these
variables were strongly correlated.

0.025 0.050
Huber

0.0

0.1

0.2

ex
pl

oi
ta

bi
lit

y

0.1 0.2
L-1

0.5 1.0
L-Infinity

Figure 2: Normalized exploitability vs validation error in
Goofspiel for two different networks (blue/orange dots) and
exploitability of CFR+ after 10̇00 iterations (green line). We
observe sparse ”tails” due to rapid improvement of the loss
during the initial epochs.

We would also like to know whether the network can gen-
eralize to parts of the game that have not been encountered
before. While the standard validation- and test-losses indi-
cate whether the network can generalize to unseen samples,
this only informs us about its ability to generalize under
the original training distribution. Since the value function is
defined over public states, we can omit one of them, train
a network on the remaining ones, and compute validation
loss on the one we left out. We perform this procedure for
every public state at the depth-limit to evaluate if the used
encoding captures similarities between public states. We are
able to generalize to unseen public states across all domains.
However, all monitored validation losses drastically improve
with the number of public states available at the depth-limit
Indeed, the domains vary in how many public states are at
the trunk border (only a few in GS, a medium number in OZ,
and many in LH), and this translates into L∞ error 2.6 in GS,
0.1 in OZ, and 0.08 in LH. We attribute this to the relative



amount of data left out of the training set. We conclude that
we would be able to reach exploitabilities below 0.1 in both
LH and OZ using neural networks that have not been trained
on all possible game situations

Lastly, we investigate the representativeness of the train-
ing ranges and analyze DL-CFR+

NN ’s game-solving behavior
by comparing randomly generated ranges used for training
with the ranges DL-CFR+

NN asks for during the execution
and the ranges that the CFR-D algorithm would ask for if
used for solving the same depth-limited game. While solv-
ing the game, the trained network is likely to be queried for
ranges which come from a substantially different distribu-
tion than the one it has been trained on. To examine if this
indeed happens, we run CFR-D and DL-CFR+

NN , track the
ranges (probabilities of reaching information sets) at each
iteration, and compare them to the random data used for train-
ing. We observe a strong similarity between DL-CFR+

NN and
CFR-D ranges, with the latter being slightly more uniform
in the initial iterations. We believe this is caused by CFR-
D receiving more precise values (while the value network’s
minor errors result in a non-uniform strategy). However, ran-
domly generated ranges (used for neural network training)
are substantially different from those of both DL-CFR+

NN and
CFR-D. This experiment emphasizes that a value function
can be trained on random ranges in the trunk, generalize from
them nonetheless, and achieve good results that mimic the
behavior of CFR-D. However, for larger domains with high
dimensional belief spaces, a training procedure similar to
(Brown et al. 2020) might be more appropriate.

Additional Experiments The secondary part of the evalu-
ation contains revolves around training counterfactual-value-
networks. We analyze the influence of hyperparameter con-
figurations, such as the number of hidden layers and layer
width. We found that using 4-6 hidden layers with approxi-
mately 200-500 neurons works best for all tested domains.
We elaborate on our in-depth investigation of custom loss
functions and analyze the differences between minimizing
the Huber loss and validating on l1 and l∞, and vice versa.
This analysis lets us understand their relationship and learn
which of them is crucial to the network’s performance. We
conclude that using standard losses is sufficient which is also
supported by the experiment shown in Figure 2. Since the
data generation process can be costly, we additionally investi-
gate how much data is needed to achieve satisfactory network
performance. We observe that for our medium-sized domains
approximately 500̇00 data samples is sufficient to achieve
low validation Huber loss of 0.001 (which, as we show in
Figure 2, suffices to achieve ∼0.01 exploitability).

Lastly, we show that training on our randomly generated
training ranges is enough to achieve satisfactory validation
losses on data generated by CFR-D while solving the game,
which is of a substantially different distribution than the used
training data.

Takeaways Our experiments show that value functions can
be approximated in domains other than poker, using the same
domain-independent encoding and architecture. We show

that validation losses of value networks w.r.t. Huber, l1, and
l∞ are all highly correlated with the exploitability of the
DL-CFR+

NN that employs the network. In all cases, low val-
idation loss translated into low exploitability. Furthermore,
the chosen representation and encoding of the value function
enables for a generalization to unseen game situations, across
all tested domains. We established that it is sufficient to use
random ranges as input to the neural network to achieve
game-solving behaviour similar to CFR-D. In the secondary
part of our experimental evaluation, we analyzed optimal hy-
perparameter configurations, validation losses, performance
on CFR-D data and examined the amount of training data to
achieve satisfactory validation losses.

Conclusion
While this particular paper acts as a short and concise sum-
mary of the key insights in (Kovařı́k et al. 2020), we would
like to conclude by stating the contributions of the full pa-
per. We give an accessible description of basic notions used
in the CFR literature and introduced a number of concepts
that enable reasoning about depth-limited games and value
functions. We prove that different degree of value-function
optimality is required for different calculations and give a
recipe for obtaining each type of value function. Addition-
ally, we proved that public belief states provide the neces-
sary and sufficient context for computing value functions.
Our description allows viewing Deepstack’s value functions
(Moravčı́k et al. 2017) and Brown et al.’s multivalued states
(Brown, Sandholm, and Amos 2018) as two instances of a
single unifying framework. Moreover, the results also apply
to partially-observable stochastic games and their recent ex-
tension, factored-observation stochastic games (Kovařı́k et al.
2019). The theory shows that depth-limited solving is appli-
cable to arbitrary domains and various algorithms. However,
due to CFR’s success in recent years, our experimental evalu-
ation focused on CFR. We showed that adopting the FOSG
formalism allows for a simple domain-independent encoding
which can be used for input and output of a value function.
In three distinct domains, we used this encoding to train a
simple feed-forward neural network that approximates an op-
timal value function. We then implemented a depth-limited
version of CFR that utilizes this network. We performed an
extensive experimental evaluation of this setup. Most impor-
tantly, we confirmed that the value network’s error is strongly
correlated with the exploitability of the strategy found by the
corresponding DL-CFR+

NN . Furthermore, we demonstrated
that the value function can generalize to unseen public states
and that it is highly robust to distributional shift. Lastly, we
performed an extensive analysis of the impact of key hyper-
parameters for data generation and training the value function.
Overall, we have shown that depth-limited solving is a viable
and robust option for a range of imperfect-information games
beyond poker.



References
Brown, N.; Bakhtin, A.; Lerer, A.; and Gong, Q.
2020. Combining Deep Reinforcement Learning and
Search for Imperfect-Information Games. arXiv preprint
arXiv:2007.13544 .

Brown, N.; and Sandholm, T. 2017. Superhuman AI for
heads-up no-limit poker: Libratus beats top professionals.
Science eaao1733.

Brown, N.; and Sandholm, T. 2019. Superhuman AI for
multiplayer poker. Science 365(6456): 885–890.

Brown, N.; Sandholm, T.; and Amos, B. 2018. Depth-Limited
Solving for Imperfect-Information Games. arXiv preprint
arXiv:1805.08195 .

Buro, M. 2004. Solving the oshi-zumo game. In Advances
in Computer Games, 361–366. Springer.

GTLib2. 2020. GTLib2 Implementation of DL-
CFRNN. https://gitlab.fel.cvut.cz/game-theory-aic/GTLib2/-
/blob/master/algorithms/cfr dl.cpp. Accessed: 2020-09-17.

Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic programming for partially observable stochastic
games. In AAAI, volume 4, 709–715.

Kovařı́k, V.; Schmid, M.; Burch, N.; Bowling, M.; and
Lisý, V. 2019. Rethinking Formal Models of Partially
Observable Multiagent Decision Making. arXiv preprint
arXiv:1906.11110 .

Kovařı́k, V.; Seitz, D.; Lisỳ, V.; Rudolf, J.; Sun, S.; and
Ha, K. 2020. Value Functions for Depth-Limited Solv-
ing in Imperfect-Information Games. arXiv preprint
arXiv:1906.06412 .

Lanctot, M.; Waugh, K.; Zinkevich, M.; and Bowling, M.
2009. Monte Carlo sampling for regret minimization in ex-
tensive games. In Advances in neural information processing
systems, 1078–1086.

Lisý, V.; Lanctot, M.; and Bowling, M. 2015. Online Monte
Carlo counterfactual regret minimization for search in imper-
fect information games. In Proceedings of the 2015 Inter-
national Conference on Autonomous Agents and Multiagent
Systems, 27–36. International Foundation for Autonomous
Agents and Multiagent Systems.

Moravčı́k, M.; Schmid, M.; Burch, N.; Lisý, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science 356(6337): 508–513.

Oliehoek, F.; Vlassis, N.; et al. 2006. Dec-POMDPs and
extensive form games: equivalence of models and algorithms.
Ias technical report IAS-UVA-06-02, University of Amster-
dam, Intelligent Systems Lab, Amsterdam, The Netherlands
.

Serrino, J.; Kleiman-Weiner, M.; Parkes, D. C.; and Tenen-
baum, J. B. 2019. Finding Friend and Foe in Multi-Agent
Games. arXiv preprint arXiv:1906.02330 .

Tammelin, O. 2014. CFR+. CoRR, abs/1407.5042 .

Wiggers, A. J.; Oliehoek, F. A.; and Roijers, D. M. 2016.
Structure in the value function of two-player zero-sum games
of incomplete information. In Proceedings of the Twenty-
second European Conference on Artificial Intelligence, 1628–
1629. IOS Press.


