Build Order Selection in StarCraft* Utilizing a Customized Bayesian
Multi-Armed Bandit Algorithm

Hao Pan
QOMPLX, Inc.
Reston, VA
hao.pan@QOMPLX.com

Abstract

Solutions to the multi-armed bandit (MAB) problem have
been used in various areas including Real Time Strategy
(RTS) games such as StarCraft®. Within StarCraft, one chal-
lenging area to apply such solutions is build order (BO) se-
lection. The build order is defined as the concurrent action se-
quences that, constrained by unit dependencies and resource
availability, create a certain number of units and structures
in the shortest possible time span (Churchill and Buro 2011).
Due to the uncertain and potentially non-stationary game out-
come (e.g., winning/losing a game) of each build order, a cus-
tomized Bayesian multi-armed bandit algorithm is proposed
in this paper to provide an effective way to make the optimal
decision. To demonstrate the effectiveness of the proposed al-
gorithm, a case study is done using data from test results of
a few selected StarCraft: Brood War bots. In addition, the re-
sults are compared with those from alternative algorithms.

Introduction

In MAB problems, one can imagine a gambler facing a row
of slot machines (each machine is a one-armed bandit as it
has a single lever to pull). The gambler seeks to find the best
strategy to maximize the rewards resulting from pulling a
certain amount of machines sequentially. Such strategy in-
volves choosing which machines to pull/play and in which
order to play them. As early as 1952, Herbert Robbins real-
ized the importance of the MAB problem and devised tech-
niques to have convergent population selection for the de-
sign and analysis of sampling experiments (Robbins 1952).
(Katehakis and Robbins 1985) sought the fastest rate of con-
vergence to the population with the highest mean (in the con-
text of MAB, this can be viewed as the arm yielding the best
reward). To do so, they considered sampling sequentially
from multiple populations in order to maximize the total out-
come in the long run. Since then, (Auer, Cesa-Bianchi, and
Fischer 2002; Katehakis and Veinot 1987) formulated the
multi-armed bandit problem. The MAB problem is a clas-
sic reinforcement learning problem. The gambler starts from

*StarCraft is a trademark or registered trademark of Blizzard
Entertainment, Inc., in the U. S. and/or other countries. Nothing
in this paper should be interpreted as approval, endorsement, or
sponsorship by Blizzard Entertainment, Inc.

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

zero knowledge of the bandits, and as time progresses, the
gambler eventually learns the reward of each machine. The
gambler is bound to the exploration-exploitation dilemma.
At first some exploration must be conducted. This could be
testing each bandit once, or randomly sampling some ban-
dits. Sooner or later, the gambler has to decide which ma-
chines give better rewards than the others and stick with
them, or equivalently, at what time exploitation is to hap-
pen. Alternatively, one can view each arm as an independent
Markov machine. As time progresses, some of the arms are
pulled, and the states of the machines would advance to the
next ones based on the Markov state evolution probabilities.
This formulation is the so-called “restless bandit problem”
(White 1988).

The multi-armed bandit problem is seen in many ar-
eas such as clinical trials (Gittins 1989; Berry and Fristedt
1985), financial portfolio design (Brochu, Hoffman, and de
Freitas 2010; Shen et al. 2015), and in RTS games such as
StarCraft (Ontafiéon 2017; Moraes et al. 2018). Upper Confi-
dence Trees (UCT), a Monte Carlo Tree Search planning al-
gorithm, was used by (Balla and Fern 2009) in some sequen-
tial decision problems (which are extensions of MAB prob-
lems) for the RTS game Wargus. (Justesen et al. 2014) used
two extensions of UCT to tackle the challenging problem of
controlling unit actions (especially those used in combat) in
StarCraft. To optimize a build order, or more specifically, to
search for the minimum-makespan action sequences given a
static BO goal (such as producing 4 tanks as quickly as pos-
sible), (Churchill and Buro 2011) searched through the vast
game space, and (Justesen and Risi 2017) utilized the Con-
tinual Online Evolution Planning (COEP) algorithm. Such
approaches are thorough but often come up with a single
optimal BO, which may not be practical, especially when
in a tournament such as SSCAIT !, where oftentimes a bot
does not win by using one strategy. There are bots which
can analyze opponent’s BOs and devise counter measures. A
single BO is easily exploitable in this case. One solution to
this phenomenon is to try to reach the mixed strategy Nash
equilibrium (Osborne and Rubinstein 1994). However, the
Nash equilibrium is not easy to compute, and might not even
matter. The authors of the superhuman poker Al Pluribus
(Brown and Sandholm 2019) decided to go fully empirical

'SSCAIT homepage: https://sscaitournament.com/

and not consider the problem of Nash equilibrium. Regard-
less of the approaches, it is desirable to intelligently choose
the optimal strategy/BOs out of a pool of feasible ones. Each
build order can be viewed as an arm in the MAB problem.
The Upper Confidence Bound method (usually referred to
as the UCBI1 algorithm) is used by UAlbertaBot and many
others (Ontafién et al. 2013) to choose the optimal BOs.

Yet there are challenges that are not fully resolved: 1) Un-
certainty in game outcome. Such uncertainty can come from
multiple sources such as map factors (map size, choke point
width, etc) and unit behavior (decision to attack/defend, etc);
2) Non-stationary game outcome. This means the game out-
come can change over time. Some opponents can adapt.
Bayesian approaches can come to the rescue. They are al-
ready used to solve problems in StarCraft (Synnaeve and
Bessiere 2015) and to solve MAB problems (Urteaga and
Wiggins 2018; Scott 2010). However, to the best of the au-
thors’ knowledge, there is little to no literature on formu-
lating Bayesian MAB problem for BO selection. This pa-
per aims at fertilizing this “barren land”, as well as tackling
the aforementioned two challenges by: 1) proposing a cus-
tomized Bayesian multi-armed bandit algorithm; 2) quanti-
fying uncertainty in reward by acquiring posterior distribu-
tion; 3) applying a moving-window technique to handle the
non-stationary nature of the reward. In addition, suggestions
will be made to select hyper-parameters for such a Bayesian
multi-armed bandit algorithm. The effectiveness of the pro-
posed algorithm will be compared with that of several alter-
natives, namely, UCB1, EXP3 (Seldin et al. 2012) and ran-
dom pick (RP: one picks BOs randomly with equal weights
assigned to each BO).

Methodology

In a multi-armed bandit problem, there are K € NT ma-
chines, each with a lever to pull, yielding a reward R;,i =
1,2,..., K which is unknown in nature but often assumed
to follow a distribution. One is to choose one machine at a
time, and repeat (choosing the same machine or a different
one) for a total of 1 times. If the distribution is identical
for all T' time steps, such formulation of the MAB problem
is called stochastic bandit. The UCB1 algorithm is used as
the standard solution to explore the action space efficiently
while exploiting the best action to achieve minimum regret
(Yu and Sra 2019). If the distribution is allowed to vary over
time, such formulation is called adversarial bandit. The stan-
dard algorithm for this is the EXP3 algorithm which com-
putes and updates unbiased estimates of cumulative rewards
via importance sampling. There are other solutions to find
the best series of actions. One such solution is called the
Follow the Perturbed Leader (FPL) algorithm (Hutter and
Poland 2005) and its main steps are provided below.

FPL algorithm

Initialize: R\”) = 0.5Vi
Attimet (t=1,2,...,T):
for (?in1: K)
Update reward at time ¢ for arm ¢ based on all of

its outcomes in the past ¢ — 1 time steps: Rgt)
Generate noise: egt) by drawing a random number
from an exponential distribution Exp(n)

Perturb the reward (potentially the leader) by

computing the adjusted reward: Rf.” = Rgt) + egt)

End for loop
Find arm j such that j = argmax{f{l(-t)} and pull it.

3
Record the outcome (e.g., success or failure): to be
used in the Update step when time progresses to ¢ 4 1.

To solve the challenge of finding the reward distribution
using Bayesian statistics, the reward in the context of select-
ing build order in an RTS game is to be defined first. There
are multiple ways to define the reward, such as using Star-
Craft’s in-game metrics which take into account unit, build-
ing, resource, and combat scores. But for the sake of simplic-
ity, the reward is defined here as the win rate. It is assumed
that R; ~ Bernoulli(6;),i = 1,2,..., K. The distribution
of the win rate is initially unknown but can be inferred. Due
to the flexibility to model a range of distributions, the two-
parameter beta distribution is assumed for the prior distribu-
tion 7(6;): 6; ~ Beta(ag, Bp), where ag > 0 and 5y > 0.
Using the Bayes theorem, the posterior distribution can be
expressed as:

p(0:|R;) o< w(0;) * Lo, r,=r, (6:)

where Ly, r,—r, (0;) is the likelihood function and it is ex-
pressed as:

Si+Fi S. F.
07 (1 —6,)""
3)easa

where S; and F; are the number of successes (wins) and
failures (losses) associated to arm ¢ observed in the previous
t — 1 steps. The likelihood function can be understood as the
probability of acquiring S; successes from a total of S; + F;
trials given ;.

Recall that a random variable 6 on the interval (0, 1) fol-
lowing a Beta distribution with parameters « and (3 has the
density function defined as:

T(a+p)

w(0) = ==

O = T (s)
where I'() is the Gamma function.

By computing the integral [7(6;)Lq, g,=r, (0;)d0; as

the normalizing factor (which can be understood as the

weighted average of all possible posteriors), the density of
the posterior distribution is expressed as:

m(6:) EeilRi:”'i (0;)
7 (6:) * Lo, r,=r, (6:)d6;
(Si;:Fi)B(ao» Bo)f0 i1 — ;) PotFi—1

‘691’\131’:7“1' (9l> = (

0t (1—0)""

p(0s| R;) o

JE Y Blao, o) 025 (1 = 0;)50+Fi=1.dp;
o Blag + Si, Bo + F;)§2o 571 (1 — g;)fotFi—1

where B(«, 8) = FF(S;F(QB)) is the Beta function.

The posterior distribution is then found to also follow a
beta distribution:

p(91|Rl) ~ Beta(ao + S;, Bo + Fz)

The posterior mean is considered as the actual value of the
reward at time ¢ and is expressed as:

ag + S;
ag+ Bo+ S + F;

In the context of selecting build order, where the reward
is essentially the win rate, the parameters of the prior dis-
tribution are assumed to be equal to each other: « = 3 for
symmetry. Moreover, a flat prior («« = 8 = 1.0) is preferred
over a shaped one (e.g., one where « = § = 2.0). Utilizing
a flat prior reflects the reality better: all win rate values, from
0% to 100%, are equally possible.

The rate parameter 7 of the exponential distribution which
the artificial noise (the perturbation term) follows must be
chosen carefully. should ideally be set in such a way to
provide enough chances for the algorithm to perform explo-
ration (rather than exploiting all the time), while at the same
time minimizing its disturbance to the reward. A value be-
tween 5 and 10 is recommended here for 7, as such value
corresponds to a swing in win rate roughly between 10% and
20% which is a disturbance significant enough but not over-
powering the underlying true value of the win rate. With this
consideration and the posterior distribution of the reward,
the proposed algorithm (baseline) can be expressed as the
following steps:

?:

Proposed baseline algorithm

At time ¢:
for (iin1: K)
Update reward at time ¢ for arm 4:

@ _ a+S;
’ a+pf+5+F

. t .
Generate noise: 61(') by drawing a random number

from an exponential distribution Exp(n)
Perturb the reward by computing
the adjusted reward: Rgt) = Rgt) + el(-t)
End for loop
find arm j such that

Jj= argmax{f:igt)} and pull it

K3
Record the outcome (e.g., success or failure): to be
used in the Update step when time progresses to ¢ + 1.

The proposed baseline algorithm does not require any pre-
vious result of pulling arms. While for UCBI, it is required
that each arm is pulled at least once before it can function
properly.

As is mentioned earlier, the distribution of the rewards can
vary over time. This assumption is practical because there
are bots which use multiple BOs and can vary their strat-
egy by choosing BOs intelligently (using algorithms such
as UCB1). Moreover, some bots such as Steamhammer can

perform opponent modeling, or opponent BO identification 2
and adapt by selecting from a pool of weighted BOs deemed
advantageous for themselves. To ensure that the algorithm
is relatively free to break out of the accumulated knowledge
of the opponent should drastic changes occur in the distribu-
tion of the rewards, the proposed baseline algorithm is ex-
tended to a Moving Window (MW) variant where a MW is
applied to the number of games to be examined in the past
when calculating the reward (as compared to using all the
games occured from time O up to time ¢). More specifically,
the MW is applied in the Update step where S; and F; are
counted using only the most recent N (the size of the MW)
games. The introduction of MW here, together with how the
reward is updated, are the two main differences between the
MW variant and the FPL algorithm.

There is a tradeoff when one chooses the size IV of the
MW. If the size is too small, there wouldn’t be enough games
to draw a firm conclusion on the posterior distribution of the
reward. If the size is too large, one risks picking the non-
optimal BOs, especially when the stationarity assumption is
violated. The size of the MW is set to be 40 based on em-
pirical study which was conducted to minimize the impact
of sudden change in the distribution of the rewards. A prop-
erly selected MW size can help to mitigate such impact. One
can verify this by comparing the results before and after the
stress test scenario which is to be described in the next sec-
tion.

Case Study

The setup of the case study is as follows. A few of the top
SSCAIT (éerticky etal. 2018; Certick}’/ and Churchill 2017;
Churchill et al. 2016) bots on the BASIL 3 ladder were used
as opponents against the authors’ own bot (renamed as bot
X here). The opponent bots and their factions are: 1) Tomas
Vajda: Protoss (P); 2) Marian Devecka: Zerg (Z); 3) Iron
bot: Terran (T); 4) BananaBrain: (P); 5) tscmoo: (T) and 6)
Steamhammer: (Z). Bots 1-3 use a single BO and they’ll be
referred to as non-adapting bots. Bots 4-6 use multiple BOs
and can choose them intelligently. They’ll be referred to as
adapting bots. Among the adapting bots, *“... BananaBrain
uses UCBI1 algorithm to choose which build to use™*. Both
tscmoo and Steamhammer use some weighted random algo-
rithm to choose BOs. Bot X plays as the Terran faction.

An extensive number of games were run against non-
adapting bots for each BO of bot X, so that the true value
of the win rate can be estimated. The results are summa-
rized in Table 1. The highest winrates, or the best results,
are highlighted in bold font. This remains true for all the
subsequent tables in this paper. In Table 1, the data in each
cell mean the number of games won vs a specific opponent
using a particular BO (the first number) and the total number
of games played vs this opponent with the BO (the second
number). The win rate is presented in the parentheses. There
are 4 BOs for X to choose from, and they are quite different

2Jay Scott’s blog post: http://satirist.org/ai/starcraft/blog/archives/362-

Steamhammers-opponent-model.html
SBASIL ranking page: https://basil bytekeeper.org/ranking.htm]
“BananaBrain’s wiki: https:/liquipedia.net/starcraft/BananaBrain

Table 1: Win rate vs non-adapting opponents

Tomas Marian Iron bot
Vajda Devecka
BO1 86/98 0/98 28/98
(88%) (0%) (29%)
BO2 36/98 83/98 69/98
(37%) (85%) (70%)
BO3 92/98 94/98 0/98
(94%) (96%) (0%)
BO4 94/98 1/98 0/98
(96 %) (1%) (0%)

from each other, ranging from rush builds to macro (aiming
for the long game) ones. In addition, these BOs were chosen
so as to discretize the vast game/BO space based on their
popularity and effectiveness (especially in the human com-
petitive scenes).

For adapting bots, the winrates can vary depending on
how bot X and the opponent choose the BOs, respectively,
as time progresses. One can call this a co-evolution prob-
lem. The winrates can also vary depending on which BO-
selecting algorithm is used. Due to the limit on page num-
bers, such winrates are not presented here but can be made
available per request.

In this case study, there are 5 algorithms whose perfor-
mance is to be compared, namely: 1) the proposed baseline
algorithm, or simply, baseline; 2) MW variant; 3) UCB1; 4)
EXP3 and 5) RP. For each of the 5 algorithms, 1000 games
were played between bot X and each of the opponents. The
games were simulated in the sense that the outcome was de-
termined by the estimated winrates shown in Table 1, instead
of by playing each entire game out. 1000 games are con-
sidered sufficient to produce an outcome that is statistically
similar to that acquired by running the actual games.

It is assumed that there is no significant change in a bot’s
behavior when executing a particular BO within each of
these 1000-game runs. Such behavior can be unit micro, unit
training/building construction priorities, etc. There are two
criteria to measure how good an algorithm is: 1) average re-
gret (AR). This value measures the averaged difference be-
tween the realized reward and the best reward. At each time
step a regret value is computed and all such values are av-
eraged over 1" time steps; 2) The number of times when the
best BO was selected, or number of successes (NS). Crite-
rion 1 is considered more indicative about an algorithm’s
performance than criterion 2 because cases where winrates
of the best BO and the second best BO are similar can eas-
ily devalue some algorithms when they choose the second
best BO (which isn’t a bad choice) frequently. Table 2 holds
the result using various algorithms when bot X was pitched
against non-adapting bots.

The proposed baseline algorithm achieved the best result
in terms of both AR (the smaller the value, the better, or
less regret) and NS (the larger the value, the better, or more
times the optimal BO is selected). The performance of the

Table 2: Comparison of results using various algorithms:
vs non-adapting opponents

Tomas Marian Iron bot
Vajda Devecka
Baseline
AR 1% 1% 1%
NS 713 955 973
MW Variant
AR 2% 2% 6%
NS 442 910 885
UCBI1
AR 4% 5% 5%
NS 424 709 898
EXP3
AR 9% 25% 23%
NS 421 596 614
RP
AR 16% 49% 45%
NS 256 243 255

Table 3: Comparison of results using various algorithms:
vs adapting opponents

Banana- tscmoo Steam-
Brain hammer
Baseline
AR 2% 5% 2%
NS 858 813 688
MW Variant
AR 4% 8% 5%
NS 445 746 521
UCBI1
AR 4% 5% 6%
NS 431 594 841
EXP3
AR 7% 13% 11%
NS 591 606 596
RP
AR 12% 66% 22%
NS 239 262 261

Maximum Possible Reward

Q
o |mmunmm | | wonm N RO
o
©
T O
G
H] MW
[}
2 <
o
~N
o
o (fam ® L L [u
o
0 200 400 600 800 1000
Games

Figure 1: Time series of rewards obtained by the MW vari-
ant: bot X vs Marian Devecka

MW variant is slightly worse than that of baseline but still is
better than UCB1, EXP3 and RP.

Using games of bot X vs Marian Devecka, Figures 1 and 2
compare the time series of the rewards (win rate values from
the column “Marian Devecka” in Table 1) obtained by the
MW variant and UCBI, respectively. Ideally, one would like
to get the maximum possible reward by choosing the best
BO as many times as possible (meaning the more often the
grey dots fall on the red line, the better). The two figures
can also be viewed as the time series of the BOs chosen by
the two algorithms, as each BO has a unique reward (win
rate) in this case (bot X vs Marian Devecka). It is quite ob-
vious that the MW variant identified the best BO faster, and
made much fewer choices of the second best BO than UCBI1.
UCBI struggled a lot between picking the second best BO
and the best one. One possible explanation for this, as (Au-
dibert, Munos, and Szepesvari 2008) pointed out, is that dur-
ing the first draws the (unknown) optimal arm gives low re-
wards, and this makes the reward of this arm inferior to that
of the other arms. As a result, the algorithm might get stuck,
potentially not choosing the optimal arm any more.

Similarly, for each of the 5 algorithms and each of the
adapting opponents, 1000 games were run, and Table 3
shows the result. The proposed baseline algorithm per-
formed the best again, except for NS vs Steamhammer. This
is largely due to the fact that when using the baseline algo-
rithm vs Steamhammer, the winrates of the two best BOs
only differ by 2%, while the difference was large enough
(30%) when using UCBI. It should also be noted that, al-
though the performance of EXP3 is better than that of RP,
it is still considerably worse than that of either baseline,
MW variant, or UCB1. EXP3 tends not to punish those BOs
which lose initially. Consider this simple case where one
starts fresh (no BO is ever played). EXP3 initiates by setting
weights of all BOs equal. Suppose BO1 gets played once
and it loses, its weight gets updated but remains essentially

Maximum Possible Reward

oq [R0 RIL NT WU TN W R T) N B N R I e Wl R Ry
o
o
T o
&
2 ucCB1
[
x <
o
N
o
o|mrey » 2| 2] -
S
0 200 400 600 800 1000
Games

Figure 2: Time series of rewards obtained by UCB1: bot X
vs Marian Devecka

the same due to the reward being zero. This continues to
happen so long as the chosen BO results in a loss. In other
words, EXP3 then wanders among all the BOs until it be-
comes clearer which one is better.

Next, a stress test scenario is artificially constructed to ex-
amine how the algorithms react to sudden change in our own
behavior. More specifically, our best and worst winrates are
swapped after the previous 1000-game runs. Such a scenario
can happen in reality. For example, a production freeze bug
would cause a bot’s best BO to perform the worst. The worst
BO can become the best one if recent development improved
it significantly. In the column of “Iron bot”, the two worst
winrates (associated to BO3 and BO4) are the same. BO3
was chosen for this stress test. Then another 1000 games
were run using the new winrates for each opponent and each
algorithm. It is again assumed that there is no significant
change in a bot’s behavior within these 1000-game runs.
Similarly, Tables 4 and 5 show results vs non-adapting and
adapting opponents, respectively.

After the stress test, it turns out the results obtained by
both the proposed baseline algorithm and EXP3 are much
worse than those before the stress test. This is mainly
because both algorithms rely heavily on the accumulated
knowledge, and when there’s a sudden change, the two al-
gorithms lack a way to adapt/would require a large num-
ber of games before they identify the new best BO. On
the other hand, the MW variant performed the best over-
all, while UCB1 leads slightly in the cases vs Iron bot and
vs Steamhammer in terms of NS. Both of these algorithms
prove to be able to adapt to the sudden change in rewards.
Figures 3 and 4 show time series of the rewards obtained
by the two algorithms after the reward change, using games
of bot X vs Marian Devecka again. By looking at games
right after the reward change (those on the left side of the
figures, right after game #1000), it is obvious that the MW
variant took considerably fewer games to adapt (to learn to

Table 4: Comparison of results using various algorithms:

after reward change, vs non-adapting opponents

Tomas Marian Iron bot
Vajda Devecka
Baseline
AR 17% 27% 22%
NS 107 351 683
MW Variant
AR 2% 3% 7 %
NS 694 907 882
UCBI1
AR 5% 5% 7 %
NS 486 865 885
EXP3
AR 11% 36% 53%
NS 101 145 189
RP
AR 17% 50% 46%
NS 251 264 247

Table 5: Comparison of results using various algorithms:

after reward change, vs adapting opponents

Banana tscmoo Steam-
Brain hammer
Baseline
AR 13% 30% 10%
NS 301 327 402
MW Variant
AR 5% 8% 6%
NS 366 769 435
UCBI1
AR 7% 9% 8%
NS 240 363 827
EXP3
AR 17% 32% 27%
NS 125 139 125
RP
AR 12% 67% 22%
NS 237 254 251

Maximum Possible Reward

&
o) AN L] L] L LR
o
©
T ©
S
©
2 MW
[]
e <
o
N
o
o e l. - oy m "g LI | "B -an
o

1000 1200 1400 1600 1800 2000
Games after Reward Change

Figure 3: Time series of rewards obtained by the MW variant
after reward change: bot X vs Marian Devecka

not choose the previous best BO) than UCB1.

Conclusion

In this paper, a customized Bayesian Multi-Armed Bandit
algorithm was proposed to help selecting the best build or-
der for use in the game StarCraft: Brood War. The proposed
algorithm intended to solve two challenges by means of: 1)
having a closed form of posterior distribution to describe the
reward; 2) applying a MW to deal with potentionally non-
stationary reward distribution. A case study was conducted
to demonstrate the effectiveness of the proposed algorithm
and compare results with those from the alternatives (UCB1,
EXP3, and RP) using two measures: AR and NS. A stress
test scenario was also constructed and it confirmed the supe-
riority of the proposed algorithm over the alternatives when
handling non-stationary reward.

There are things to be improved in the future: 1) One
can use more accurate models to depict opponents’ strate-
gies/BOs and the way they choose them. Then there is mo-
tivation to develop X bot’s counter measures on anticipat-
ing an opponent’s BO. This will affect how our BOs are se-
lected; 2) It is risky to run only 4 BOs for each matchup,
as doing so could potentially oversimplify the BO selec-
tion problem. However, the builds used by pro players are
branched from only a few main ones. This remains a debat-
able topic and the effect of the number of BOs bot X uses on
the proposed algorithm would be interesting to study. Of par-
ticular interest is how much this would impact the parameter
7 used in the perturbation term; 4) The flexibility of the beta
distribution used in the proposed algorithms would enable
applications in areas other than build order selection in Star-
Craft, so long as the reward can be modeled as a distribution.
Such generalization is possible but requires careful exami-
nation and study; 5) Thompson sampling (Russo et al. 2017;
Thompson 1933) introduced an intelligent way to allocate

Maximum Possible Reward

1.0

OO U . - -
0 LI LI | N NN e e ..
o
©
° o
]
2 UCB1
)
x <
o
o
o
O | mmnm EmEmE | mmE
o

1000 1200 1400 1600 1800 2000
Games after Reward Change

Figure 4: Time series of rewards obtained by UCBI after
reward change: bot X vs Marian Devecka

exploration effort. However during the development of the
proposed algorithm, it was discovered that Thompson sam-
pling encouraged too much exploration and hinders the
timely discovery of the optimal BO. It’s not included in the
proposed algorithms but remains something to consider.

Acknowledgements

The authors would like to specifically thank Nathan Roth
(MSc) for his dedicated effort in helping performing the re-
play analysis of bot X and advising strategy/BOs to use for
each matchup. The authors would also like to thank the SS-
CAIT community for their kind support. The authors are
equally thankful for Dennis Waldherr and his BASIL lad-
der, as it provided an invaluable test-bed like environment to
see games/replays in a timely fashion.

References

Audibert, J.-Y.; Munos, R.; and Szepesvéri, C. 2008. Vari-
ance estimates and exploration function in multi-armed ban-
dit. Research report, IMAGINE (previously CERTIS), Ecole
des Ponts ParisTech (ENPC).

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multi-armed bandit problem. Machine
Learning 47(2/3):235-256.

Balla, R.-K., and Fern, A. 2009. UCT for tactical assault
planning in real-time strategy games. Proceedings of the
International Joint Conference on Artificial Intelligence 40—
45.

Berry, D. A., and Fristedt, B. 1985. Bandit problems: se-
quential allocation of experiments, monographs on statistics
and applied probability. London: Chapman & Hall.
Brochu, E.; Hoffman, M. W.; and de Freitas, N.
2010. Portfolio allocation for Bayesian optimization.
arXiv:1009.5419.

Brown, N., and Sandholm, T. 2019. Superhuman AI for
multiplayer poker. American Association for the Advance-
ment of Science (AAAS). DOI: 10.1126/science.aay2400.

Churchill, D., and Buro, M. 2011. Build order optimiza-
tion in StarCraft. The Seventh AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE)
14-19.

Churchill, D.; Preuss, M.; Richoux, F.; Synnaeve, G.; Uri-
arte, A.; Ontafinén, S.; and Certicky, M. 2016. StarCraft
Bots and Competitions. Cham: Springer International Pub-
lishing. 1-18.

Certicky, M., and Churchill, D. 2017. The current state
of StarCraft Al competitions and bots. Proceedings of the
AIIDE 2017 Workshop on Artificial Intelligence for Strategy
Games.

Certicky, M.; Churchill, D.; Kim, K.-J.; Certick)’/, M.; and
Kelly, R. 2018. StarCraft Al competitions, bots and tour-
nament manager software. [EEE Transactions on Games
(ToG) 1(13):1-1.

Gittins, J. C. 1989. Multi-armed bandit allocation in-
dices. Wiley-Interscience Series in Systems and Optimiza-
tion. John Wiley & Sons, Ltd.

Hutter, M., and Poland, J. 2005. Adaptive online predic-
tion by following the perturbed leader. Journal of Machine
Learning Research 6:639-660.

Justesen, N., and Risi, S. 2017. Continual online evolution-
ary planning for in-game build order adaptation in starcraft.
In Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO ’17, 187-194. ACM.

Justesen, N.; Tillman, B.; Togelius, J.; and Risi, S. 2014.
Script- and cluster-based UCT for StarCraft. IEEE Confer-
ence on Computational Intelligence and Games 1-8.

Katehakis, M. N., and Robbins, H. 1985. Sequential
choice from several populations. Proceedings of the Na-
tional Academy of Sciences of the United States of America
92(19):8584-8585.

Katehakis, M. N., and Veinot, A. F. 1987. The multi-armed
bandit problem: decomposition and computation. Mathe-
matics of Operations Research 12(2):262-268.

Moraes, R. O.; Marifio, J. R. H.; Lelis, L. H. S.; and Nasci-
mento, M. A. 2018. Action abstractions for combinatorial
multi-armed bandit tree search. Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment 74-80.

Ontafién, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of Real-
Time Strategy game Al research and competition in Star-
Craft. IEEE Transactions on Computational Intelligence
and Al in games 5(4):1-19.

Ontafiéon, S. 2017. Combinatorial multi-armed bandits
for RTS games. Journal of Artificial Intelligence Research
(JAIR) 58:665-702.

Osborne, M. J., and Rubinstein, A. 1994. A course in Game
Theory. The MIT Press.

Robbins, H. 1952. Some aspects of the sequential design of
experiments. Bulletin of the American Mathematical Society
58(5):527-535.

Russo, D.; Roy, B. V.; Kazerouni, A.; Osband, I.; and
Wen, Z. 2017. A tutorial on Thompson sampling.
arXiv:1707.02038.

Scott, S. 2010. A modern Bayesian look at the multi-armed
bandit. Applied Stochastic Models in Business and Industry
26:639-658.

Seldin, Y.; Szepesvari, C.; Auer, P.; and Abbasi-Yadkori, Y.
2012. Evaluation and analysis of the performance of the
EXP3 algorithm in stochastic environments. /0th European
Workshop on Reinforcement Learning (EWRL) 103—116.

Shen, W.; Wang, J.; Jiang, Y.-G.; and Zha, H. 2015. Portfolio
choices with orthogonal bandit learning. In Proceedings of
the 24th International Conference on Artificial Intelligence,

IICAI’'15, 974-980. AAAI Press.

Synnaeve, G., and Bessiere, P. 2015. Multiscale Bayeisian
modeling for RTS games: an application to StarCraft Al
IEEE Transactions on Computational Intelligence and Al in
Games 8:338-350.

Thompson, W. R. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika (3/4):285-294.

Urteaga, 1., and Wiggins, C. H. 2018. Bayesian bandits: bal-
ancing the exploration-exploitation tradeoff via double sam-
pling. arXiv:1709.03162.

White, P. 1988. Restless bandits: activity allocation in a
changing world. Journal of Applied Probability 287-298.
Yu, T, and Sra, S. 2019. Efficient policy learning

for non-stationary MDPs under adversarial manipulation.
arXiv:1907.09350.

