
RLCard: A Toolkit for Reinforcement Learning in Card Games

Daochen Zha1, Kwei-Herng Lai1, Yuanpu Cao1∗, Songyi Huang2, Ruzhe Wei1∗, Junyu Guo1∗, Xia Hu1

1 Department of Computer Science and Engineering, Texas A&M University, College Station, USA
2 Simon Fraser University, BC, Canada

{daochen.zha, khlai037}@tamu.edu, yuanpucao@gmail.com, songyih@sfu.ca,
ruzhe.wei@outlook.com, {guojunyu, xiahu}@tamu.edu

Abstract

We present RLCard, an open-source toolkit for reinforce-
ment learning research in card games. It supports various card
environments with easy-to-use interfaces, including Black-
jack, Leduc Hold’em, Texas Hold’em, UNO, Dou Dizhu and
Mahjong. The goal of RLCard is to bridge reinforcement
learning and imperfect information games, and push forward
the research of reinforcement learning in domains with mul-
tiple agents, large state and action space, and sparse reward.
In this paper, we provide an overview of the key components
in RLCard, a discussion of the design principles, a brief in-
troduction of the interfaces, and comprehensive evaluations
of the environments. The codes and documents are available
at https://github.com/datamllab/rlcard.

Introduction
Reinforcement learning (RL) is a promising paradigm in Ar-
tificial Intelligence for learning goal-oriented tasks. Through
interactions with the environments, reinforcement learning
agents learn to make decisions at each state in a trial-and-
error fashion. With neural networks as function approxi-
mators, deep reinforcement learning has recently achieved
breakthroughs in various domains: Atari games (Mnih et al.
2015), Go game (Silver et al. 2017), continuous control (Lil-
licrap et al. 2015), and neural architecture search (Zoph and
Le 2016), just to name a few. Out of these achievements,
however, reinforcement learning is still immature and unsta-
ble in applications with multiple agents, large decision space
or sparse reward.

In this paper, we introduce various styles of card environ-
ments for reinforcement learning research. Card games are
ideal testbeds with several challenges. First, card games are
played by multiple agents who must learn to compete or col-
laborate with each other. For example, in Dou Dizhu, peas-
ants need to work together to fight against the landlord in
order to win the game. Second, card games have huge state
space. For instance, the number of states in UNO can reach
10163. The cards of each player are hidden from the other
players. A player not only needs to consider her own hand,
but also has to reason about the other players’ cards from the
signals of their actions. Third, card games may have large

∗Authors contribute during the visit at Texas A&M University.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Env Env Env

RLCard

Algorithm

Figure 1: An overview of RLCard. It supports various styles
of card games, such as betting games, Chinese Poker, and
boarding games, wrapped by easy-to-use interfaces.

action space. For example, the possible number of actions in
Dou Dizhu can reach 104 with an explosion of card combi-
nations. Last, card games may suffer from sparse reward.
For example, in Mahjong, winning hands are scarce. We
observe one winning hand every five hundreds of games if
playing randomly. Moreover, card games are easy to under-
stand with huge popularity. Games such as Texas Hold’em,
UNO and Dou Dizhu are played by hundreds of millions of
people. We usually do not need to spend efforts on learning
the rules before we can dive into algorithm development.

To develop card environments with easy-to-use interfaces
is a challenging task. First, the interfaces must be accessible
to RL researchers who may or may not have a game theory
background. In the extensive form games, the player will not
observe her next state immediately after taking an action.
The next state is exposed to the player only after all other
players have chosen their actions. This makes it difficult
to design environment interfaces. Second, the environments
need to be configurable. The state representation, action ab-
straction, reward design, or even the game rules should be
easily adjusted for research purposes.

We present RLCard, an opensource toolkit designed for
reinforcement learning in card games. It supports various
card environments, as summarized in Table 1. The interfaces
are straightforward for reinforcement learning. The transi-
tions of each player and collected and well organized after a
complete game in the multi-agent setting. We also provide a
single-agent interface, where the other players are simulated

https://github.com/datamllab/rlcard

Environment InfoSet Number Avg. InfoSet Size Action Size
Blackjack 103 101 100

Leduc Hold’em 102 102 100

Limit Texas Hold’em 1014 103 100

Dou Dizhu 1053 ∼ 1083 1023 104

Mahjong 10121 1048 102

No-limit Texas Hold’em 10162 103 104

UNO 10163 1010 101

Table 1: A summary of the games in RLCard. InfoSet Number: the number of the information sets; Avg. InforSet Size: the
average number of states in a single information set; Action Size: the size of the action space (without abstraction). Note that
for some games, we can only provide a range of the complexity estimation. For example, Dou Dizhu allows a large number of
legal combinations of cards, which makes it challenging to estimate the size of the state space.

using pre-trained models. The state and action encoding can
be easily configured. The games are implemented under the
same structure with clear logic. The evaluation tools are pro-
vided to measure the performance by winning rates of tour-
naments. Future versions will extend the toolkit to include
more environments. The goal of RLCard is to bridge rein-
forcement learning and imperfect information games, and
push forward the research of reinforcement learning in do-
mains with multiple agents, large state space, large action
space, and sparse reward.

Overview
In this section, we give an overview of RLCard, and intro-
duce the interfaces. More introductions can be found in Ap-
pendix. Figure 1 shows an overview of RLCard. Each game
is wrapped by an environment class with easy-to-use inter-
faces. With RLCard, we can focus on algorithm develop-
ment instead of engineering efforts on games. When devel-
oping the toolkit, we adopt the following design principles:

• Reproducible. Results on the environments can be repro-
duced. The same result should be obtained with the same
random seed in different runs.

• Accessible. Experiences are collected and well organized
after each game with straightforward interfaces. State rep-
resentation, action encoding, reward design, or even the
game rules, can be conveniently configured.

• Scalable. New card environments can be added conve-
niently into the toolkit with the above design principles.
We try to minimize the dependencies in the toolkit so that
the codes can be easily maintained.

Available Environments
The toolkit provides various styles of card games that are
popular among hundreds of millions of people, including
betting games, Chinese Poker, and some boarding games.
Table 1 summarizes the card games in RLCard and estimates
the complexity of each game. The game size can be mea-
sured by the number of information sets, which are the ob-
served states from the view of one player. The average size
of the information set is defined as the average number of
possible game states in each information set. For example,
given the observation from the view of one player in Texas
Hold’em, the other players could have many possible hands.

Each possible hand corresponds to one game state in this in-
formation set. The size of the action space is also provided
since large action space will greatly increase the difficulty.

Since most of games have very large state space, it is
challenging to immediately solve these human-size games.
Thus, we have also implemented some smaller versions of
some large games. For example, RLCard also implements a
smaller version of Dou Dizhu, where we only keep cards 8,
9, 10, J, Q, K, and A. This variant keeps key features of Dou
Dizhu but with much smaller state space.

Basic Interface
We provide a run function for quickly getting started. It di-
rectly generates payoffs and game data, which are organized
as transitions, i.e., (state, action, reward, next state, done).
This interface is designed for algorithms that do not need to
traverse the game tree. An example of running Dou Dizhu
with three random agents is as follows:

import r l c a r d
import RandomAgent

I n i t i a l i z e t h e e n v i r o n m e n t
env = r l c a r d . make (’ doud izhu ’)

I n i t i a l i z e random a g e n t s
a g e n t = RandomAgent ()
env . s e t a g e n t s ([agen t , agen t , a g e n t])

whi le True :
Genera te da ta from t h e e n v i r o n m e n t
t r a j e c t o r i e s , p a y o f f s = env . run ()
T r a i n a g e n t he re

For sampling based algorithms that do not require traversing
backward in the game tree (Heinrich, Lanctot, and Silver
2015; Heinrich and Silver 2016; Lanctot et al. 2017), the
basic interface could be preferred since we do not need to
care about the details of the traversing.

Advanced Interfaces
We also provide some advanced interfaces that operate upon
the game tree. Following other RL toolkits (Brockman et
al. 2016; Lanctot et al. 2019), we define a step function
which moves the environment to the next state given the
current action. To enable traversing backward, we provide a
step back function, which traverses back to the previous

0 5 10 15 20 25
timestep (1e3)

0.6

0.5

0.4

0.3

0.2

0.1
re

wa
rd

DQN

(a) Blackjack

0 50 100 150 200 250 300
timestep (1e3)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

re
wa

rd

DQN
NFSP

(b) Leduc Hold’em

0 50 100 150 200 250 300 350 400
timestep (1e3)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

re
wa

rd

DQN
NFSP

(c) Limit Texas Hold’em

0 100 200 300 400 500 600 700
timestep (1e3)

0.1

0.2

0.3

0.4

0.5

re
wa

rd

DQN
NFSP

(d) Dou Dizhu

0 100 200 300 400 500
timestep (1e3)

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

re
wa

rd

DQN
NFSP

(e) Mahjong

0 50 100 150 200 250 300 350 400
timestep (1e3)

0

10

20

30

40

re
wa

rd

DQN
NFSP

(f) No-limit Texas Hold’em

0 100 200 300 400 500
timestep (1e3)

0.02

0.00

0.02

0.04

0.06

0.08

0.10

re
wa

rd

DQN
NFSP

(g) UNO

Figure 2: Learning curves on the card environments in terms of the performance against random agents. X-axis represents the
total steps taken in the environment. Y-axis is the reward achieved by playing against random agents.

state. Note that the action of the current player will lead to
the observation of the next player, and the current player can
observe her next state only after all other players have cho-
sen their actions. Thus, users need to be careful with step
and step back since the next state is “delayed”.

Note that the deign of step and step back is similar
to traditional tree-based interface. Specifically, step is cor-
responding to accessing child node, and step would access
the parent node. This design enables flexible node visiting
strategies of the game tree, such as external sampling MC-
CFR (Lanctot et al. 2009).

Evaluation
This section conducts experiments to evaluate the toolkit.
We mainly focus on the following two questions: (1) How
the state-of-the-art reinforcement learning algorithms per-
form on the introduced environments? (2) How many com-
putation resources are required to generate game data?

Training Agents on Environments
We apply Deep Q-Network (DQN) (Silver et al. 2016), Neu-
ral Fictitious Self-Play (NFSP) (Heinrich and Silver 2016),
and Counterfactual Regret Minimization (CFR) (Zinkevich
et al. 2008) to the environments. These algorithms belong
to different categories. DQN is a standard single-agent rein-
forcement learning algorithm, NFSP is a deep reinforcement
learning approach for extensive games with imperfect infor-
mation, and CFR is a standard regret minimization method
for extensive imperfect information games. For DQN, we
fix other players as random agents so that DQN agent can be
trained in single-agent setting. We only test CFR on Leduc
Hold’em since it is computationally expensive, requiring
complete traversal of the game tree. Blackjack is only tested
by DQN because it is a single-agent environment.

To evaluate the agents is non-trivial. The performance
of imperfect information game is usually measured by ex-
ploitablity (Zinkevich et al. 2008; Johanson et al. 2011),
which searches for the best response against the trained pol-
icy. However, it is computationally expensive to obtain the
best response for the large environments in the toolkit since
it relies on traversal of the game tree. Thus, we evaluate the
performance based on winning rates. In this paper, we adopt
two methods to empirically evaluate the performance. First,
we report the winning rates of the agents against random
agents. Second, we compare the agents with tournaments.
In our experiments, the hyperparameters are lightly tuned.
For DQN, the memory size is selected in {2000, 100000},
the discount factor is set to 0.99, Adam optimizer is ap-
plied with learning rate 0.00005, and the network structure
is MLP with size 10-10 128-128, 512-512 or 512-1024-
2048-1024-512 based on the size of the state and action
space. For NFSP, the anticipatory parameter is chosen from
{0.1, 0.5}. Memory size for supervised learning and rein-
forcement learning are 106 and 3× 104, respectively.

Results against random agents. The learning curves in
terms of the performance against random agents are shown
in Figure 2. The rewards of the agents are obtained through
competitions against random agents. Specifically, the re-
wards of betting games (Leduc Hold’em, Limit Texas
Hold’em, No-limit Texas Holdem) are defined as the aver-
age winning big blinds per hand. The rewards of the other
games are obtained directly from the winning rates. In Dou
Dizhu, players are in different roles (landlord and peasants).
We fix the role of the agent as the landlord in evaluation.

We make two observations. First, all the algorithms have
similar results against random agents. DQN is slightly bet-
ter than NFSP on Texas Hold’em and UNO, while NFSP is

×1 ×4 ×8 ×16
total per step total per step total per step total per step

Blackjack 156.1 1.1×10−4 45.6 3.3×10−5 23.0 1.7×10−5 12.8 9.3× 10−6

Leduc Hold’em 204.6 8.0×10−5 58.7 2.3×10−5 28.7 1.1×10−5 17.9 7.0× 10−6

Limit Texas Hold’em 324.6 1.1×10−4 83.3 2.8×10−5 45.9 1.6×10−5 24.6 8.3× 10−6

Dou Dizhu 87270.8 1.4×10−3 22894.3 3.6×10−4 12753.9 2.0×10−4 7275.9 1.1× 10−4

Mahjong 74786.0 8.1×10−4 20825.9 2.3×10−4 11059.7 1.2×10−4 6169.6 6.7× 10−5

No-limit Texas Hold’em 597.7 1.4×10−4 160.6 3.7×10−5 81.9 1.9×10−5 48.4 1.1× 10−5

UNO 4952.9 1.1×10−4 1366.0 3.0×10−5 696.5 1.5×10−5 440.7 9.5× 10−6

Table 2: Running time in seconds of 1, 000, 000 games with random agents, under one process and multiple processes. Per step:
the running time divided by the number of performed timesteps.

Tournament NFSP DQN
Leduc Hold’em 1.0691 -1.0691
Limit Texas Hold’em -0.0308 0.0308
Dou Dizhu with NFSP landlord 0.7049 0.2951
Dou Dizhu with DQN landlord 0.7303 0.2697
Mahjong -0.0090 -0.0104
No-limit Texas Hold’em 9.5610 -9.5610
UNO -0.0428 0.0428

Table 3: Average payoffs of NFSP and DQN by playing
10, 000 games. For Dou Dizhu, we switch roles of landlord
and peasants and report the results separately. For Mahjong,
two DQN agents and two NFSP agents randomly choose
seats in each game, and the averaged results are reported.
slightly better than DQN on Leduc Hold’em and Dou Dizhu.
It is reasonable for DQN to achieve this result since DQN
is trained to exploit the random agents. Second, NFSP and
DQN are highly unstable in large games. Specifically, they
only achieve minor improvements during the learning pro-
cess on UNO, Mahjong and Dou Dizhu. These games are
challenging due to their large state/action space and sparse
reward. We believe there is a lot of room for improvement.
More efforts are needed to study how we can stably train
reinforcement learning agents in these large environments.

Tournament results. We report the average payoffs the
agents achieved when playing against each other. The re-
sults between NFSP and DQN are shown in Table 3. We
observe that NFSP is stronger than DQN on most of the en-
vironments. We also compare CFR with NFSP and DQN on
Leduc Hold’em. CRF achieves better performance, winning
0.0776 and 1.2493 against NFSP and DQN, respectively.

Discussion We further analyze the trained agents. We find
that the DQN agents play very aggressively in betting
games. For example, in Leduc Hold’em environment, DQN
agent tend to choose “raise” or “call” in almost every deci-
sion. Interestingly, this naive strategy works well when the
opponent is a random agent since the random agent may eas-
ily choose “fold” so that that the DQN policy can win. How-
ever, DQN policy may be highly exploitable since one can
easily find its weaknesses. Thus, performance against ran-
dom agents can only be a way to get a sense of whether the
agent is improving on the environment, but is NOT enough
to be used to evaluate algorithms. For large games, we rec-
ommend evaluating algorithms by playing against existing
models. To benchmark the evaluation, we will develop rule-
based agents and stronger pre-trained models in the future.

Running Time Analysis

We evaluate the efficiency of the implemented environ-
ments by running self-play on the games with random
agents. Specifically, we report the running time in seconds of
1, 000, 000 games using a single process and multiple pro-
cesses. Since Dou Dizhu, UNO and Mahjong have long se-
quences in one game, we additionally report a normalized
version of running time, i.e., the average running time per
timestep. Our experiments are conducted on a server with
24 Intel(R) Xeon(R) Silver 4116 CPU @2.10GHz proces-
sors and 64.0 GB memory. Each experiment is run 3 times
with different random seeds. The average running time in
seconds is reported in Table 2. We observe that all the envi-
ronments achieve higher throughputs with more processors.

Related work

There are a few open-source reinforcement learning li-
braries, most of which focus on single-agent environ-
ments (Brockman et al. 2016; Duan et al. 2016; Shi et al.
2019). Recently, there have been some projects that sup-
port multi-agent environments (Vinyals et al. 2017; Zheng
et al. 2018; Juliani et al. 2018; Suarez et al. 2019). However,
they do not support card game environments. A contempo-
rary framework OpenSpiel (Lanctot et al. 2019) provides
a large collection of games, including several simple card
games. Our toolkit is specifically designed for card games
with straightforward interfaces, supporting various styles of
card games that are not included in existing toolkits.

The most popular techniques for solving poker
games in literature are Counterfactual Regret Minimiza-
tion (CFR) (Zinkevich et al. 2008) and its variants (Brown
et al. 2018). Achievements have been made on betting
games such as Texas Hold’em (Moravčı́k et al. 2017;
Brown and Sandholm 2017). However, CFR is computa-
tionally expensive, since it relies on complete traversal of
the game tree, and is infeasible for games with large state
space such as Dou Dizhu (Jiang et al. 2019).

Recent studies show that reinforcement learning strategies
can perform well in betting games (Heinrich, Lanctot, and
Silver 2015; Heinrich and Silver 2016; Lanctot et al. 2017),
and achieve satisfactory performance in Dou Dizhu (Jiang et
al. 2019). The inspiring results and the flexibility of RL offer
the opportunity to explore deep reinforcement learning in
more difficult card games with large state and action space.

Conclusions and Future Directions
In this paper, we introduce RLCard, an open-source toolkit
for reinforcement learning research in card games. RLCard
supports multiple challenging card environments wrapped
with common and easy-to-use interfaces. In the future, we
plan to enhance the toolkit in several aspects. First, in order
to benchmark the evaluation, we would like to design rule-
based agents and provide more pre-trained models for evalu-
ation. Second, we plan to develop visualization and analysis
tools for the environments. Third, we will further accelerate
the environments with more efficient implementations. Last,
we will include more interesting games and more algorithms
to enrich the toolkit.

Acknowledgements
We would like to thank JJ World Network Technology Co.,
LTD for the generous support.

References
[Brockman et al. 2016] Brockman, G.; Cheung, V.; Petters-
son, L.; Schneider, J.; Schulman, J.; Tang, J.; and Zaremba,
W. 2016. Openai gym. arXiv preprint arXiv:1606.01540.

[Brown and Sandholm 2017] Brown, N., and Sandholm, T.
2017. Safe and nested subgame solving for imperfect-
information games. In Advances in neural information pro-
cessing systems.

[Brown et al. 2018] Brown, N.; Lerer, A.; Gross, S.; and
Sandholm, T. 2018. Deep counterfactual regret minimiza-
tion. arXiv preprint arXiv:1811.00164.

[Duan et al. 2016] Duan, Y.; Chen, X.; Houthooft, R.; Schul-
man, J.; and Abbeel, P. 2016. Benchmarking deep rein-
forcement learning for continuous control. In International
Conference on Machine Learning.

[Heinrich and Silver 2016] Heinrich, J., and Silver, D. 2016.
Deep reinforcement learning from self-play in imperfect-
information games. arXiv preprint arXiv:1603.01121.

[Heinrich, Lanctot, and Silver 2015] Heinrich, J.; Lanctot,
M.; and Silver, D. 2015. Fictitious self-play in extensive-
form games. In International Conference on Machine
Learning.

[Jiang et al. 2019] Jiang, Q.; Li, K.; Du, B.; Chen, H.; and
Fang, H. 2019. Deltadou: Expert-level doudizhu ai through
self-play. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence.

[Johanson et al. 2011] Johanson, M.; Waugh, K.; Bowling,
M.; and Zinkevich, M. 2011. Accelerating best response
calculation in large extensive games. In Twenty-Second In-
ternational Joint Conference on Artificial Intelligence.

[Juliani et al. 2018] Juliani, A.; Berges, V.-P.; Vckay, E.;
Gao, Y.; Henry, H.; Mattar, M.; and Lange, D. 2018. Unity:
A general platform for intelligent agents. arXiv preprint
arXiv:1809.02627.

[Lanctot et al. 2009] Lanctot, M.; Waugh, K.; Zinkevich, M.;
and Bowling, M. 2009. Monte carlo sampling for regret
minimization in extensive games. In Advances in neural in-
formation processing systems.

[Lanctot et al. 2017] Lanctot, M.; Zambaldi, V.; Gruslys, A.;
Lazaridou, A.; Tuyls, K.; Pérolat, J.; Silver, D.; and Graepel,
T. 2017. A unified game-theoretic approach to multiagent
reinforcement learning. In Advances in Neural Information
Processing Systems.

[Lanctot et al. 2019] Lanctot, M.; Lockhart, E.; Lespiau, J.-
B.; Zambaldi, V.; Upadhyay, S.; Pérolat, J.; Srinivasan, S.;
Timbers, F.; Tuyls, K.; Omidshafiei, S.; Hennes, D.; Morrill,
D.; Muller, P.; Ewalds, T.; Faulkner, R.; Kramár, J.; Vylder,
B. D.; Saeta, B.; Bradbury, J.; Ding, D.; Borgeaud, S.; Lai,
M.; Schrittwieser, J.; Anthony, T.; Hughes, E.; Danihelka,
I.; and Ryan-Davis, J. 2019. Openspiel: A framework for
reinforcement learning in games.

[Lillicrap et al. 2015] Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.;
Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; and Wierstra, D.
2015. Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971.

[Mnih et al. 2015] Mnih, V.; Kavukcuoglu, K.; Silver, D.;
Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves, A.; Ried-
miller, M.; Fidjeland, A. K.; Ostrovski, G.; et al. 2015.
Human-level control through deep reinforcement learning.
Nature 518(7540):529.

[Moravčı́k et al. 2017] Moravčı́k, M.; Schmid, M.; Burch,
N.; Lisỳ, V.; Morrill, D.; Bard, N.; Davis, T.; Waugh, K.;
Johanson, M.; and Bowling, M. 2017. Deepstack: Expert-
level artificial intelligence in heads-up no-limit poker. Sci-
ence 356(6337):508–513.

[Shi et al. 2019] Shi, J.-C.; Yu, Y.; Da, Q.; Chen, S.-Y.; and
Zeng, A.-X. 2019. Virtual-taobao: Virtualizing real-world
online retail environment for reinforcement learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence.

[Silver et al. 2016] Silver, D.; Huang, A.; Maddison, C. J.;
Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser,
J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al.
2016. Mastering the game of go with deep neural networks
and tree search. Nature 529(7587):484.

[Silver et al. 2017] Silver, D.; Schrittwieser, J.; Simonyan,
K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker,
L.; Lai, M.; Bolton, A.; et al. 2017. Mastering the game of
go without human knowledge. Nature 550(7676):354.

[Suarez et al. 2019] Suarez, J.; Du, Y.; Isola, P.; and Mor-
datch, I. 2019. Neural mmo: A massively multiagent game
environment for training and evaluating intelligent agents.
arXiv preprint arXiv:1903.00784.

[Vinyals et al. 2017] Vinyals, O.; Ewalds, T.; Bartunov, S.;
Georgiev, P.; Vezhnevets, A. S.; Yeo, M.; Makhzani, A.;
Küttler, H.; Agapiou, J.; Schrittwieser, J.; et al. 2017. Star-
craft ii: A new challenge for reinforcement learning. arXiv
preprint arXiv:1708.04782.

[Zheng et al. 2018] Zheng, L.; Yang, J.; Cai, H.; Zhou, M.;
Zhang, W.; Wang, J.; and Yu, Y. 2018. Magent: A many-
agent reinforcement learning platform for artificial collec-
tive intelligence. In Thirty-Second AAAI Conference on Ar-
tificial Intelligence.

[Zinkevich et al. 2008] Zinkevich, M.; Johanson, M.; Bowl-
ing, M.; and Piccione, C. 2008. Regret minimization in

games with incomplete information. In Advances in neural
information processing systems.

[Zoph and Le 2016] Zoph, B., and Le, Q. V. 2016. Neu-
ral architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578.

Appendix
Game Design
Card games are usually played following similar procedures.
We design several abstract base classes which are imple-
mented in the specific games. In the toolkit, some common
concepts are abstracted and defined as follows:

• Player. The person who plays the game. Each game is
usually played by multiple players.

• Game. A game is a complete sequence starting from one
of the non-terminal states to a terminal state. At the end
of a game, each player will receive a payoff.

• Round. A round is a part of the sequence of a game. Most
card games can be naturally divided into multiple rounds.
For instance, Texas Hold’em consists of four rounds of
betting. In Doudi Zhu a round is finished when two con-
secutive players pass.

• Dealer. Card games usually require shuffling and allocat-
ing a deck of cards to players. Dealer is responsible for
deck management.

• Judger. A judger is responsible for making major deci-
sions in a round or at the end of a game. For example, the
next player in UNO is decided based on the type of the
last card. In Texas Hold’em, the payoff is determined in
the end of a game.

The games in the toolkit are implemented by associating
a class with each of the above concepts. The common de-
sign principle makes the game logic easy to follow and un-
derstand. Other card games are usually compatible with the
above structure so that can be easily added to the toolkit.

Environment Interfaces
This section briefly introduces the interfaces of the toolkit.
We describe state representation, action encoding, and how
we can modify them to customize the environments. Af-
ter that, we show how to generate data with multiple pro-
cesses. Finally, we introduce a single-agent interface, where
the other players are simulated by pre-trained or rule-based
models. More documents and examples can be found at the
Github repository.
State Representation State is defined as all the information
that can be observed from the view of one player in a specific
timestep of the game. In the toolkit, each state is a dictio-
nary consisting of two values. The first value is a list of legal
actions. The second value is observation. There are various
ways to encode the observation. For Blackjack, we directly
use the player’s score and the dealer’s score as a representa-
tion. For other games in the toolkit, we encode the observed
cards into several card planes. For example, in Dou Dizhu,
the input of the policy is a matrix of 6 card planes, including

the current hand, the union of the other two players’ hands,
the recent three actions, and the union of all the played cards.
Action Encoding The specific actions in a game are all en-
coded into action indices, which are positive integers starting
from 0. Each action index corresponds to exactly one action
in the game. The legal actions are also represented as a list
of action indices. At each step, an agent should choose one
of the action indices (i.e., integer values) among the legal
actions instead of specific actions (such as “hit” or “stand”
in Blackjack).

For some large games, action abstraction is adopted to re-
duce the action space. For example, Dou Dizhu suffers from
the combinatorial explosion of the action space with more
than 3 × 104 actions, where any trio, plane or quad can be
combined with any individual card or pair (kicker). To re-
duce the action space, we only encode the major part of a
combination and use rules to decide the kicker. In this way,
the action space of Dou Dizhu is reduced to 309.
Customization In addition to the default state and action en-
coding, our design enables customization of state represen-
tation, action encoding, reward design, and even the game
rules.

Each game is wrapped by an Env class, in which we
can rewrite some key functions to customize the environ-
ments. The function of extract state is to convert
the original game state into representation. The function of
decode action is to map action indices to actions. One
can implement his own abstraction of the actions by modify-
ing this function. The function of get payoffswill return
the payoffs of the players in the end of the game. For each
game, we provide a default setting for each of the above
components. Users are encouraged to customize these set-
tings to achieve better performance.

The parameters of each game can also be adjusted. For
example, one can change the number of players or the fixed
raise in Limit Texas Hold’em by modifying init func-
tion of the LimitholdemGame class. In this way, we may
adjust the difficulty of the games for our purposes and design
algorithms step by step.
Parallel Training The toolkit supports generating game
data with multiple processes. Running in parallel will greatly
accelerate the training in large environments. Specifically,
we create duplicate environments in initialization. Then each
worker will copy the model parameters from the main pro-
cess, generate game data in a duplicate of the environment,
and send the data to the main process. The main process will
collect all the data to train the agent on either CPU or GPU.
Example implementations of training agents with multiple
processes can be found at the Github repository.
Single-Agent Interfaces We provide interfaces to explore
training single-agent reinforcement learning agents in card
games. Specifically, we develop pre-trained or rule-based
models to simulate other players so that the games essen-
tially become single-agent environments from the view of
one player. These single-agent environments are also chal-
lenging since they have large state and action space, and
sparse reward. In the future, we plan to use different lev-
els of simulating models to create environments with vari-

ous difficulties. The single-agent interfaces follow OpenAI
Gym (Brockman et al. 2016). Specifically, in the single-
agent mode, given an action, step function will return
the next state, reward, and whether the game is done. The
reset function will reset the game and return the initial
state. Standard single-agent RL algorithms can be easily ap-
plied to the environments.

	Introduction
	Overview
	Available Environments
	Basic Interface
	Advanced Interfaces

	Evaluation
	Training Agents on Environments
	Running Time Analysis

	Related work
	Conclusions and Future Directions
	Acknowledgements
	Appendix
	Game Design
	Environment Interfaces

