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Abstract

Sequential decision processes (SDPs) model the multi-stage
online decision-making problems that each player faces in an
extensive-form game, as well as MDPs and POMDPs where
the agent conditions on observed history. Prior regret mini-
mization approaches for sequential decision processes typi-
cally rely heavily on having access to counterfactuals, that
is, information on what would have happened had the agent
chosen a different action at any decision point. While this as-
sumption is reasonable when regret minimization algorithms
are used in self-play (for instance, as a way to converge to a
Nash equilibrium in an extensive-form game), it is unrealis-
tic in online decision-making settings, where the algorithm
is deployed to learn strategies against an unknown environ-
ment. In this paper, we give the first efficient algorithm for the
bandit linear optimization problem on SDPs—and therefore
also extensive-form games—and show that it achieves O(

√
T )

cumulative regret in expectation against any strategy.

1 Introduction
Sequential decision processes (SDPs) are multi-stage online
decision-making problems. In an SDP, an agent interacts
sequentially with a potentially adversarial environment in
two ways: (i) decision points, in which an action must be
selected by the agent; and (ii) observation points, in which the
environment reveals a signal to the agent. Decision points and
observation points alternate along a tree-like structure. SDPs
model the online decision process that each player faces in an
extensive-form game, as well as MDPs and POMDPs where
the agent conditions on observed history.

Regret minimization, one of the main mathematical ab-
stractions in the field of online learning, has proved to
be an extremely versatile tool for decision-making over
SDPs. In fact, over the past decade regret minimization algo-
rithms for SDPs, such as counterfactual regret minimization
(CFR) Zinkevich et al. (2007) and its later variants Tammelin
et al. (2015); Brown and Sandholm (2019a), has become the
state of the art technique for computing strong strategies in
SDPs. In the particular case of extensive-form games, CFR
was also a critical component that enabled several recent
milestones in computing superhuman strategies in the game
of heads-up Limit and No-Limit poker (Bowling et al., 2015;
Brown and Sandholm, 2017; Moravčík et al., 2017; Brown
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and Sandholm, 2019b). However, these methods rely on hav-
ing access to counterfactuals, that is information on what
would have happened had the agent chosen a different action
at any decision point. This makes their applicability limited
in online decision-making settings, where the algorithm is de-
ployed to learn strategies (for instance, exploitative strategies)
against an opponent.

In this paper we introduce a new and efficient regret
minimization algorithm for sequential decision making and
extensive-form games that does not use any counterfactual
information and yet enjoys the same (asymptotic) expected
regret bound of O(

√
T ) as CFR. Our regret minimizer runs

in linear time per iteration unlike the only other prior ap-
proach by Abernethy, Hazan, and Rakhlin (2008), which
requires that an eigendecomposition of a Hessian matrix be
computed at each iteration. More precisely, we give an effi-
cient algorithm for the bandit linear optimization problem on
SDPs—and therefore for extensive-form games as well—and
show that it achievesO(

√
T ) cumulative regret in expectation

against any fixed strategy.

Overview of Our Approach
In this subsection we give an overview of the key ideas be-
hind our method. We assume some basic familiarity with
the concept of full-information and bandit regret minimizers;
both concepts are recalled in Section 2.

At a high level, we construct a bandit (that is,
counterfactual-free) regret minimizerR starting from a full-
information regret minimizer R̃. Our bandit regret minimizer
R works as follows:
• The next strategy yt forR is computed starting from the

strategy x̄t output by R̃. We employ a specific unbiased
sampling scheme to sample yt from x̄t.

• Each loss evaluation (`t)>yt ∈ R is used by R to con-
structs an artificial loss vector ˜̀t. This artificial loss vector
is then passed to R̃. The artificial loss is an unbiased es-
timator of `t. This construction is possible even if only
(`t)>yt but not `t is observed byR.

We implement R̃ using the online mirror descent algo-
rithm paired with the dilated entropy distance-generating
function (DGF). The reason behind this particular choice of
distance-generating function is twofold. First, it enables an
efficient implementation of R̃, since projections onto sequen-
tial strategy spaces based on the dilated entropy DGF amount



to a (linear-time) traversal of the sequential decision tree.
Second, it serves as the basis for defining a notion of local,
time-dependent norms ‖ · ‖t that play well with the regret
bound of online mirror descent. In particular, we prove that
the regret cumulated by R̃ against any given strategy z up
to time T asymptotically grows as 1√

T

∑T
t=1 ‖ ˜̀t‖2∗,t, where

‖ · ‖∗,t is the (time-dependent) dual norm of ‖ · ‖t.
Two steps are critical in the proof of the regret bound for

overall regret minimizerR. First, we show that, in expecta-
tion, ‖ ˜̀‖∗,t is upper bounded by a small (time-independent)
constant c (the same property would not hold for a generic
time-independent norm). This, combined with the local-norm
regret bound mentioned above, guarantees that the regret cu-
mulated by R̃ asymptotically grows asO(

√
T ) in expectation.

Second, we use the unbiasedness of yt and ˜̀t to conclude
that the expected regret accumulated byR matches that accu-
mulated by R̃. Combining the two steps, we obtain a O(

√
T )

bound on the expected regret ofR.

Related Work
The idea of constructing a bandit regret minimizer starting
from a full-information regret minimizer already appeared
in Abernethy and Rakhlin (2009). In that paper, the authors
give a general framework for constructing bandit regret min-
imizers with high-probability regret bounds and show how
that framework can be instantiated in the case of simplex do-
mains and Euclidean balls. The construction of an unbiased
estimator ˜̀t of `t starting from the loss evaluation (`t)>yt
appears in the seminal paper of Auer et al. (2003) in the
case of simplex domains. A more general construction ap-
peared in Bartlett et al. (2008). We generalize the argument
of Bartlett et al. (2008) to handle strategy domains where the
vector space spanned by all decision vectors is rank-deficient
(this is the case for sequential strategy spaces). The idea of
using time-dependent norms to obtain a tighter regret analysis
than time-independent norms already appeared several times,
for example in Abernethy, Hazan, and Rakhlin (2008); Aber-
nethy and Rakhlin (2009); Shalev-Shwartz (2012). The use
of the dilated entropy regularizer in the context of sequential
decision making and extensive-form games goes back to the
original work of Hoda et al. (2010), with important practical
observations in the work of Kroer et al. (2018).

Other approaches to bandit regret minimization are known
in the literature. EXP3 (Auer et al., 2003) is credited to be the
first bandit regret minimizer for simplex domains. GEOMET-
RICHEDGE (Dani, Kakade, and Hayes, 2008) is a general-
purpose bandit regret minimizer that can be applied to any
set of decisions, not just simplex domains. However, it re-
quires one to compute a barycentric spanner (Awerbuch and
Kleinberg, 2004) for our domain, which is a significant pre-
processing cost. Furthermore, it runs in exponential time per
iteration in the general case. Abernethy, Hazan, and Rakhlin
(2008) gave the first bandit regret minimizer that runs in the-
oretical polynomial (in the dimension of the decision space)
time per iteration and can handle any set of feasible decisions
(as opposed to only a simplex domain). However, it requires
to compute and sample from the eigenvectors of a Dikin ellip-
soid centered at every iterate x̄t produced by R̃, an operation
that does not seem practical on the strategy polytopes we
consider. Rather, the sampling scheme we use to implement
R.NEXTSTRATEGY() is extremely simple and can be imple-
mented efficiently via a simple linear-time traversal of the
decision tree.

Finally, we point out two key differences that set our
method apart from Monte Carlo CFR (MCCFR), a popular
stochastic method for computing equilibria in extensive-form
games Lanctot et al. (2009). First, our method only requires
that the loss evaluation (`t)>yt be given as input, and no
assumptions are made as to how `t is chosen or computed by
the environment. In contrast, MCCFR always assumes that `t
be in the formAz, whereA is the payoff matrix of the game
and z is a strategy vector of the opponent. In other words,
MCCFR can be used as a bandit regret minimization method
only if additional structure is enforced on the loss vectors.
This limitation is significant, as it prevents one from using
MCCFR to compute, for example, quantal-response equilib-
ria and some types of exploitative strategies that require that
more complex losses be used in the process (Farina, Kroer,
and Sandholm, 2018). In this sense, MCCFR is strictly speak-
ing not a general-purpose bandit regret minimizer. Second, in
order to use MCCFR in an online setting, the algorithm must
use the outcome sampling gradient-estimation variant, where
at each iteration the sampling profile is chosen to be the strat-
egy returned by CFR. However, this makes it impossible to
provide a uniform lower bound on the probability of reaching
every leaf in the game, which makes the theoretical guarantee
on the regret cumulated by MCCFR inapplicable. Obtaining
guarantees on the theoretical performance of MCCFR when
the algorithm is used in an online setting is an interesting
open question in the literature.

2 Preliminaries
In this section we briefly recall some important concepts
about sequential decision processes and regret minimization.

Sequential Decision Processes
A sequential decision process (SDP) describes a sequential
(that is, multi-stage) interaction between an agent and a—
possibly adversarial—environment. SDPs provide a general
formalism which captures the interaction model of extensive-
form games with perfect recall, as well as POMDPs and
MDPs for which the agent conditions its policy on the en-
tire history of observations and actions (Farina, Kroer, and
Sandholm, 2019). An SDP is structured as a tree of decision
points—in which an action must be selected by the agent—
and observation points—in which the environment reveals
a signal to the agent. As an example, consider the SDP in
Figure 1, corresponding to a game of Kuhn poker—a sim-
plified version of poker played with a three-card deck, as
introduced by Kuhn (1950). The process starts at decision

j0

j3

j6

j2

j5

j1

j4

start

fold call fold call fold call

check raise check raise check raise

jack queen king

check raise check raise check raise

Figure 1: Sample sequential decision process. The decision
process corresponds to the game of Kuhn Poker.

point j0, where the agent can only take action ‘start’. After



taking that action, the process moves to an observation point
(denoted as ⊗), where the agent observes their private card.
Assuming that the agent observes the signal ‘queen’, the pro-
cess moves to decision point j2, where the agent can either
‘check’ or ‘raise’. If the agent ‘check’s, the process moves
to another observation point, where the agent gets informed
about the environment’s action—either a ‘check’ or a ‘raise’.
If the observed signal is ‘check’, the decision process ends.

Notation for SDPs. We denote the set of decision points
in the process as J , and the set of observation points asK. At
each decision point j ∈ J , the agent selects an action from
the set Aj of available actions. At each observation point k ∈
K, the agent observes a signal sk from the environment out
a set of possible signals Sk. We denote with ρ the transition
function of the process. Picking action a ∈ Aj at decision
point j ∈ J results in the process transitioning to ρ(j, a) ∈
J ∪K∪{�}, where � denotes the end of the process. Similarly,
the process transitions to ρ(k, s) ∈ J ∪ K ∪ {�} after the
agent observes signal s ∈ Sk at observation point k ∈ K.
In line with the game theory literature, we call a pair (j, a)
where j ∈ J and a ∈ Aj a sequence. The set of all sequences
is denoted as Σ := {(j, a) : j ∈ J , a ∈ Aj}. For notational
convenience, we will often denote an element (j, a) in Σ as
ja without using parentheses. Given a sequence ja ∈ Σ, we
denote with uja the vector such that (uja)j′a′ = 1 if the
(unique) path from the root node of the SDP to action a′ at
decision point j′ passes through action a at decision point j,
and (uja)j′a′ = 0 otherwise. Finally, given a decision point
j ∈ J , we denote with pj its parent sequence, defined as the
last sequence (that is, decision point-action pair) encountered
on the path from the root of the SDP to j. If the agent does not
act before j (i.e., j is the root of the SDP or only observation
points are encountered on the path from the root to j), we let
pj = ∅.

Strategies in SDPs. Conceptually, a strategy for the agent
in a sequential decision process is a choice of distribution
over the set of actions Aj at each decision point j ∈ J in
the process. We represent a strategy using the sequence-form
representation, that is as a vector x̄ ∈ R|Σ|≥0 whose entries
are indexed by Σ. The entry x̄ja contains the product of the
probabilities of all actions at all decision points on the path
from the root of the SDP down to action a at decision point
j ∈ J . Clearly, in order to be a valid sequence-form strat-
egy, the entries in x̄ must satisfy the following consistency
constraints (Romanovskii, 1962; Koller, Megiddo, and von
Stengel, 1994; von Stengel, 1996):∑

a∈Aj x̄ja = x̄pj ∀j ∈ J such that pj 6= ∅,∑
a∈Aj x̄ja = 1 ∀j ∈ J such that pj = ∅. (1)

Since ∅ is not an element in Σ, there is no entry in x̄ that
corresponds to ∅, and the notation x̄∅ is invalid. However, we
will abuse notation and refer to x̄∅ to mean the constant value
1. This allows us to write the consistency constraints (1) as∑

a∈Aj x̄ja = x̄pj even when pj = ∅. With this convention,
it is also valid to say that the probability of the agent picking
action a ∈ Aj conditioned to the agent being at decision
point j is xja/xpj , provided xpj 6= 0.

Finally, we let T ⊆ R|Σ|≥0 be the finite set of all sequence-
form strategies that correspond to pure (also known as deter-
ministic) strategies, that is strategies that assign probability 1
to exactly one action at each decision point. It is well-known

that the set of all sequence-form strategies is the convex hull
co T of the set of pure strategies T .

Regret Minimization
A regret minimizer is an abstraction for a repeated decision
maker. The decision maker repeatedly interacts with an un-
known (possibly adversarial) environment by choosing points
x1, . . . ,xT from a set X ⊆ Rn of feasible decisions and
incurring a linear loss (`1)>x1, . . . , (`T )>xT after each iter-
ation. The quality metric for a regret minimizer is its regret,
which measures the difference in loss against the best fixed
(that is, time-independent) decision in hindsight. Formally,
given a decision z ∈ X , the regret cumulated against z up
to time T is defined as RT (z) :=

∑T
t=1(`t)>(xt − z). A

“good” regret minimizer (also called a Hannan consistent
regret minimizer) is such that the regret against any decision
z grows sublinearly as a function of T .

In this paper, we will be interested in two types of regret
minimizers, which differ in the feedback that is received by
the regret minimizer.

Full-Information Setting. In the full-information setting,
at all time steps t = 1, . . . , T the regret minimizer interacts
with the environment as follows:
• NEXTSTRATEGY(): the agent outputs the next decision
xt ∈ X ⊆ Rn.

• OBSERVELOSS(`t): the environment selects a loss vector
`t ∈ Rn and the agent observes `t. The loss vector can
depend on the decisions x1, . . . ,xt that were output by
the regret minimizer in the past.

Our construction of R̃ (Section 4) provides a full-information
regret minimizer for the set X = co T .

Bandit Setting. In the bandit setting the environment does
not reveal the selected loss vector `t at each iteration, but
only the evaluation (`t)>xt of the loss function for the last
decision. Formally, at all time steps t = 1, . . . , T the regret
minimizer interacts with the environment as follows:
• NEXTSTRATEGY(): the agent outputs the next decision
xt ∈ X ⊆ Rn.

• OBSERVELOSSEVALUATION((`t)>xt): the environment
selects a loss vector `t ∈ Rn and the agent observes
(`t)>xt. The loss vector can depend on the decisions
x1, . . . ,xt−1 that were output by the regret minimizer
before time t.

Since the regret minimizer only observes (`t)>xt, it cannot
compute any counterfactual information (that is, compute
the value of the loss at a decision other than the one that was
output). The main contribution of this paper is an efficient
bandit regret minimizerR for the set X = T whose expected
regret is RT (z) = O(

√
T ) for all z ∈ co T .

3 Dilated Entropic Regularization and Local
Norms

The dilated entropy distance-generating function is a regular-
izer that induces a notion of distance that is suitable for the
space of sequence-form strategies in a sequential decision
process. The dilated entropy DGF was first introduced in
the context of extensive-form games by Hoda et al. (2010).
Kroer et al. (2018)—with earlier and weaker results by Kroer
et al. (2015)—analyzed several properties of this function,
including its strong convexity modulus with respect to the `1
and `2 norms. They also showed that the dilated entropy DGF



leads to state-of-the-art convergence guarantees in iterative
methods for computing Nash equilibrium in two-player zero-
sum extensive-form games of perfect recall. In Definition 1
we state the definition of the dilated entropy DGF:
Definition 1 (Dilated entropy DGF). Let co T be the set of
sequence-form strategies for the SDP. The dilated entropy
distance-generating function for co T is the function ϕ :

R|Σ|>0 → R≥0 defined as

ϕ : x̄ 7→
∑
j∈J

wj

x̄pj log |Aj |+
∑
a∈Aj

x̄ja log
x̄ja
x̄pj

,
where the weights wj are defined recursively according to:

wj = 2 + 2 max
a∈Aj
{wρ(j,a)}; wk =

∑
s∈Sk

wρ(j,s). (2)

(In particular, wk = 0 for any observation point k such that
Ck = ∅.)

Our definition differs from that of Kroer et al. (2018) in that
we add the “shifting” terms x̄pj log |Aj |, where the minimum
of ϕ is 0. This unique minimum is attained by the sequence-
form strategy that at each decision point uniformly random-
izes among all available actions (that is, xja = xpj/|Aj | for
all j ∈ J , a ∈ Aj). The idea of adding shifting terms to
make the regularizer non-negative over its domain already ap-
pears in Hoda et al. (2010) and Kroer, Farina, and Sandholm
(2018). Since those additional terms amount to adding a linear
function to the definition of the dilated entropy DGF found
in Kroer et al. (2018), the analysis of the strong-convexity
modulus of Kroer et al. (2018) holds verbatim, and in partic-
ular:
Lemma 1. (Kroer et al., 2018, Theorems 2 and 3) The
dilated-entropy DGF of Definition 1 is 1-strongly-convex
on co T with respect to both the `1 and the `2 norm.

The dilated entropy DGF has the advantage that its gra-
dient and its Fenchel conjugate function can be evaluated
efficiently via a linear-time pass on the decision space (Hoda
et al., 2010). Specifically:

Observation 1. For all z ∈ R|Σ|>0, there exists an exact algo-
rithm, denoted GRADIENT, to compute∇ϕ(z) in linear time
in |Σ|.
Observation 2. For all z ∈ R|Σ|>0, there exists an exact algo-
rithm, denoted ARGCONJUGATE, to compute

∇ϕ∗(z) = arg max
x̂∈co T

{z>x̂− ϕ(x̂)}.

in linear time in |Σ|.
The two properties above make ϕ an appealing candi-

date regularizer in many optimization algorithms that operate
on sequential decision making domains, including the full-
information regret minimizer R̃ that we use in this paper.
Pseudocode for the algorithms mentioned in Observation 1
and Observation 2 can be found in Appendix B.

Local Norms Induced by the Dilated Entropy DGF
At each point x̄ ∈ co T in the sequence-form strategy space,
the dilated entropy DGF induces a pair of primal-dual local

norms (‖ · ‖x̄, ‖ · ‖∗,x̄) defined for all z ∈ R|Σ| as

‖z‖x̄ :=
√
z>∇2ϕ(x̄) z; ‖z‖∗,x̄ :=

√
z>(∇2ϕ(x̄))−1z,

where ∇2ϕ(x̄) denotes the Hessian matrix of ϕ at x̄. Since
∇2ϕ(x̄) is positive-definite, it is well-known that ‖ · ‖∗,x̄ is
well-defined and that it is indeed dual to ‖ · ‖x̄, in the sense
that ‖z‖∗,x̄ = max{z>w : ‖w‖x̄ ≤ 1} for all z ∈ R|Σ|.

To our knowledge, we are the first to explore the local
norms induced by the dilated entropy DGF. We start by giving
a convenient bound for the norm of a generic vector z ∈ R|Σ|≥0

as measured with respect to the local norm at x̄ ∈ co T :

Lemma 2. Let x̄ ∈ co T and z ∈ R|Σ|≥0. Then,

‖z‖2x̄ ≤
3

2

∑
j∈J

∑
a∈Aj

wj
x̄ja

z2
ja.

The analysis of the dual norm is more complicated, as the
inverse of the Hessian matrix is significantly more involved.
We start by giving a characterization of the inverse Hessian
matrix of the DGF d at a generic strategy x̄ ∈ co T in terms
of sum of dyadics:

Lemma 3. Let x̄ ∈ co T be a sequence-form strategy. The
inverse Hessian (∇2ϕ)−1(x̄) at x̄ can be expressed as:

(∇2ϕ)−1(x̄) =
∑
j∈J

∑
a∈Aj

(x̄ ◦ uja)(x̄ ◦ uja)>

wj x̄ja
, (3)

where ◦ denotes componentwise product of vectors.

Lemma 3 immediately implies the following corollary,
which gives an alternative way of computing the dual norm
of any vector z ∈ R|Σ|:

Corollary 1. Let x̄ ∈ co T be a sequence-form strategy, and
let z ∈ R|Σ|. The local dual norm of z satisfies

‖z‖2∗,x̄ =
∑
j∈J

∑
a∈Aj

(u>ja(z ◦ x̄))2

wj x̄ja
. (4)

4 Construction of R̃
In this section, we describe the full-information regret min-
imizer R̃ that we use in our construction (Section 1). The
pseudocode for R̃ is given in Algorithm 1, while its analysis
is given in Theorem 1. Our analysis fundamentally relies on
the notion of local norms induced by the dilated entropy DGF
(Section 3).

Online Mirror Descent with Dilated Entropy DGF

Online mirror descent is one of the most well-studied full-
information regret minimization algorithms in online learn-
ing. In its general form, given a strongly-convex regularizer
d and a convex and compact domain X ⊆ Rn, each decision



is computed according to

x̄1 = arg min
x̂∈X

d(x̂); (5)

x̄t+1 = arg min
x̂∈X

{
(η ˜̀t −∇d(x̄t))>x̂+ d(x̂)

}
. (6)

Our full-information regret minimizer R̃ (Algorithm 1) is
constructed using online mirror descent instantiated with the
dilated entropy DGF ϕ (Definition 1) as the regularizer d and
the set co T ⊆ R|Σ| of sequence-form strategies in the game
as the domain of feasible iterates X . In that setting, the initial
point (Equation 5) is attained by the strategy that at each
decision point uniformly randomized among all available
actions and therefore x̄1 can be computed efficiently. Further-
more, each proximal step (6) can be implemented efficiently
via a call to GRADIENT (Observation 1) followed by one to
ARGCONJUGATE (Observation 2).

Algorithm 1: Full-information regret minimizer R̃
Data: η is a step-size parameter.

1 function SETUP()
2 for j ∈ J in top-down order do
3 for a ∈ Aj do x̄1

ja ←
x̄pj
|Aj |

4 function NEXTSTRATEGY()
5 return x̄t

6 function OBSERVELOSS( ˜̀t)
7 g ← η ˜̀t − GRADIENT(x̄t) [. Observ. 1]
8 x̄t+1 ← ARGCONJUGATE(−g) [. Observ. 2]

Observation 3. At all times t the decision produced by Al-
gorithm 1 satisfies x̄t ∈ R|Σ|>0.

Analysis
The analysis of the regret cumulated by Algorithm 1 as a
function fo the local dual norms of the loss vectors ˜̀t is rather
lengthy and is deferred to Appendix C. Here, we only state
the central result of this section, which builds on Lemma 2
and Corollary 1:
Theorem 1. Let D be the maximum depth of any node in the
SDP, and let z ∈ co T . If ˜̀t ∈ R|Σ|≥0 for all times t, then the
regret R̃T (z) cumulated by R̃ satisfies, at all times T :

R̃T (z) ≤ ϕ(z)

η
+ η
√

3D ·
T∑
t=1

‖ ˜̀t‖2∗,x̄t . (7)

In the rest of the paper, we will give guarantees about the
expected magnitude of the right-hand side.

5 Construction ofR
In this section, we describe the bandit regret minimizer R.
As mentioned in Section 1, two different components are
important in the algorithm: the sampling scheme, which we
describe in Section 5, and the construction of the unbiased
loss estimates, which we give in Section 5.

Here, we give an overview of the interaction between the
sampling scheme and the construction of the loss estimates.
Our construction of the unbiased loss estimates extends and
generalizes that of Dani, Kakade, and Hayes (2008), in that
it can be applied even when the set of strategies is rank-
deficient—as is the case for our set of pure strategies T . In
particular, we relax the notion of unbiasedness to mean the
weaker condition that the projection ˜̀t onto the direction1

dir T of T be an unbiased estimator of the projection of the
original (and unknown) `t onto dir T :

Et[ ˜̀t]>w = (`t)>w ∀w ∈ dir T , (?)

where Et[·] is an abbreviation for Et[·|y1, . . . ,yt−1], that is
the expectation conditional on the previous decisions that
were output byR.

The main technical tool in our construction is to use a
generalized inverse of the autocorrelation matrix of yt:

Proposition 1. Let πt be the conditional distribution over
T , given the previous decisions y1, . . . ,yt−1, and suppose
that the support of πt is full-rank (that is, span suppπt =
span T ). Let Ct := Et[yt(yt)>] be the autocorrelation ma-
trix of yt, and let Ct− be any generalized inverse of Ct,
that is any matrix such that CtCt−Ct = Ct. Then, for any
bt ⊥ dir T , the random variable

˜̀t := [(`t)>yt] · (Ct− yt + bt), (8)

satisfies (?).

Crucially, the loss estimate ˜̀t in (8) can be constructed
using only the bandit information (that is, loss evaluation)
(`t)>yt that was received at time t after the regret minimizer
output yt as its decision. A proof of Proposition 1 can be
found in Appendix D.

Sampling Scheme for Sequential Decision Spaces
At every time step t, the bandit regret minimizerR internally
calls into R̃.NEXTSTRATEGY() and receives a sequence-
form strategy x̄t ∈ co T . After that,R samples and returns a
pure sequence-form strategy yt ∈ T such that Et[yt] = x̄t.
Our sampling scheme (Algorithm 2) is natural: at each deci-
sion point j we randomly pick an action a ∈ Aj according
to the distribution x̄tja/x̄

t
pj induced by the sequence-form

strategy x̄t.
It is straightforward to verify that (see Appendix D):

Lemma 4. The sampling scheme given by Algorithm 2 is
unbiased, that is, Et[yt] = x̄t.

The study of the autocorrelation matrix Ct of the sam-
pling scheme—a key ingredient in Proposition 1—is more
complicated, and we defer the full analysis to Appendix D.

Computation of the Loss Estimate ( ˜̀t )
At each time t, we use Proposition 1 to construct the loss es-
timate ˜̀t. The main conceptual leap is to identify (i) a choice
of generalized inverseCt−

∗ for the autocorrelation matrixCt

of yt returned by Algorithm 2 and (ii) a particular choice of

1The direction dirX of a set X is the subspace defined as
dirX := span{u− v : u,v ∈ X}.



Algorithm 2: SAMPLE(x̄t)
Input: x̄t ∈ co T sequence-form strategy
Output: yt ∈ T such that E[yt] = x̄t

1 yt ← 0
2 subroutine RECURSIVESAMPLE(v)
3 if v ∈ J then
4 Sample an action a ∼ (x̄tva/x̄pv )a∈Av
5 ytva ← 1
6 RECURSIVESAMPLE(ρ(v, a))
7 else if v ∈ K then
8 for s ∈ Sk do RECURSIVESAMPLE(ρ(v, s))

9 RECURSIVESAMPLE(r) [. r: root of the SDP]
10 return yt

vector bt∗ ⊥ dir T so that (a) the product Ct−
∗ (yt + bt∗) can

be carried out in O(|Σ|) time and (b) the resulting loss func-
tion ˜̀t is nonnegative, as required by R̃ (see Theorem 1). At
a high level, the particular construction that we use generates
Ct−
∗ and bt∗ inductively in a bottom-up fashion by traversing

the SDP, and heavily relies on the combinatorial structure
of the autocorrelation matrix Ct induced by Algorithm 2.
All details and proofs can be found in Appendix D; here, we
only show the algorithm that carries out the multiplication
in (8) for the particular choice of generalized inverse and
orthogonal vector:

Algorithm 3: LOSSESTIMATE(l := (`t)>yt, x̄t,yt)

Input: Loss evaluation (bandit input) l = (`t)>yt

x̄t ∈ co T strategy output by R̃
yt ∈ T pure strategy output byR

Output: ˜̀t = l ·Ct−
∗ (yt + bt∗) such that (?) holds

1 ˜̀t ← 0
2 for j ∈ J do
3 for a ∈ Aj do
4 if ytja = 1 and ρ(j, a) = � then ˜̀t

ja ← l/x̄tja
5 return `t

Algorithm 3 is trivial to implement and looks deceptively
simple. Furthermore, the loss estimate returned by Algo-
rithm 3 coincides with the loss estimate constructed by
EXP3 (Auer et al., 2003) if the SDP only has one decision
point (that is, the strategy space is a simplex). Finally, we
remark that when (`t)>yt ≥ 0 (which can be assumed with-
out loss of generality), the loss estimate constructed by Algo-
rithm 3 has non-negative entries: ˜̀t ∈ R|Σ|≥0 so that Theorem 1
is applicable.

Norm of the Loss Estimate
In theory, each entry of ˜̀t (Line 4 in Algorithm 3) can be
arbitrarily large, since x̄tja can be arbitrarily small. As a con-
sequence, the Euclidean norm ‖˜̀t‖2 of the loss estimate can
be arbitrarily large, even in expectation. This shows the im-
portance of having Equation (7) be expressed in terms of the

local norms ‖ · ‖∗,x̄t instead of a generic time-invariant norm.
Indeed, it is possible to give guarantees on the expectation of
the local dual norm of ˜̀t returned by Algorithm 3:

Theorem 2. Assume that the bandit information (`t)>yt ∈
[0, 1] at all times t. Then, at all times t, the loss estimate
˜̀t ∈ R|Σ|≥0 returned by Algorithm 3 satisfies

Et
[
‖ ˜̀t‖2∗,x̄t

]
≤ 2 · |Σ|2.

Theorem 2 is proved in Appendix D. Theorem 2 is one of
the deepest results in this paper: it ties together the sampling
scheme (Section 5), the construction of the loss estimates
(Section 5), and the geometry of local norms (Section 3)
induced by the dilated entropy DGF.

6 The Full Algorithm
As foretold in Section 1, we construct our bandit regret mini-
mizerR starting from the full-information regret minimizers
R̃ of Algorithm 1, as in Algorithm 4. The resulting algo-
rithm is surprisingly easy to implement, and requires only
two linear traversals of the SDP per iteration.

Algorithm 4: Bandit regret minimizerR
1 function NEXTSTRATEGY()
2 x̄t ← R̃.NEXTSTRATEGY() [. Algorithm 1]
3 yt ← SAMPLE(x̄t) [. Algorithm 2]
4 return yt

5 function OBSERVELOSSEVALUATION(l := (`t)>yt)
6 ˜̀t ← LOSSESTIMATE(l, x̄t,yt) [. Algorithm 3]
7 R̃.OBSERVELOSS( ˜̀t) [. Algorithm 1]

The regret RT (z) ofR is linked to the regret R̃T (z) of R̃:
using the definition of regret and the law of total expectation,

E[RT (z)] = E

[
T∑
t=1

Et
[
(`t)>(yt − z)

]]
= E[R̃T (z)],

where we used the hypothesis that `t is independent from yt,
as well as Lemma 4 and (?). Theorem 1 gives an upper bound
for the regret R̃T (z) of R̃ as a function of the sequence of the
loss estimates ˜̀1, . . . , ˜̀T . In particular, taking expectations
in Equation (7) and using the law of total expectation as well
as Theorem 2, we have

E[R̃T (z)] ≤ ϕ(z)

η
+ η
√

3D · E
[
T∑
t=1

Et
[
‖ ˜̀t‖2∗,x̄t

]]
.

≤ ϕ(z)

η
+ 2η |Σ|2

√
3D · T.

Hence, by picking η = 1/(|Σ|
√
T ), we obtain the following

theorem, which is the central result of this paper:
Theorem 3. Let D be the maximum depth of any node in
the SDP. Then, assuming (`t)>yt ∈ [0, 1] at all times t =



1, . . . , T , the regretRT (z) cumulated by Algorithm 4 against
any z ∈ co T satisfies

E[RT (z)] ≤ (ϕ(z) + 2
√

3D) |Σ| ·
√
T .

Theorem 3 shows that the regret cumulated by our bandit
regret minimizer R grows as O(

√
T ). This is better than

the algorithm of Abernethy, Hazan, and Rakhlin (2008),
which grows as O(

√
T log T ), and only provided T =

Ω(|Σ| log T ).
Finally, we conclude with a word of caution. Our algo-

rithm, just like the one of Abernethy, Hazan, and Rakhlin
(2008), only guarantees that maxz∈co T E[RT (z)] is small,
and not that E[maxz∈co T RT (z)] is small. Depending on
the application, this might or might not be strong enough
a property. This limitation is well-known (see, e.g., Aber-
nethy and Rakhlin (2009)) and is one of the main conceptual
drives behind the research of regret minimizers that give high-
probability bounds on regret. Section 8 briefly discusses how
the techniques of this paper are relevant towards that effort.

7 Experimental Evaluation
We implemented our bandit regret minimizer (Algorithm 4),
as well as the bandit regret minimizer of Abernethy, Hazan,
and Rakhlin (2008) and MCCFR (instantiated as a bandit
regret minimizer), and tested them on the game of Kuhn
poker Kuhn (1950). The SDP corresponding to the player
that acts first in the game is given in Figure 1. All three al-
gorithms face a strong opponent that at each iteration plays
according to a precomputed strategy s̄ that is part of a Nash
equilibrium of the game (in other words, the opponent is
playing optimally). Correspondingly, the sequence of loss
functions is in the form `t = Ast, where A is the payoff
matrix of the game, and st is a (pure) strategy of the opponent
sampled so that E[st] = s̄. This loss structure is necessary
for MCCFR to be applicable, as discussed in Section 1. Fig-
ure 2 shows the evolution of the regret of all three algorithms
against the best response strategy for s̄. We ran each algo-
rithm 100 times, and for each algorithm we draw the average
regret and shade one standard deviation around that average.
For our method, we use the theoretical step size multiplied
by 1000.0, while for the method of Abernethy, Hazan, and
Rakhlin (2008) we divide their step size parameter by 10;
these changes do not affect the theoretical guarantees but
improved the practical performances of both algorithms.
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Figure 2: Evolution of the regret of all three algorithms
against the best response of s̄.

In this setting, all algorithms but MCCFR guarantee
Õ(
√
T ) regret, and the plot experimentally confirms this

bound. As discussed in Section 1, in order to use MCCFR
as a bandit regret minimizer, we needed to instantiate it in
its outcome sampling variant in a way that necessarily inval-
idates the hypotheses needed for its theoretical analysis to
hold. However, we observe that in practice its performance
aligns well with that of the other algorithms.

In Figure 3, we also looked at the empirical distribution of
the `2 and the local dual norm ‖ · ‖∗,x̄t of each loss estimate
˜̀t ever computed by our bandit regret minimizer R across
the 100 runs of the experiment. As predicted by Theorem 2,
one of the core results of this paper, the average of ‖ ˜̀t‖2∗,x̄t
is below the theoretical value 2|Σ|2 = 288. In fact, it is
experimentally much lower, as it hovers around the value 1.1.
The standard deviation of the squared dual local norms was
close to 18.2, and the maximum ever observed squared dual
local norm was approximately 26 294.
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Figure 3: Empirical distribution of the squared norms of the
loss estimates ˜̀t across 100 runs of R. The thin vertical
line denotes the empirical average of the squared dual local
norms.

On the other hand, the empirical distribution of the squared
`2 norms has an extremely heavy tail, and the empirical
average is slightly larger than 5 050, with a standard deviation
in the order of 106 and a maximum observed squared `2
norm in the order of 1010. This reinforces the theoretical
observation that started Section 5: an analysis of R̃ based on
`2 norm would be insufficient.

8 Conclusion and Future Work
In this paper, we gave a practical algorithm for the bandit
linear optimization problem on sequential decision spaces.
Our method combines a number of ideas and tools. For one,
we gave several new results concerning the properties of the
dilated entropy regularizer that are of interest beyond the goal
of this paper. Another contribution of this paper is an efficient
way of constructing an unbiased estimator of the loss vector
`t starting from the loss evaluation (`t)>yt at a pure strategy
yt. In order to construct the unbiased estimator, we extended
and generalized an argument by Bartlett et al. (2008) and
showed how it can be applied successfully in the context
of sequential decision processes. Finally, we combined the
regret bound for R̃ based on time-dependent local norms to-



gether with the unbiased loss estimator to construct our bandit
regret minimizer, by showing that the unbiased loss estimator
has a time-dependent dual norm that is upper-bounded by a
small time-independent constant.

Our bandit regret minimizerR is superior to that of Aber-
nethy, Hazan, and Rakhlin (2008) both computationally (each
iteration runs in linear time in the SDP size) and in terms
of cumulated regret (the regret grows as O(

√
T ) instead

of O(
√
T log T ). However, our algorithm, just like the one

of Abernethy, Hazan, and Rakhlin (2008), only gives a regret
bound that (i) only holds in expectation, and (ii) predicates
on maxz∈co T E[RT (z)] and not E[maxz∈co T RT (z)]. We
believe that the techniques presented in this paper can be
extended to overcome both shortcomings and yield a high-
probability bound on maxz∈co T RT (z). Indeed, our regu-
larizer, the sampling scheme, the construction of the loss
estimates, and the use of local norms might be used within
the general framework of Abernethy and Rakhlin (2009) to
provide high-probability results. We are interested in pursu-
ing this direction in the future.
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Moravčík, M.; Schmid, M.; Burch, N.; Lisý, V.; Morrill,
D.; Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and
Bowling, M. 2017. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science.

Rakhlin, A. 2009. Lecture notes on online learning. Available
at http://www-stat.wharton.upenn.edu/~rakhlin/courses/
stat991/papers/lecture_notes.pdf.

Romanovskii, I. 1962. Reduction of a game with complete
memory to a matrix game. Soviet Mathematics 3.

Shalev-Shwartz, S. 2012. Online learning and online con-
vex optimization. Foundations and Trends R© in Machine
Learning 4(2).

Tammelin, O.; Burch, N.; Johanson, M.; and Bowling, M.
2015. Solving heads-up limit Texas hold’em. In Pro-
ceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI).

von Stengel, B. 1996. Efficient computation of behavior
strategies. Games and Economic Behavior 14(2):220–246.

Zinkevich, M.; Bowling, M.; Johanson, M.; and Piccione,
C. 2007. Regret minimization in games with incomplete
information. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS).

https://arxiv.org/abs/1903.04101
https://arxiv.org/abs/1903.04101
http://www-stat.wharton.upenn.edu/~rakhlin/courses/stat991/papers/lecture_notes.pdf
http://www-stat.wharton.upenn.edu/~rakhlin/courses/stat991/papers/lecture_notes.pdf


Appendix

In order to simplify the proofs, we will make the following assumptions about the structure of the SDP. All assumptions can
be made without loss of generality, as the structure of an SDP can always be transformed in polynomial time into an equivalent
SDP that fulfills our assumptions:
• No two nodes of the same type immediately follow each other. This assumption does not come at the cost of generality, since

two consecutive decision points can always be consolidated into an equivalent one by combining their actions. Similarly, two
consecutive observation points can be consolidated into an equivalent one by combining the available signals.

• Any action a ∈ Aj at decision point j ∈ J such that ρ(j, a) = � is called a terminal action. A decision point j is called a
terminal decision point if all actions in Aj are terminal, and non-terminal decision point if no action is terminal. We assume
that decision points are either terminal or non-terminal. In other words, we assume that either all actions at a generic decision
point j are terminal, or none of them is. One can always convert a SDP that contains a decision point j that are neither terminal
nor non-terminal into an equivalent SDP by adding artificial observation points.
Given the first assumption, we denote the set of all observation points that are immediately reachable after decision point j as

Cj := {ρ(j, a) : a ∈ Aj} \ {�}. Similarly, the set of all decision points that are immediately reachable after observation point k
is Ck := {ρ(k, s) : s ∈ Sk} \ {�}.

A Additional Notation for Sequential Decision Processes
We now introduce additional notation:

Sequences (Σ). In line with the game theory literature, we call a pair (j, a) where j ∈ J and a ∈ Aj a sequence. The set of all
sequences is denoted as Σ := {(j, a) : j ∈ J , a ∈ Aj}. For notational convenience, we will often denote an element (j, a) in Σ
as ja without using parentheses.

Descendants (�). A partial order � can be established on Σ as follows: given two sequences ja and j′a′ in Σ, j′a′ � ja if
and only if the (unique) path from the root node of the SDP to action a′ at decision point j′ passes through action a at decision
point j. Whenever j′a′ � ja, we say that j′a′ is a descendant of ja.

Subtree indicator (uja). Given a sequence ja ∈ Σ, we denote with uja the vector such that (uja)j′a′ = 1 if j′a′ � ja, and
(uja)j′a′ = 0 otherwise.

Parent sequence (pj). Given a decision point j ∈ J , we denote with pj its parent sequence, defined as the last sequence (that
is, decision point-action pair) encountered on the path from the root of the SDP to decision point j. If the agent does not act
before j (i.e., j is the root of the SDP or only observation points are encountered on the path from the root to j), we let pj = ∅.

Inductive Definition of T
The set T can be constructed recursively in a bottom-up fashion, as follows:
• At each terminal decision point j ∈ J , the set of pure strategies is the set

Tj := {e1, . . . , e|Aj |} ⊆ R|Aj |, (9)

where ei the i-th canonical basis vector.
• At each observation point k ∈ K, the set of pure strategies is simply the Cartesian product of strategies for each of the child

subtrees:
Tk := Tj1 × · · · × Tjn , (10)

where {j1, . . . , jn} = Ck are the decision points immediately reachable after k.
• At each non-terminal decision point j ∈ J , we put probability 1 on exactly one action and recurse on the subtree rooted at

that action:

Tj :={(e1,xk1 ,0, . . . ,0) : xk1 ∈ Tk1} ∪ · · · ∪ {(en,0, . . . ,0,xkn) : xkn ∈ Tkn} (11)

where {k1, . . . , kn} = Cj are the observation points immediately reachable after j and ei the i-th canonical basis vector.

Inductive Definition of co T
The set of mixed sequence-form strategies can also equivalently constructed inductively along the tree structure:
• At each terminal decision point j ∈ J , the set of mixed strategies is the set

co Tj := ∆|Aj |. (12)



• At each observation point k ∈ K, the set of mixed strategies is the Cartesian product of mixed strategies for each of the child
subtrees:

co Tk := co Tj1 × · · · × co Tjn , (13)

where {j1, . . . , jn} = Ck are the decision points immediately reachable after k.
• At each non-terminal decision point j ∈ J , we first fix a distributions over the actions in Aj and then recurse:

co Tj := {(λ1, . . . , λn, λ1xk1 , . . . , λnxkn) : (λ1, . . . , λn) ∈ ∆n,xi ∈ co Tki ∀i = 1, . . . , n}. (14)

where {k1, . . . , kn} = Cj are the observation points immediately reachable after j.



B Properties of the Dilated Entropy Distance-Generating Function
Preliminaries

We look at the computation of the gradient of ϕ at a generic point z ∈ R|Σ|>0. Some elementary algebra reveals that

∂ϕ

∂zja
(z) = wj

(
1 + log

zja
zpj

)
+

∑
j′∈Cρ(j,a)

wj′

log |Aj′ | −
∑
a′∈Aj′

zj′a′

zja

 (15)

for every decision point-action pair ja ∈ Σ. Hence, we can compute ∇ϕ(z) at any z ∈ R|Σ|>0 in one linear-time traversal of the
sequential decision tree as in Algorithm 5.

Algorithm 5: GRADIENT(z)

Input: z ∈ R|Σ|
Output: The value of ∇ϕ(z)

1 g ← 0 ∈ R|Σ|
2 for j ∈ J in bottom-up order do
3 for a ∈ Aj do
4 gja ← gja + wj

(
1 + log

zja
zpj

)
5 if pj 6= ∅ then gpj ← gpj − wj

zj′a′

zja

6 if pj 6= ∅ then gpj ← gpj + wj log |Aj |
7 return g

The Fenchel conjugate of ϕ on co T is defined as

ϕ∗ : z 7→ max
x̂∈co T

{z>x̂− ϕ(x̂)}

for any z ∈ R|Σ|. It is well-known (and easy to check via a straightforward application of Danskin’s theorem) that

∇ϕ∗ : z 7→ arg max
x̂∈co T

{z>x̂− ϕ(x̂)}. (16)

For this reason, we call∇ϕ∗ the Fenchel arg-conjugate function of ϕ on co T . Of course, for any z ∈ R|Σ| one can efficiently
compute the value of ϕ∗(z) given x∗ := ∇ϕ∗(z) (which is guaranteed to be in ∈ R|Σ|>0) by direct substitution as z>x∗ − ϕ(x∗).
In Algorithm 6 we give a linear-time algorithm for computing ∇ϕ∗(z). We refer the reader to the original work by Hoda et al.
(2010) for a proof of correctness.

Local Norm
Lemma 5 (Ling, Fang, and Kolter (2019)). The Hessian∇2ϕ(z) of the dilated entropy DGF at z ∈ co T is given by:

∂2

∂zja∂zj′a′
ϕ(z) =



wj + wρ(j,a)

zja
if ja = j′a′

−wj′
zja

if ja = pj′ and pj′ 6= ∅

−wj
zpj

if j′a′ = pj and pj 6= ∅

0 otherwise.

Lemma 2. Let x̄ ∈ co T and z ∈ R|Σ|≥0. Then,

‖z‖2x̄ ≤
3

2

∑
j∈J

∑
a∈Aj

wj
x̄ja

z2
ja.



Algorithm 6: ARGCONJUGATE(z)

Input: z ∈ R|Σ|
Output: The value of ∇ϕ∗(z)

1 x∗ ← 0 ∈ R|Σ|
2 for j ∈ J in bottom-up order do
3 s← 0
4 for a ∈ Aj do
5 x∗ja ← exp{ zjawj }
6 s← s+ x∗ja
7 v ← wj log |Aj |
8 for a ∈ Aj do
9 x∗ja ←

x∗ja
s [. Normalization step

10 v ← v + zjax
∗
ja − x∗ja log x∗ja

11 zja ← zja + v
12 for j ∈ J in top-down order do
13 for a ∈ Aj do
14 x∗ja ← x∗ja · x∗pj
15 return x∗

Proof. Using the explicit expression of the Hessian of the dilated entropy regularizer (Lemma 5) we can write

‖z‖2x̄ =
∑
j∈J

∑
a∈Aj

wj + wρ(j,a)

x̄ja
z2
ja − 2

∑
j∈J

∑
a∈Aj

∑
j′∈Cρ(j,a)

∑
a′∈Aj′

wj′

x̄ja
zj′a′zja ≤

∑
j∈J

∑
a∈Aj

wj + wρ(j,a)

x̄ja
z2
ja, (17)

where the inequality holds since z ∈ R|Σ|≥0. By definition of wj (Equation (2)), we have for all ja ∈ Σ

wj + wρ(j,a) ≤ wj + max
a′∈Aj

wρ(j,a′) = 2 + 3 max
a′∈Aj

wρ(j,a′) ≤ 3 + 3 max
a′∈Aj

wρ(j,a′) =
3

2
wj . (18)

Plugging (18) into (17) yields the statement.

Lemma 3. Let x̄ ∈ co T be a sequence-form strategy. The inverse Hessian (∇2ϕ)−1(x̄) at x̄ can be expressed as:

(∇2ϕ)−1(x̄) =
∑
j∈J

∑
a∈Aj

(x̄ ◦ uja)(x̄ ◦ uja)>

wj x̄ja
, (3)

where ◦ denotes componentwise product of vectors.

Proof. Let

H :=
∑
j∈J

∑
a∈Aj

(x̄ ◦ uja)(x̄ ◦ uja)>

wj x̄ja

be the proposed inverse Hessian matrix. We will prove thatH = (∇2ϕ)−1(x̄) by showing that∇2ϕ(x̄) ·H = I is the identity
matrix. We break the proof into two steps:

• Step one. First, we show that for all sequences ja ∈ Σ and j′a′ ∈ Σ,

[
∇2ϕ(x̄) · (x̄ ◦ uja)

]
j′a′

=


wj if j′a′ = ja

−wj
x̄ja
x̄pj

if pj = j′a′

0 otherwise.

(19)



In order to prove (19), we start from Lemma 5:

[
∇2ϕ(x̄) · (x̄ ◦ uja)

]
j′a′

=
∑
j′′∈J

∑
a′′∈Aj′′

∂2ϕ(x̄)

∂x̄j′a′∂x̄j′′a′′
· (x̄ ◦ uja)j′′a′′

= (wj′ + wρ(j′,a′))·(uja)j′a′ − wj′ ·(uja)pj′ −
∑

j′′∈Cρ(j′,a′)

∑
a′′∈Aj′′

wj′′

x̄j′a′
x̄j′′a′′ ·(uja)j′′a′′ .

We now distinguish four cases, based on how ja relates to pj′ , j′a′, and j′′a′′:

– First case: pj′ � ja, that is pj′ , j′a′ and j′′a′′ are all descendants of ja. Consequently, (uja)pj′ = (uja)j′a′ =

(uja)j′′a′′ = 1 for all j′′ ∈ Cρ(j′,a′) and a′′ ∈ Aj′′ . Hence,[
∇2ϕ(x̄) · (x̄ ◦ uja)

]
j′a′

= wj′ + wρ(j′,a′) − wj′′ −
∑

j′′∈Cρ(j′,a′)

∑
a′′∈Aj′′

wj′′

x̄j′a′
x̄j′′a′′

= wρ(j′,a′) −
∑

j′′∈Cρ(j′,a′)

wj′′ ∑
a′′∈Aj′′

x̄j′′a′′

x̄j′a′

 = wρ(j′,a′) −
∑

j′′∈Cρ(j′,a′)

wj′′ = 0.

– Second case: ja = j′a′. In this case, (uja)pj′ = 0, while (uja)j′a′ = (uja)j′′a′′ = 1 for all j′′ ∈ Cρ(j′,a′) and a′′ ∈ Aj′′ .
Hence, [

∇2ϕ(x̄) · (x̄ ◦ uja)
]
j′a′

= wj′ + wρ(j′,a′) −
∑

j′′∈Cρ(j′,a′)

∑
a′′∈Aj′′

wj′′

x̄j′a′
x̄j′′a′′

= wj′ + wρ(j′,a′) −
∑

j′′∈Cρ(j′,a′)

wj′′ ∑
a′′∈Aj′′

x̄j′′a′′

x̄j′a′


= wj′ + wρ(j′,a′) −

∑
j′′∈Cρ(j′,a′)

wj′′ = wj′ = wj .

– Third case: pj = j′a′ (that is, ja immediately follows j′a′). Then,
[
∇2ϕ(x̄) · (x̄ ◦ uja)

]
j′a′

= −wj x̄jax̄pj

– Otherwise, j′′a′′ 6� ja for all j′′ ∈ Cρ(j′,a′) and a′′ ∈ Aj′′ , and therefore
[
∇2ϕ(x̄) · (x̄ ◦ uja)

]
j′a′

= 0.

• Step two. Given σ ∈ Σ ∪ {∅}, let 1σ ∈ R|Σ| denote the vector that has a 1 in the entry corresponding to sequence σ, and 0
everywhere else (in particular, 1∅ = 0). Then, (19) can be rewritten as

∇2ϕ(x̄) · (x̄ ◦ uja)

wj x̄ja
=

1

x̄ja
1ja −

1

x̄pj
1pj .

Therefore,

∇2ϕ(x̄) ·H =
∑
j∈J

∑
a∈Aj

∇2ϕ(x̄) · (x̄ ◦ uja)

wj x̄ja
· (x̄ ◦ uja)> =

∑
j∈J

∑
a∈Aj

(
1

x̄ja
1ja −

1

x̄pj
1pj

)
· (x̄ ◦ uja)>.

=
∑
j∈J

∑
a∈Aj

1

x̄ja
1ja ·

x̄ ◦ uja − ∑
j′∈Cρ(j,a)

∑
a′∈Aj′

x̄ ◦ uj′a′

>

=
∑
j∈J

∑
a∈Aj

1

x̄ja
1ja ·

x̄ ◦
uja − ∑

j′∈Cρ(j,a)

∑
a′∈Aj′

uj′a′

>.



Using the definition of uja, we obtain

∇2ϕ(x̄) ·H =
∑
j∈J

∑
a∈Aj

1

x̄ja
1ja · (x̄ ◦ 1ja)>

=
∑
j∈J

∑
a∈Aj

1ja1
>
ja

= I,

as we wanted to show.

Corollary 1. Let x̄ ∈ co T be a sequence-form strategy, and let z ∈ R|Σ|. The local dual norm of z satisfies

‖z‖2∗,x̄ =
∑
j∈J

∑
a∈Aj

(u>ja(z ◦ x̄))2

wj x̄ja
. (4)

Proof. By definition of local dual norm, using Lemma 3), and applying simple algebraic manipulations:

‖z‖2∗,x̄ = z>

∑
j∈J

∑
a∈Aj

(x̄ ◦ uja)(x̄ ◦ uja)>

wj x̄ja

z =
∑
j∈J

∑
a∈Aj

(z>(x̄ ◦ uja))2

wj x̄ja
=
∑
j∈J

∑
a∈Aj

(u>ja(z ◦ x̄))2

wj x̄ja
.



C Analysis of Mirror Descent using Dilated Entropy DGF

We study some properties of Algorithm 1. The central result, Theorem 1, gives a bound on the cumulative regret expressed in term
of (dual) local norms centered at the iterates produced by online mirror descent. Our first step is to introduce the “intermediate”
iterate

x̃t+1 := arg min
x̂∈R|Σ|>0

{
(η ˜̀t −∇ϕ(x̄t))>x̂+ ϕ(x̂)

}
, (20)

which differs from x̄t+1 in (6) in that the minimization problem is unconstrained. This intermediate iterate is known to be
convenient for analyzing the regret accumulated by online mirror descent Abernethy and Rakhlin (2009). In particular, the
following is well-known

Lemma 6 (Rakhlin (2009), Lemma 13). Online mirror descent satisfies, at all times T and for all mixed strategies z ∈ co T ,
the regret bound

RT (z) ≤ ϕ(z)

η
+

T∑
t=1

( ˜̀t)>(x̄t − x̃t+1).

Using the structure of the dilated entropy DGF together with that of the game tree, we prove the following property, which
will be fundamental in the analysis of online mirror descent based on local norms.

Proposition 2. Let the quantity ψtja be defined for all sequences ja ∈ Σ as

ψtja := u>ja( ˜̀t ◦ x̄t) =
∑

j′a′ � ja

˜̀t
j′a′ · x̄tj′a′ .

If ˜̀t ∈ R|Σ|≥0, the intermediate iterate x̃t+1 satisfies

x̄tja
x̄tpj

exp

{
− η

wj x̄tja
ψtja

}
≤
x̃t+1
ja

x̃t+1
pj

≤
x̄tja
x̄tpj

.

In particular, Proposition 2 is a fundamental step for the following theorem, which bounds the length of the step (as measured
according to the local norm ‖ · ‖x̄t) between the last decision x̄t and the next intermediate iterate x̃t+1 as a function of the
stepsize parameter η and the dual local norm of the loss ˜̀t that was last observed:

Proposition 3. Let D be the maximum depth of any node in the SDP. If ˜̀t ∈ R|Σ|≥0, then

‖x̄t − x̃t+1‖x̄t ≤ η
√

3D · ‖ ˜̀t‖∗,x̄t . (21)

Proof. By Corollary 2, x̄t − x̃t+1 ∈ R|Σ|≥0. Hence, we can apply Lemma 2:

‖x̄t − x̃t+1‖2x̄t ≤
3

2

∑
j∈J

∑
a∈Aj

wj
x̄tja

(x̄tja − x̃t+1
ja )2 =

3

2

∑
j∈J

∑
a∈Aj

wj x̄
t
ja

(
1−

x̃t+1
ja

x̄tja

)2

.

Using Inequality (27),

‖x̄t − x̃t+1‖2x̄t ≤
3η2

2

∑
j∈J

∑
a∈Aj

wj x̄
t
ja

 ∑
j′a′ � ja

ψtj′a′

wj′ x̄tj′a′

2

≤ 3Dη2

2

∑
j∈J

∑
a∈Aj

∑
j′a′ � ja

wj x̄
t
ja

w2
j′(x̄

t
j′a′)

2
(ψtj′a′)

2

=
3Dη2

2

∑
j∈J

∑
a∈Aj

∑
j′a′ � ja

wj x̄
t
ja

wj′ x̄tj′a′

(ψtj′a′)
2

wj′ x̄tj′a′
,



where the second inequality follows from applying Cauchy-Schwarz. Now using double counting we derive

3Dη2

2

∑
j∈J

∑
a∈Aj

∑
j′a′ � ja

wj x̄
t
ja

wj′ x̄tj′a′

(ψtj′a′)
2

wj′ x̄tj′a′
=

3Dη2

2

∑
j∈J

∑
a∈Aj

 (ψtja)2

wj x̄tja

∑
j′a′ � ja

wj′ x̄
t
j′a′

wj x̄tja


≤ 3Dη2

∑
j∈J

∑
a∈Aj

(ψtja)2

wj x̄tja
.

where the second inequality follows from Lemma 8. Finally, plugging in definition of ψtja and using Corollary 1, we have

‖x̄t − x̃t+1‖2x̄t ≤ 3Dη2
∑
j∈J

∑
a∈Aj

(u>ja( ˜̀t ◦ x̄t))2

wj x̄tja
= 3Dη2‖ ˜̀t‖2∗,x̄t .

Taking the square root of both sides yields the statement.

Lemma 6 can be used to derive a regret bound for R̃ expressed in term of local norms. In particular, using the generalized
Cauchy-Schwarz inequality together with Proposition 3, we obtain

( ˜̀t)>(x̄t − x̃t+1) ≤ ‖ ˜̀t‖∗,x̄t · ‖x̄t − x̃t+1‖x̄t
≤ η
√

3D · ‖ ˜̀t‖2∗,x̄t .

Substituting the last inequality into the bound of Lemma 6, we obtain the following:

Lemma 7. At all times t, each intermediate iterate x̃t+1 satisfies, for all ja ∈ Σ:

x̃t+1
ja

x̃t+1
pj

=
x̄tja
x̄tpj

exp

{
−η

`tja
wj
− wρ(j,a)

wj
+
ξt+1
ja

wj

}
, (22)

where

ξt+1
ja :=

∑
j′∈Cρ(j,a)

wj′
∑
a′∈Aj′

x̃t+1
j′a′

x̃t+1
ja

.

Proof. The first-order optimality condition for the minimization problem (20) yields

η`t −∇ϕ(x̄t) +∇ϕ(x̃t+1) = 0.

Substituting the expression for∇ϕ (Equation 15) into the optimality condition yields

η`ja − wj log
x̄tja
x̄tpj

+
∑

j′∈Cρ(j,a)

wj′
∑
a′∈Aj′

x̄tj′a′

x̄tja
+ wj log

x̃t+1
ja

x̃t+1
pj

−
∑

j′∈Cρ(j,a)

wj′
∑
a′∈Aj′

x̃t+1
j′a′

x̃t+1
ja

= 0

for all ja ∈ Σ. Using the fact that x̄t ∈ coX , we can write
∑
a′∈Aj′

x̄t
j′a′

x̄tja
= 1 and simplify the above condition into

η`ja − wj log
x̄tja
x̄tpj

+ wj log
x̃t+1
ja

x̃t+1
pj

+ wρ(j,a) −
∑

j′∈Cρ(j,a)

wj′
∑
a′∈Aj′

x̃t+1
j′a′

x̃t+1
ja

= 0,

where we used the equality wρ(j,a) =
∑
j′∈Cρ(j,a)

wj′ (Equation 2). Rearranging the terms yields the statement.

Proposition 2. Let the quantity ψtja be defined for all sequences ja ∈ Σ as

ψtja := u>ja( ˜̀t ◦ x̄t) =
∑

j′a′ � ja

˜̀t
j′a′ · x̄tj′a′ .



If ˜̀t ∈ R|Σ|≥0, the intermediate iterate x̃t+1 satisfies

x̄tja
x̄tpj

exp

{
− η

wj x̄tja
ψtja

}
≤
x̃t+1
ja

x̃t+1
pj

≤
x̄tja
x̄tpj

.

Proof. For ease of notation, in this proof we will make use of the symbol Cja to mean Cρ(j,a). We prove the proposition by
induction:

• Base case. For any ja with Cja = ∅ (and thus ψtja = ˜̀t
jax̄

t
ja) we have by Lemma 7

x̃t+1
ja

x̃t+1
pj

=
x̄tja
x̄tpj

exp

{
−η

˜̀t
ja

wj

}
=
x̄tja
x̄tpj

exp

{
− η

wj x̄tja
ψtja

}
,

which proves the lower bound. In order to prove the upper bound, it is enough to note that the argument of the exp is
non-positive. Hence,

x̃t+1
ja

x̃t+1
pj

=
x̄tja
x̄tpj

exp

{
− η

wj x̄tja
ψtja

}
≤
x̄tja
x̄tpj

.

• Inductive step. Suppose that the inductive hypothesis holds for all sequences j′a′ � ja. Then, we have

ξt+1
ja =

∑
j′∈Cja

wj′ ∑
a′∈Aj′

x̃t+1
j′a′

x̃t+1
ja

 ≥ ∑
j′∈Cja

wj′ ∑
a′∈Aj′

x̄tj′a′

x̄tja
exp

{
− η

wj′ x̄tj′a′
ψtj′a′

}. (23)

Furthermore, for all ja ∈ Σ, using Equation (2) we have

wρ(j,a) =
∑
j′∈Cja

w′j =
∑
j′∈Cja

wj′
∑
a′∈Aj′

x̄tj′a′

x̄tja
,

where the last equality follows from the fact that x̄t is a valid sequence-form strategy. Hence, we can rewrite (22) as

x̃t+1
ja

x̃t+1
pj

=
x̄tja
x̄tpj

exp

−η ˜̀t
ja

wj
− 1

wj

∑
j′∈Cja

wj′
∑
a′∈Aj′

x̄tj′a′

x̄tja
+
ξt+1
ja

wj

. (24)

Plugging in the inductive hypothesis (23) into (24) and using the monotonicity of exp, we obtain

x̃t+1
ja

x̃t+1
pj

≥
x̄tja
x̄tpj

exp

−η ˜̀t
ja

wj
− 1

wj

 ∑
j′∈Cja

wj′
∑
a′∈Aj′

x̄tj′a′

x̄tja

(
1− exp

{
− η

wj′ x̄tj′a′
ψtj′a′

})
≥
x̄tja
x̄tpj

exp

−η ˜̀t
ja

wj
− η

wj

 ∑
j′∈Cja

∑
a′∈Aj′

1

x̄tja
ψtj′a′

, (25)

where the second inequality follows from the fact that 1− e−x ≤ x for all x ∈ R. Finally, using the definition of ψtja we find∑
j′∈Cja

∑
a′∈Aj′

ψtj′a′ = ψtja − ˜̀t
jax̄

t
ja. (26)

Plugging (26) into (25) we obtain

x̃t+1
ja

x̃t+1
pj

≥
x̄tja
x̄tpj

exp

{
− η

wj x̄tja
ψtja

}
.

This completes the proof for the lower bound.



In order to prove the upper bound, we start from (22).

x̃t+1
ja

x̃t+1
pj

=
x̄tja
x̄tpj

exp

−η ˜̀t
ja

wj
− 1

wj

 ∑
j′∈Cja

wj′
∑
a′∈Aj′

(
x̄tj′a′

x̄tja
−
x̃t+1
j′a′

x̃t+1
ja

) ≤ x̄tja
x̄tpj

.

Using the inductive hypothesis x̃t+1
ja /x̃t+1

pj ≤ x̄tja/x̄tpj , we obtain

x̃t+1
ja

x̃t+1
pj

≤
x̄tja
x̄tpj

exp

−η ˜̀t
ja

wj
− 1

wj

 ∑
j′∈Cja

wj′
∑
a′∈Aj′

(
x̄tj′a′

x̄tja
−
x̄tj′a′

x̄tja

) ≤ x̄tja
x̄tpj

≤
x̄tja
x̄tpj

exp

{
−η

˜̀t
ja

wj

}
≤
x̄tja
x̄tpj

.

An immediate corollary of Proposition 2 is the following:
Corollary 2. For all ja ∈ Σ,

0 < exp

− ∑
j′a′� ja

η

wj x̄tj′a′
ψtj′a′

 ≤ x̃t+1
ja

x̄tja
≤
x̃t+1
pj

x̄tpj
≤ 1.

In particular,

0 ≤ 1−
x̃t+1
ja

x̄tja
≤

∑
j′a′� ja

η

wj x̄tj′a′
ψtj′a′ . (27)

Proof. The first statement follows from applying Proposition 2 repeatedly on the path from the root of the decision tree to
decision point j. The second statement holds from the first statement by noting that

1−
x̃t+1
ja

x̄tja
≤ 1− exp

− ∑
j′a′� ja

η

wj x̄tj′a′
ψtj′a′

 ≤ ∑
j′a′� ja

η

wj x̄tj′a′
ψtj′a′ ,

where we used the fact that 1− e−x ≤ x for all x ∈ R.

Lemma 8. For all sequences ja, ∑
j′a′ � ja

wj′yj′a′

wjyja
≤ 2.

Proof. By induction.

• Base case. For any terminal decision ja ∈ Σ (that is, Cρ(j,a) = ∅), we have∑
j′a′ � ja

wj′yj′a′

wjyja
=
wj x̄ja
wj x̄ja

= 1 ≤ 2.

• Inductive step. Suppose that the inductive hypothesis holds for all sequences j′a′ � ja. Then,

∑
j′a′ � ja

wj′yj′a′

wjyja
= 1 +

∑
j′∈Cρ(j,a)

∑
a′∈Aj′

wj′yj′a′
wjyja

∑
j′′a′′ � j′a′

wj′′yj′′a′′

wj′yj′a′


≤ 1 + 2

∑
j′∈Cρ(j,a)

∑
a′∈Aj′

wj′yj′a′

wjyja

= 1 + 2
∑

j′∈Cρ(j,a)

wj′

wj
= 1 +

2wρ(j,a)

wj
≤ 2,



where the first inequality follows by the inductive hypothesis, and the second inequality holds by definition of the weights in
the dilated DGF (Equation 2).



D Sampling Scheme
Lemma 9. Let π be a distribution with finite support, and let y ∼ π. Then ImE

[
yy>

]
= span suppπ.

Proof. We prove the statement by showing that the nullspace of E[yy>] is equal to the orthogonal complement of span suppπ,
in symbols:

kerE[yy>] = (span suppπ)⊥.

This will immediately imply the statement using the well-known relationship ImE[yy>] = (kerE[yy>])⊥.
We start by showing kerE[yy>] ⊆ (span suppπ)⊥. Take z ∈ kerE[yy>]. Then,

E[yy>]z = 0 =⇒ z>E[yy>]z = 0

=⇒ E[(z>y)2] = 0

=⇒ z>y = 0 ∀y ∈ suppπ

=⇒ z>y = 0 ∀y ∈ span suppπ.

We now look at the other direction, that is (span suppπ)⊥ ⊆ kerE[yy>]. Take z ∈ (span suppπ)⊥. Then,

E[yy>]z = E[y(y>z)] = E[y · 0] = 0.

This implies z ∈ kerE[yy>], and concludes the proof.

Lemma 10. Suppose that a distribution πt over T is known, such that the support of πt is full-rank (that is, span suppπt =
span T ), and let yt ∼ πt. Furthermore, let Ct− be any generalized inverse of the autocorrelation matrix Ct. Then, for all
z ∈ spanXj ,

CtCt−z = z, and z>Ct−Ct = z>.

Proof. Since ImCt = span suppπt (see Lemma 9) and span suppπt = spanX by hypothesis, it must be z ∈ ImCt. Hence,
there exists v ∈ R|Σ| such that z = Ct v, and therefore

CtCt−z = CtCt−Ctv = Ctv = z,

where the second equality follows by definition of generalized inverse. The proof of the second equality in the statement is
analogous.

Lemma 11. Suppose that a distribution πt over X is known, such that the support of πt is full-rank (that is, span suppπt =
spanX ), and let yt ∼ πt. Furthermore, let Ct− be any generalized inverse of the autocorrelation matrix Ct. Then, for all
z ∈ spanX ,

z>Ct−x̄t = (x̄t)>Ct−z = 1.

Proof. Since ImCt = span suppπt (see Lemma 9) and span suppπt = spanX by hypothesis, there exists v ∈ R|Σ| such that
z = Ctv. Furthermore, x̄t = Ct τ where τ is any vector such that z>τ = 1 for all z ∈ co T (such vector must exist because 0
is not in the affine hull of T ). Hence,

z>Ct−ȳt = v>CtCt−Ctτ

= v>Ctτ

= z>τ = 1.

The proof that (x̄t)>Ct−z = 1 is analogous.

Proposition 1. Let πt be the conditional distribution over T , given the previous decisions y1, . . . ,yt−1, and suppose that the
support of πt is full-rank (that is, span suppπt= span T ). Let Ct := Et[yt(yt)>] be the autocorrelation matrix of yt, and let
Ct− be any generalized inverse of Ct, that is any matrix such that CtCt−Ct = Ct. Then, for any bt ⊥ dir T , the random
variable

˜̀t := [(`t)>yt] · (Ct− yt + bt), (8)

satisfies (?).



Proof. For all z ∈ dirX ,

z>Et[ ˜̀t] = z>Et
[
((yt)>̀ t)Ct− yt

]
= z>Et

[
Ct− yt(yt)> `t

]
= z>Ct−Ct`t.

Using the inclusion dir T ⊆ span T together with Lemma 10 gives the statement.

Unbiasedness of the Sampling Scheme
Lemma 4. The sampling scheme given by Algorithm 2 is unbiased, that is, Et[yt] = x̄t.

Proof. We prove by induction over the structure of the sequential decision process that for all v ∈ J ∪ K,

Et[ytv] = x̄tv

• First case: v ∈ J is a terminal decision point. Let Av = {a1, . . . , an}. Then, x̄tv = (x̄tva1
, . . . , x̄tvan) ∈ ∆n and

Et[ytv] =

n∑
i=1

x̄tvaiei = x̄tv.

• Second case: v ∈ K is an observation point. Let Cv = {j1, . . . , jn} be the set of decision points that are immediately
reachable after v. From (13), x̄tv is in the form x̄tv = (x̄tj1 , . . . , x̄

t
jn

) ∈∏n
i=1 co Tji . It follows that

Et[ytv] = Et


y

t
j1
...
ytjn


 =

Et[ytj1 ]
...

Et[ytjn ]

 =

x̄
t
j1
...
x̄tjn

 = x̄tv,

where the second equality follows from the independence of the sampling scheme and the third equality follows from the
inductive hypothesis.

• Third case: v ∈ J is a non-terminal decision point. Let Cj = {k1, . . . , kn} be the set of observation points that are
immediately reachable after v. From Equation (14), x̄tj must be in the form x̄tj = (λt1, . . . , λ

t
n, λ

t
1x̄

t
k1
, . . . , λtnx̄

t
kn

), where
λt = (λt1, . . . , λ

t
n) ∈ ∆n. It follows that

Et[ytv] = Et



ytv
ytj1

...
ytjn


 =


∑n
i=1 λ

t
iei

λt1Et[ytj1 ]
...

λtnEt[ytjn ]

 =


λt

λt1x̄
t
k1

...
λtnx̄

t
kn

 = x̄tv,

where the second equality follows from the independence of the sampling scheme and the third equality follows from the
inductive hypothesis. This concludes the proof.

Autocorrelation Matrix of the Sampling Scheme
Terminal Decision Points Let v ∈ J be a terminal decision point and let Av = {a1, . . . , an}. The sequence-form strategy
space co Tv is the probability simplex ∆n. Hence, at all times t, x̄tv = (λt1, . . . , λ

t
n) ∈ ∆n. In this case When asked to sample a

pure sequence-form strategy, we draw a ∈ {1, . . . , n} according to the distribution specified by λta and return the standard basis
vector ytv = ea ∈ Tv .

Lemma 12. Let v ∈ J be a terminal decision point, and let x̄tv = (λt1, . . . , λ
t
n) ∈ ∆n = co Tv in accordance with (12). The

autocorrelation matrix of the sampling scheme that picks ytj ∈ Tv is

Ct
j =

 λt1 . . .
λtn

.
Non-Terminal Decision Points Let v ∈ J be a non-terminal decision point. In order to sample a pure sequence-form strategy
we first sample a ∈ {1, . . . , |Av|} according to the distribution specified by {x̄va}a∈Av ∈ ∆|Av|. Then, we set ytva = 1, and
recursively sample ytρ(v,a) by calling into the sampling scheme for ρ(v, a).



Lemma 13. Let T be a SDP rooted in non-terminal decision point j. Let Cj = {k1, . . . , kn} be the set of observation points
that are immediately reachable after j. In accordance with (14), x̄tj is in the form x̄tj = (λt1, . . . , λ

t
n, λ

t
1x̄

t
k1
, . . . , λtnx̄

t
kn

), where
(λt1, . . . , λ

t
n) ∈ ∆n. Let Ct

ki
for i ∈ 1, . . . , n be the autocorrelation matrix of the unbiased sampling scheme picking ytki ∈ Tki

using x̄ki/λi. The autocorrelation matrix of the sampling scheme picking ytj is

Ct
j =



λt1 λt1(x̄tk1
)>

. . .
. . .

λtn λt1(x̄tkn)>

λt1x̄
t
k1

λt1C
t
k1. . .

. . .
λtnx̄

t
kn

λtnC
t
kn


.

Observation Points Let v ∈ K be an observation point. In order to sample ytv given a x̄tv = (x̄tj1 , . . . , x̄
t
jn

), we call into the
sampling schemes for nodes j1, . . . , jn by making n independent calls to SAMPLE(ji, x̄

t
ji

) for i = 1, . . . , n.

Lemma 14. Let T be a SDP rooted in observation point k. Let Ck = {j1, . . . , jn} be the set of decision points that are
immediately reachable after k. In accordance with (13), x̄tk is in the form x̄tk = (x̄tj1 , . . . , x̄

t
jn

). Let Ct
ji

for i ∈ 1, . . . , n be the
autocorrelation matrix of the unbiased sampling scheme picking ytji ∈ Tji using x̄ji . The autocorrelation matrix of the sampling
scheme picking ytk ∈ T is

Ct
k =


Ct
j1

x̄tj1(x̄tj2)> · · · x̄tj1(x̄tjn)>

x̄tj2(x̄tj1)> Ct
j2

· · · x̄tj2(x̄tjn)>

...
...

. . .
...

x̄tjn(x̄tj1)> x̄tjn(x̄tj2)> · · · Ct
jn

 .

Lemma 12. Let v ∈ J be a terminal decision point, and let x̄tv = (λt1, . . . , λ
t
n) ∈ ∆n = co Tv in accordance with (12). The

autocorrelation matrix of the sampling scheme that picks ytj ∈ Tv is

Ct
j =

 λt1 . . .
λtn

.
Proof. It follows from the definition of the sampling scheme that

Ct,j = Et[ytj(ytj)>] =

n∑
i=1

λi(eie
>
i ) =

 λt1 . . .
λtn

.

Lemma 13. Let T be a SDP rooted in non-terminal decision point j. Let Cj = {k1, . . . , kn} be the set of observation points
that are immediately reachable after j. In accordance with (14), x̄tj is in the form x̄tj = (λt1, . . . , λ

t
n, λ

t
1x̄

t
k1
, . . . , λtnx̄

t
kn

), where
(λt1, . . . , λ

t
n) ∈ ∆n. Let Ct

ki
for i ∈ 1, . . . , n be the autocorrelation matrix of the unbiased sampling scheme picking ytki ∈ Tki

using x̄ki/λi. The autocorrelation matrix of the sampling scheme picking ytj is

Ct
j =



λt1 λt1(x̄tk1
)>

. . .
. . .

λtn λt1(x̄tkn)>

λt1x̄
t
k1

λt1C
t
k1. . .

. . .
λtnx̄

t
kn

λtnC
t
kn


.



Proof. It follows from the definition of the sampling scheme that

Ct,j = Et[ytj(ytj)>]

=

n∑
i=1

λiEt
[
(e>i ,0, . . . ,0, (y

t
ki)
>,0, . . . ,0)>(e>i ,0, . . . ,0, (y

t
ki)
>,0, . . . ,0)

]

=



λt1 λt1(x̄tk1
)>

. . . . . .
λtn λt1(x̄tkn)>

λt1x̄
t
k1

λt1C
t
k1. . . . . .

λtnx̄
t
kn

λtnC
t
kn


.

Lemma 14. Let T be a SDP rooted in observation point k. Let Ck = {j1, . . . , jn} be the set of decision points that are
immediately reachable after k. In accordance with (13), x̄tk is in the form x̄tk = (x̄tj1 , . . . , x̄

t
jn

). Let Ct
ji

for i ∈ 1, . . . , n be the
autocorrelation matrix of the unbiased sampling scheme picking ytji ∈ Tji using x̄ji . The autocorrelation matrix of the sampling
scheme picking ytk ∈ T is

Ct
k =


Ct
j1

x̄tj1(x̄tj2)> · · · x̄tj1(x̄tjn)>

x̄tj2(x̄tj1)> Ct
j2

· · · x̄tj2(x̄tjn)>

...
...

. . .
...

x̄tjn(x̄tj1)> x̄tjn(x̄tj2)> · · · Ct
jn

 .

Proof. It follows from the definition of the sampling scheme that

Ct,k = Et[ytk(ytk)>]

= Et



yj1
yj2

...
yjn



yj1
yj2

...
yjn


> =


Et[ytj1(ytj1)>] Et[ytj1 ]Et[ytj2 ]> · · · Et[ytj1 ]Et[ytjn ]>

Et[ytj2 ]Et[ytj1 ]> Et[ytj2(ytj2)>] · · · Et[ytj2 ]Et[ytjn ]>

...
...

. . .
...

Et[ytjn ]Et[ytj1 ]> Et[ytjn ]Et[ytj2 ]> · · · Et[ytjn(ytjn)>]



=


Ct
j1

x̄tj1(x̄tj2)> · · · x̄tj1(x̄tjn)>

x̄tj2(x̄tj1)> Ct
j2

· · · x̄tj2(x̄tjn)>

...
...

. . .
...

x̄tjn(x̄tj1)> x̄tjn(x̄tj2)> · · · Ct
jn

 .

Generalized Inverse of the Autocorrelation Matrix

Proposition 4. Let j ∈ J be a terminal decision point. The (generalized) inverse of the autocorrelation matrix Ct
j defined in

Lemma 12 is  1/λt1 . . .
1/λtn

.
The matrix is well defined in virtue of Observation 3.

Proposition 5. Let j ∈ J be a non-terminal decision point, and let Cj = {k1, . . . , kn} be the observation points immediately



reachable after j. Finally, for all i = 1, . . . , n, let Ct−
ki

be any generalized inverse for Ct
ki

. The matrix

0
. . . 0

0
1
λt1
Ct−
k1

0
. . .

1
λtn
Ct−
kn


is a generalized inverse for the autocorrelation matrix Ct

j defined in Lemma 13. The matrix is well defined in virtue of
Observation 3.

Proof. Let Ct−
j be the matrix proposed by the statement. Using Lemma 13,

Ct
j C

t−
j Ct

j = Ct
j



0
. . . 0

0
1
λt1
Ct−
k1

0
. . .

1
λtn
Ct−
kn





λt1 λt1(x̄tk1
)>

. . . . . .
λtn λt1(x̄tkn)>

λt1x̄
t
k1

λt1C
t
k1. . . . . .

λtnx̄
t
kn

λtnC
t
kn



=



λt1 λt1(x̄tk1
)>

. . . . . .
λtn λt1(x̄tkn)>

λt1x̄
t
k1

λt1C
t
k1. . . . . .

λtnx̄
t
kn

λtnC
t
kn




0 0

Ct−
k1
x̄tk1

Ct−
k1
Ct
k1. . . . . .

Ct−
kn
x̄tkn Ct−

kn
Ct
kn



=



λt1 λt1(x̄tk1
)>

. . . . . .
λtn λt1(x̄tkn)>

λt1x̄
t
k1

λt1C
t
k1. . . . . .

λtnx̄
t
kn

λtnC
t
kn


= Ct

j ,

Where the third equality uses Lemmas 10 and 11. This concludes the proof.

Proposition 6. Let k ∈ K be an observation point, and let Ck = {j1, . . . , jn} be the decision points immediately reachable
after k. Finally, for all i = 1, . . . , n, let Ct−

ji
be any generalized invers for Ct

ji
, and let

µtk :=

C
t−
j1
x̄tj1

...
Ct−
jn
x̄tjn

 .

The matrix C
t−
j1

. . .
Ct−
jn

− n− 1

n2
· µtk(µtk)>.

is a generalized inverse for the autocorrelation matrix Ct
k defined in Lemma 14.



Proof. In order to reduce the notational burden, let

Ct∼
k :=

C
t−
j1

. . .
Ct−
jn

 .

With that, we have

Ct
kC

t∼
k Ct

k =

 Ct
j1

· · · x̄tj1(x̄tjn)>

...
. . .

...
x̄tjn(x̄tj1)> · · · Ct

jn


C

t−
j1

. . .
Ct−
jn


 Ct

j1
· · · x̄tj1(x̄tjn)>

...
. . .

...
x̄tjn(x̄tj1)> · · · Ct

jn



=

 Ct
j1

· · · x̄tj1(x̄tjn)>

...
. . .

...
x̄tjn(x̄tj1)> · · · Ct

jn


 Ct−

j1
Ct
j1

· · · Ct−
j1
x̄tj1(x̄tjn)>

...
. . .

...
Ct−
jn
x̄tjn(x̄tj1)> · · · Ct−

jn
Ct
jn



=


Ct
j1

+ (n− 1) x̄tj1(x̄tj1)> n x̄tj1(x̄tj2)> · · · n x̄tj1(x̄tjn)>

n x̄tj2(x̄tj1)> Ct
j2

+ (n− 1) x̄tj2(x̄tj2)> · · · n x̄tj2(x̄tjn)>

...
...

. . .
...

n x̄tjn(x̄tj1)> n x̄tjn(x̄tj2)> · · · Ct
jn

+ (n− 1) x̄tjn(x̄tjn)>


= Ct

k + (n− 1) x̄tk(x̄tk)>, (28)

where we repeatedly used Lemmas 10 and 11. At the same time, we have

Ct
k µ

t
k =

 Ct
j1

· · · x̄tj1(x̄tjn)>

...
. . .

...
x̄tjn(x̄tj1)> · · · Ct

jn


C

t−
j1
x̄tj1

...
Ct−
jn
x̄tjn

 =

n x̄
t
j1

...
n x̄tjn

 = n x̄tk, (29)

where again we used Lemmas 10 and 11. Putting (28) and (29) together, we obtain

Ct
k

(
Ct∼
k − n− 1

n2
· µtk(µtk)>

)
Ct
k = Ct

k + (n− 1) x̄tk(x̄tk)> − (n− 1) x̄tk(x̄tk)> = Ct
k,

as we wanted to show.

Propositions 4 to 6 give a way to compute the generalized inverse Ct− needed in (8). It is immediate to see that the vector µtk
in Proposition 6 is orthogonal to dir Tk for all k ∈ K. Hence, we construct the vector bt ⊥ dir T inductively to cancel the effect
of all µtk, as follows (we use the same symbols as Lemmas 12 to 14):

• At all terminal decision points j ∈ J , we let btj = 0.

• At all non-terminal decision points j ∈ J , we let btj be dependent on the action a ∈ {1, . . . , |Aj |} that was selected at j by
the pure sequence-form strategy yt. With that, we let

btj =

(
0, . . . ,

1

λta
btka ,0, . . . ,0

)
.

• At all observation points k ∈ K, we let

btk = (btj1 , . . . , b
t
jn) +

n− 1

n
µtk.

Given the particular choice of generalized inverse Ct− and shifting vector bt, we can compute the loss estimate ˜̀t according



to Proposition 1 as in Algorithm 3 .

Algorithm 7: LOSSESTIMATE(v, x̄tv,y
t
v)

Input: v ∈ J ∪ K,
x̄tv ∈ co Tv strategy output by R̃
ytv ∈ Tv pure strategy output byR

Output: ˜̀t
v

1 if v ∈ J is terminal then
[. Let x̄tv = (λ1, . . . , λn) ∈ ∆n as per (12)
[. Let ytv = ei as per (9)
[. Let (`t)>yt be the bandit feedback received

2 return (`t)>yt ·
(

0, . . . , 0,
1

λi
, 0, . . . , 0

)>
3 else if v ∈ J is non-terminal then

[. Let {k1, ..., kn} = Cv
[. Let x̄tv = (λt1, ..., λ

t
n, λ

t
1x̄

t
k1
, ..., λtnx̄

t
kn

) as per (14)
[. ytv = (ei,0, . . . ,yi, . . . ,0) as per (11)

4 return



0
...

1

λti
· LOSSESTIMATE(ki, x̄

t
ki ,y

t
ki)

...
0


5 else if v ∈ K then

[. Let {j1, ..., jn} = Cv
[. x̄tv = (x̄tj1 , . . . , x̄

t
jn

) as per (13)
[. ytv = (ytj1 , . . . ,y

t
jn

) as per (10)

6 return

LOSSESTIMATE(j1, x̄
t
j1 ,y

t
j1)

...
LOSSESTIMATE(jn, x̄

t
jn ,y

t
jn)



Expected Local Dual Norm of Loss Estimate

Lemma 15. For each node v ∈ J ∪ K, let Nv be the number of terminal sequences in the subtree rooted at v. Then, for all
v ∈ J ∪ K,

0 ≤ (btv)
>x̄tv ≤ Nv − 1.

Proof. By induction on the structure of the SDP.

• First case: v ∈ J is a terminal decision point. In this case the statement holds trivially since btv = 0.

• Second case: v ∈ K is an observation point. We have

(btv)
>x̄tv =


b

t
j1
...
btjn

+
n− 1

n

C
t−
j1
x̄tj1

...
Ct−
jn
x̄tjn



>x̄

t
j1
...
x̄tjn


= (n− 1) +

n∑
i=1

(btji)
>x̄tji ,

where the second equality is an application of Lemma 11. The lower bound is straightforward. For the upper bound, using the



inductive hypothesis we find

(btv)
>x̄tv ≤ (n− 1) +

n∑
i=1

(Nji − 1)

= −1 +

n∑
i=1

Nji = Nv − 1.

• Third case: v ∈ J is a non-terminal decision point. In this case, we have

(btv)
>x̄tv =

(
1

λta
btka

)>
(λtax̄

t
ka) = (btka)>x̄tka .

Both the lower bound and the upper bound follow trivially from applying the inductive hypothesis.

Theorem 4. Assume that the bandit information (`t)>yt ∈ [0, 1] at all times t. Then, at all times t, the loss estimate ˜̀t ∈ R|Σ|≥0

returned by Algorithm 3 satisfies
Et
[
‖Ct−

v y
t
v + btv‖2∗,x̄tv

]
≤ 2 · |Σ|2.

Proof. For each node v ∈ J ∪ K, let Nv be the number of terminal sequences in the subtree rooted at v. We will prove by
induction over the tree structure that, for any node v ∈ J ∪ K,

Et
[
‖Ct−

v y
t
v + btv‖2∗,x̄tv

]
≤
(

2− 1

wv

)
N2
v .

That will be enough to conclude, since by hypothesis (`t)>yt ∈ [0, 1], and therefore

Et[‖ ˜̀t‖2∗,x̄t ] = Et
[∥∥((`t)>yt) · (Ct−

v y
t
v + btv

)∥∥2

∗,x̄tv

]
= Et

[
((`t)>yt)2 ·

∥∥Ct−
v y

t
v + btv

∥∥2

∗,x̄tv

]
≤ Et

[
‖Ct−

v y
t
v + btv‖2∗,x̄tv

]
.

• First case: v ∈ J is a terminal decision point. Let Av = {a1, . . . , an}. Then x̄tv = (λ1, . . . , λn) ∈ ∆n (Equation (12)) and
ytv is of the form ytv = ei with probability λi. Then, using Proposition 4

Et
[
‖Ct−

v y
t
v + btv‖2∗,x̄tv

]
=

n∑
i=1

λi ·
1

λi
= n ≤ 3

2
N2
v =

(
2− 1

wj

)
N2
v .

• Second case: v ∈ J is a non-terminal decision point. Let Cv = {k1, . . . , kn} be the set of observation points that are
immediately reachable after v. From Equation (14), x̄tj must be in the form x̄tj = (λt1, . . . , λ

t
n, λ

t
1x̄

t
k1
, . . . , λtnx̄

t
kn

), where
λt = (λt1, . . . , λ

t
n) ∈ ∆n. Also, from (11), ytv = (ei,0, . . . ,y

t
ki
, . . . ,0) with probability λti · π(ytki) where π is a distribution



over Tki . Hence,

Et
[
‖Ct−

v y
t
v + btv‖2∗,x̄tv

]
=

n∑
i=1

λti π(ytki) ·

∥∥∥∥∥∥∥∥∥∥∥∥∥



0
...

1

λti

(
Ct−
ki
ytki + btki

)
...
0



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

∗,x̄tv

=

n∑
i=1

∑
ytki
∈Tki

λti π(ytki) ·
1

(λti)
2
·
(
λti ‖Ct−

ki
ytki + btki‖2∗,x̄tki +

λti
wj

[(Ct−
ki
ytki + btki)

>x̄tki ]
2

)

=

n∑
i=1

 ∑
ytki
∈Tki

π(ytki) · ‖Ct−
ki
ytki + btki‖2∗,x̄tki

+
1

wj

n∑
i=1

(
1 + (btki)

>x̄tki
)2

=

n∑
i=1

Et
[
‖Ct−

ki
ytki + btki‖2∗,x̄tki

]
+

1

wj

n∑
i=1

(
1 + (btki)

>x̄tki
)2
,

where we used Corollary 1 in the second equality and Lemma 11 in the third equality. Using Lemma 15, we obtain

Et
[
‖Ct−

v y
t
v + btv‖2∗,x̄tv

]
=

n∑
i=1

Et
[
‖Ct−

ki
ytki + btki‖2∗,x̄tki

]
+

1

wj

n∑
i=1

N2
ki

≤
n∑
i=1

(
2− 1

wki
+

1

wj

)
N2
ki ,

where the inequality follows from applying the inductive hypothesis. By definition of the DGF weights (2), we havewj ≥ 2wki
for all i = 1, . . . , n. Hence, −1/wki ≤ −2/(wj) and therefore:

Et
[
‖Ct−

v y
t
v + btv‖2∗,x̄tv

]
≤

n∑
i=1

(
2− 2

wj
+

1

wj

)
N2
ki

=

(
2− 1

wj

) n∑
i=1

N2
ki

≤
(

2− 1

wj

)( n∑
i=1

Nki

)2

≤
(

2− 1

wj

)
N2
j .

• Third case: v ∈ K is an observation point. Let Cv = {j1, . . . , jn} be the set of decision points that are immediately reachable
after v. We have

Et
[
‖Ct−

v y
t
v + btv‖2∗,x̄tv

]
=

n∑
i=1

Et
[
‖Ct−

ji
ytji + btv‖2∗,x̄tji

]
≤

n∑
i=1

(
2− 1

wji

)
N2
ji

≤
(

2− 1

wv

) n∑
i=1

N2
ji ≤

(
2− 1

wv

)
N2
v .
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