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Abstract 

Reinforcement learning combined with deep neural networks 
has performed remarkably well in many genres of games re-
cently. It has surpassed human-level performance in fixed 
game environments and turn-based two player board games. 
However, to the best of our knowledge, current research has 
yet to produce a result that has surpassed human-level perfor-
mance in modern complex fighting games. This is due to the 
inherent difficulties with real-time fighting games, including: 
vast action spaces, action dependencies, and imperfect infor-
mation. We overcame these challenges and made 1v1 battle 
AI agents for the commercial game “Blade & Soul”. The 
trained agents competed against five professional gamers and 
achieved a win rate of 62%. 
This paper presents a practical reinforcement learning 
method that includes a novel self-play curriculum and data 
skipping techniques. Through the curriculum, three different 
styles of agents were created by reward shaping and were 
trained against each other. Additionally, this paper suggests 
data skipping techniques that could increase data efficiency 
and facilitate explorations in vast spaces.  
Since our method can be generally applied to all two-player 
competitive games with vast action spaces, we anticipate its 
application to game development including level design and 
automated balancing. 

 Introduction   

Reinforcement learning (RL) is extending its boundaries to 

a variety of game genres. In PVE (player versus environ-

ment) settings, such as those found in Atari 2600 games, RL 

agents have exceeded human level performance using vari-

ous methods (Mnih et al. 2015; Mnih et al. 2016; Schulman 

et al. 2017; Hessel et al. 2018). Likewise, in PVP (player 

versus player) settings, neural networks combined with 

search-based methods beat the best human players in turn-

based two player games—such as Go and Chess (Silver et 

al. 2018b). Recently, RL research in games has shifted focus 

to the PVP settings found in more complex video games 

 
* Equal contribution. Alphabetical ordering.  
† Corresponding author 

such as StarCraft2 (Vinyals et al. 2017), Quake3 (Jaderberg 

et al. 2018), and Dota2 (OpenAI 2018).  

 Fighting games—as one of the most representative types 

of complex PVP games—have been the focus of multiple 

studies that have made progress in this area. For instance, 

MCTS based methods (Yoshida et al. 2016; Kim et al. 2017; 

Ishihara et al. 2019) have been applied to “Fightin-

gICE(FICE)", a game platform made for the Fighting Game 

AI Competition (Lu et al. 2013). However, it is hard to ful-

fill real-time conditions when applied to heavier modern 

game engines with longer query times. Additionally, a deep 

RL based agent (Li et al. 2018) was trained against a rule-

based fixed opponent in "Little Fighter 2(LF2)". However, 

since the opponent's decision is unknown at a player’s deci-

sion time, agents trained against rule-based AIs cannot be 

generalized for unseen opponents. Our approach is largely 

similar to that of Firoiu et al. (2017) in which a self-play 

Figure 1. A scene from the B&S Arena Battle 

 Year Commercial Dimension Pro-scene 

FICE 2013 X 2D X 

LF2 1999 O 2.5D X 

SSBM 2001 O 2D O 

BAB 2013 O 3D O 

Table 1: Fighting games from other works 



 

 

deep RL method was applied to "Super Smash Bros. Melee 

(SSBM)”. However, the complexity of state and action 

space is significantly limited compared to our 3D environ-

ment with complex game rules. We created pro-level AI 

agents for the real-time fighting game “Blade & Soul (B&S) 

Arena Battle" via novel self-play based reinforcement learn-

ing.  

 B&S is a commercial massively multiplayer online role-

playing game. It supports duels between two players called 

“B&S Arena Battles (BABs)”. As presented in Table 1, 

BAB is a more modern fighting game compared to the 

games considered in other works; hence, it has much more 

complex game dynamics and heavier game engines. Addi-

tionally, a large number of people play BAB and it has more 

active professional scenes 1  than other fighting games. 

BAB’s larger number of active professional scenes stands 

out more significantly when compared to FightingICE, 

which was designed solely for research purposes. 

 Figure 1 displays a scene from BAB. BAB is a two-player 

zero sum game. In BAB, two players fight against each other 

to reduce their opponent's HP (health point) to zero within 

three minutes. To master BAB, an agent must be able to deal 

with multiple challenges.  

 First, an agent must manage vast action and state spaces. 

An agent must make skill, move, and targeting decisions 

simultaneously, which yields many possible combinations. 

As a rough estimate, there are 144 potential actions for each 

time step: 8 (avg. # of avail. skills) * 9 (8 directional + no 

move) * 2 (facing opponent or moving direction). Since the 

average game length is 1200 time steps (120 s), numerous 

scenarios are possible—not considering the opponent’s ac-

tions.  

 Moreover, an agent must consider the dependencies be-

tween skills: e.g., a skill may become available only for a 

short period of time following the use of another skill. As a 

result, out of the 45 skills in total (including “no-op”), the 

set of skills available at a given time constantly changes. The 

agent must also consider the properties of each skill because 

they have different cooldown times (required interval for re-

using a skill) and SP (skill point) consumptions, and serve 

one or more of five different functions: damage dealing, 

crowd control (which functions to make the opponent in-

competent; abbreviated CC), resistance (which functions to 

make the player immune or resistant to CC skills), escape, 

and dash.  

 Lastly, an agent must deal with imperfect information set-

tings. Because BAB is a real-time game, two players make 

their decisions simultaneously. This indicates that an agent 

is required to make decisions without knowing the oppo-

nent’s decision or strategy. Hence, BAB can be considered 

to be a series of rock-paper-scissors games. For example, 

 
1 9 regional league winners from all over the world (including KOR, NA, 
EU, RUS, and CHN) participated in the 2018 B&S world championship 

when a player uses a resistance skill and the opponent uses 

a crowd control skill at the same time, the player gains ad-

vantage over the opponent. As a result, the essence of the 

problem is to approximate a Nash equilibrium strategy so 

that the agent can respond appropriately to any opposing 

strategy. 

 To tackle these challenges, we have made improvements 

to vanilla self-play algorithm by diversifying opponent 

pools and skipping data to facilitate exploration. The main 

contributions of this work are as follows: 

• We devised a novel self-play curriculum with agents of 
different styles. The curriculum made these agents com-
pete against each other and reinforced the agents simulta-
neously, rendering the agents capable of handling a variety 
of opponents. We empirically demonstrate that our curric-
ulum outperforms vanilla self-play method. 

• We diversified the fighting style of the game-playing AIs 
by reward shaping (Ng et al. 1999). We created three types 
of agents with different fighting styles: aggressive, defen-
sive, and balanced. We anticipate its application to game 
development including level design and automated bal-
ancing.  

• We introduced data skipping techniques to enhance explo-
ration in vast space. These can be generally applied to any 
two-player real-time fighting games. 

• We evaluate our agents by pitting them against profes-
sional players in the 2018 B&S World Championship 
Blind Match. Our AI agents won three out seven matches, 
while the aggressive one beating all professional players 
both in the live event and pre-test. 

Background 

Reinforcement Learning 

In reinforcement learning (Sutton and Barto 1998), agent 

and environment can be formalized as a Markov decision 

process (MDP) (Howard 1960). For every discrete time step 

t, an agent receives a state 𝑠𝑡 ∈ 𝑆 and sends an action 𝑎𝑡 ∈
𝐴 to the environment. Then, the environment makes a state 

transition from 𝑠𝑡  to 𝑠𝑡+1 with the state transition probabil-

ity 𝑃𝑠𝑠′
𝑎 = 𝑃[𝑠′|𝑠, 𝑎] and gives a reward signal 𝑟𝑡 ∈ ℝ to the 

agent. Therefore, this process can be expressed with 

{𝑆, 𝐴, 𝑃, 𝑅, 𝛾}, where 𝛾 ∈ [0,1] is a discount factor, which 

represents the preference for immediate reward over long-

term reward. Here, the agent samples an action from a policy 

π(𝑎𝑡|𝑠𝑡), and the learning process modifies the policy to en-

courage good actions and suppress bad actions. The objec-

tive of the learning is to find the optimal policy 𝜋∗ that max-

imizes the expected discounted cumulative reward. 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋  𝐸𝜋[Σ 𝑟𝑡 ∗ 𝛾𝑡] 

(fourth annual event). The winning prize was approx. $50k (compared to 
Tekken7: $30k) 



 

 

Real-Time Two Player Game 

In a real-time two player game, there are two players, 

namely, the agent and the opponent. Both of them send an 

action to the environment at the same time. Let us denote 

the policy of the agent as 𝜋𝑎𝑔, and the policy of the oppo-

nent as 𝜋𝑜𝑝. Each samples an action from its own policy for 

every time step. 

𝑎𝑡
𝑎𝑔

~𝜋𝑎𝑔(𝑎𝑡
𝑎𝑔

|𝑠𝑡),  𝑎𝑡
𝑜𝑝

~𝜋𝑜𝑝(𝑎𝑡
𝑜𝑝

|𝑠𝑡) 

Then, the environment makes a state transition by consid-

ering those two actions jointly.  

𝑠𝑡+1~𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡
𝑎𝑔

,  𝑎𝑡
𝑜𝑝

),  𝑟𝑡+1 = 𝑅(𝑠𝑡 , 𝑎𝑡
𝑎𝑔

,  𝑎𝑡
𝑜𝑝

) 

 Here, the MDP can be expressed as {S, 𝐴𝑎𝑔, 𝐴𝑜𝑝, 𝑃, 𝑅, 𝛾}. 

If 𝜋𝑜𝑝 is fixed, then we can regard the opponent as a part of 

the environment by marginalizing the policy of the opponent. 

𝑃′(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡
𝑎𝑔

) 

=  ∑ 𝜋𝑜𝑝(𝑎𝑡
𝑜𝑝

|𝑠𝑡) ∗  𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡
𝑎𝑔

,  𝑎𝑡
𝑜𝑝

)

𝑎𝑡
𝑜𝑝

 

Then, the MDP expression turns into a simpler form with 

𝑃′: {S, 𝐴𝑎𝑔, 𝑃′, 𝑅′, 𝛾}. This expression is coherent with the 

one player MDP. Therefore, any methods for the original 

MDP work in this form as well. However, 𝜋𝑜𝑝 is not fixed 

in general, and our agent does not know which 𝜋𝑜𝑝 it is go-

ing to face. We propose a self-play curriculum with diversi-

fied pool of 𝜋𝑜𝑝 in the following section. 

BAB as MDP 

If we assume 𝜋𝑜𝑝 or the pool of 𝜋𝑜𝑝 is fixed, BAB can be 

expressed as an MDP. Figure 2 illustrates the agent-environ-

ment framework in BAB. LSTM (Hochreiter and Schmid-

huber 1997) based agents interact with the BAB simulator, 

which acts as the environment. For every time step with 0.1 

sec intervals, state 𝑠𝑡 is constructed from the history of ob-

servations 𝐻𝑡 = {𝑜1, 𝑜2, … , 𝑜𝑡}. To be specific, 𝑠𝑡  is com-

posed of any information that a human can access during a 

game, such as HP, SP, distance from opponent, distance 

from the arena wall, current position, remaining game time, 

remaining cooldown times for all 44 skills, an agent’s status 

info (midair, stun, down, kneel, etc.), and so on. Then, the 

agent decides on an action 𝑎𝑡 = (𝑎𝑡
𝑠𝑘𝑖𝑙𝑙 , 𝑎𝑡

𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡
)  for 

every time step. Note that the targeting action space was 

originally continuous. We discretized it into two (facing op-

ponent or current moving direction) and jointly considered 

it along with the decision to move.  

  Following this, the action is then sent to the environment 

and a state transition occurs accordingly. Here, exact re-

wards should also be determined. Rewards are closely re-

lated to high performance in BAB. We provided 𝑟𝑡
𝑊𝐼𝑁 , 

which is the reward for winning a game, and 𝑟𝑡
𝐻𝑃, the reward 

for the changes in HP margin. These rewards are designed 

based on the assumption that the more a player wins, and 

with more remaining HP, the better that player’s perfor-

mance is. 𝑟𝑡
𝑊𝐼𝑁  is given at the terminal step of each episode 

with +10 for a win and -10 for a loss. 𝑟𝑡
𝐻𝑃 may occur at every 

time step when the agent deals damage to the opponent and 

vice versa. Since HP is normalized to [0, 10], 𝑟𝑡
𝑊𝐼𝑁  and 𝑟𝑡

𝐻𝑃 

have the same scale. 

𝑟𝑡 = 𝑟𝑡
𝑊𝐼𝑁 + 𝑟𝑡

𝐻𝑃 

𝑟𝑡
𝐻𝑃 = (𝐻𝑃𝑡

𝑎𝑔
− 𝐻𝑃𝑡−1

𝑎𝑔
) − (𝐻𝑃𝑡

𝑜𝑝
− 𝐻𝑃𝑡−1

𝑜𝑝
) 

These are fundamental rewards, and additional rewards 

for guiding battle styles are described in the next section. 

The value of γ is set to 0.995, which is close to 1.0, since all 

episodes in BAB are forced to terminate after 1,800 time 

steps (= 3 min). 

Self-Play Curriculum with Diverse Styles  

Existing self-play methods (Silver et al. 2017; Silver et al. 

2018a) generally use opponent pools for training. Parame-

ters of a network are stored at regular intervals during train-

ing to create a pool of past selves. Opponents are then sam-

pled from this pool.  

 Although the self-play method of RL offers a way to learn 

the Nash equilibrium strategy (Heinrich and Silver 2016), 

high coverage of strategy space is essential to efficiently 

find one. Vanilla self-play alone does not guarantee enough 

coverage for games with large problem spaces. To tackle 

this problem, AlphaStar (Vinyals et al. 2019) diversified the 

opponent pool by imitating different human strategy and in-

troducing three types of agents with different match making 

scheme. The Poker AI, Pluribus (Brown and Sandholm 

2019), hand-tuned three different strategies on top of basic 

blueprint strategy. The three strategies are biased toward 

raising, calling, and folding respectively.  

 Concurrently, we devised a novel self-play curriculum. 

We enforced diversity of agents’ strategies by introducing a 

range of different battle styles, and agents of different styles 

were made to compete against each other.  

Figure 2. Agent-environment plot in BAB 



 

 

Guiding Battle Styles through Reward Shaping 

One of the most noticeable fighting styles to invest with is 

the degree of aggressiveness. We used three dimensions of 

rewards to control the degree of aggressiveness. The first di-

mension is the “time penalty”. The aggressive agent re-

ceives larger penalties per time step, and this motivates it to 

finish the match in a shorter period of time. The second di-

mension is the relative importance of the agent’s HP to the 

opponent’s HP. Aggressive players will try to reduce the op-

ponent's HP rather than preserving their own HP, while de-

fensive players tend to act the opposite way. The final di-

mension is the “distance penalty”. Defensive players tend to 

ensure a certain distance from their opponents to respond 

appropriately against attacks, while aggressive players tend 

to approach their opponents and attack relentlessly. To real-

ize these properties, the aggressive agent received larger 

penalties in proportion compared to the distance between it-

self and its opponent. The specific reward weights used for 

each style are shown in Table 2. Note that each of these three 

dimensions can take continuous values. This means that it is 

possible to create a spectrum of different fighting styles with 

varying degrees of aggressiveness. However, to effectively 

demonstrate the viability of this method, we limited the 

number of fighting styles to three. By using any type of ad-

ditional reward signals along with 𝑟𝑡
𝑊𝐼𝑁  and 𝑟𝑡

𝐻𝑃 , this 

method could be applied to other fighting games in general 

to create agents with various fighting styles.  

Our Self-Play Curriculum 

Figure 3 shows an overview of the proposed self-play cur-

riculum with three different types of agents. Agents of each 

style have their own learning process, and all three agent 

types were trained in a concurrent manner.  

 Each learning process consisted of a learner and multiple 

simulators. The learner and the simulators work asynchro-

nously. In the simulators, an agent constantly plays matches 

against randomly sampled opponents from the shared pool. 

The most recent k models of each style are uniformly se-

lected with total probability mass of p, while other models 

are chosen uniformly with probability 1-p. As training goes 

on, p is linearly annealed from 0.8 to 0.1. A higher p assists 

in swift adaptation to the latest opponents, while a lower p 

stabilizes the learning process by alleviating catastrophic 

forgetting. Each simulator sends a match log to the learner 

at the end of every match and updates its agent with the lat-

est parameters received from the learner. The same proce-

dure continues to be used through subsequent games. 

 The learner trains its agents in an off-policy manner using 

logs gathered from multiple simulators and sends the latest 

network parameters to the simulators on request. In addition, 

the learner sends its network parameters to the shared pool 

every C steps (e.g. C=10,000) of update. Thus, the pool has 

varying policies that come from the different learning pro-

cesses of the different styles. These sets of model parameters 

 Aggressive Balanced Defensive 

Time penalty 0.008 0.004 0.0 

HP ratio 5:5 5:5 6:4 

Distance penalty 0.002 0.0002 0.0 

Table 2: Reward weights of each style 

Figure 3. Overview of self-play curriculum with three different styles 



 

 

are provided as opponents to each learning process. By shar-

ing a pool, every learning agent encounters opponents of 

every style during training and learns how to deal with them. 

Therefore, agents trained via our self-play curriculum can 

ultimately learn how to face opponents with varying fighting 

styles while maintaining their own battle styles.  

Data Skipping Techniques 

In this section, we detail data skipping technique, which re-

fers to the process of dropping certain data during training 

and evaluation procedures.  

Discarding Passive “No-op” 

In fighting games, using skills generally consumes resources, 

such as SP and cooldown time. Therefore, if a player over-

uses a certain skill, it will not be available for use during 

actual times of need. Thus, players should strategically use 

and retain their skills to ensure their availability when 

needed. To take this aspect into account, we concatenated a 

“no-op” action to the output of the policy network, allowing 

the agent to choose “no-op” and do nothing for a certain pe-

riod if necessary. This means that our action space has 44 

skills, plus an additional “no-op” action. This is significant 

because human play logs of BAB show that “no-op” actions 

take up the largest portion of skill usage among human play-

ers. 

 “No-op” decisions can be categorized as passive and ac-

tive use cases. The passive use of “no-op” implies that an 

agent chooses “no-op” because there is no skill available for 

use. For example, when an agent is out of resources or is hit 

by an opponent’s CC skill, an agent has no option but to 

choose “no-op”. The active use of “no-op” means that an 

agent selects “no-op” strategically, even though other skills 

are available for use.  

We discarded passive “no-op” data from both the training 

and evaluation phases because passive “no-ops” are not used 

deliberately by an agent. In addition, the method enables 

LSTM to reflect representations of longer time horizons be-

cause the data is not provided to the network. We show in 

the experiment section that skipping passive “no-ops” 

greatly improves learning efficiency. Note that this method-

ology is generally applicable to other domains where a set 

of available skills changes constantly and the “no-op” action 

is a valid option to choose. 

Maintaining Move Action 

Although a single skill decision can have a substantial influ-

ence on the subsequent states, the effect of a single move 

decision is relatively limited. The reason is that the distance 

a character moves in a single time step (0.1 s) is very short 

considering its speed. In order for any moving decision to 

have a meaningful effect, the agent should make the same 

moving decision consecutively for several ticks in a row. 

This allows the agent to literally “move” and leads to 

changes in subsequent states and rewards. Therefore, it is 

difficult to train a move policy from the initial policy with 

random move decisions. Since the chance of a random pol-

icy making the same decision consecutively is very low, ex-

ploration is extremely limited. We therefore propose main-

taining the move decision for a fixed number of time steps. 

Figure 4 shows how the method works with an example. 

If the agent selects a move action, it skips the move decision 

for the following n-1 time steps. This means that the agent 

maintains the same move decision for n steps in total. Note 

that our method has different purpose from frame skip tech-

nique (Mnih et al. 2015) in Atari domain. Frame skip tech-

nique was introduced for simulator's efficiency. However, 

we cannot just skip the frames because skill decisions must 

still be made. Although we could not enjoy advantage in the 

simulator's efficiency, maintaining move still facilitates 

training and this is solely because maintaining move deci-

sion increases the influence of a single move decision, as we 

will confirm with experiments. In this sense, maintaining 

move rather can be viewed as ‘amplifying advantage’ from 

(Mladenov et al. 2019). 

Experiments 

Implementation Details 

Network 

The network is composed of LSTM-based architecture 

which has four heads with a shared state representation layer. 

Each head consists of 𝜋𝑠𝑘𝑖𝑙𝑙 , 𝑄𝑠𝑘𝑖𝑙𝑙 , 𝜋𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡  and 

𝑄𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡 . 𝑄𝑠𝑘𝑖𝑙𝑙 and 𝑄𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡  are used for the gradi-

ent update of 𝜋𝑠𝑘𝑖𝑙𝑙  and 𝜋𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡 , respectively. Before 

the network output goes into the softmax layer, a Boolean 

vector indicating the availability of each skill operates to 

make the output of unavailable skill to negative infinity.  

Algorithm 

We used actor-critic off-policy learning algorithm (Wang et 

al. 2017). It enables us to deal with policy lag between the 

Figure 4. Examples of (a) regular move decisions and (b) main-

taining decisions for 1 second 



 

 

simulators and learner through truncated importance sam-

pling. Moreover, we could also use the advantages of sto-

chastic policy, which responds more stably to changes in the 

environment due to smooth policy updates and works well 

in the domain of games like rock-scissors-paper where de-

terministic policy is vulnerable to exploitation. For this spe-

cific algorithm, both 𝜋𝑠𝑘𝑖𝑙𝑙  and 𝜋𝑚𝑜𝑣𝑒,𝑡𝑎𝑟𝑔𝑒𝑡  are updated in 

an alternating manner with following gradient: 

𝑔𝑡
𝑎𝑐𝑒𝑟 = 𝜌𝑡̅∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑥𝑡)[𝑄𝑟𝑒𝑡(𝑥𝑡 , 𝑎𝑡) − 𝑉𝜃𝑣

(𝑥𝑡)] +  

𝔼𝑎~𝜋 ([
𝜌𝑡(𝑎) − 𝑐

𝜌𝑡(𝑎)
]

+

∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎|𝑥𝑡)[𝑄𝜃𝑣
(𝑥𝑡, 𝑎) − 𝑉𝜃𝑣

(𝑥𝑡)]), 

where 𝜌𝑡̅ = min{𝑐, 𝜌𝑡}  with behavior policy 𝜇  and im-

portance sampling ratio 𝜌𝑡 =
𝜋(𝑎𝑡|𝑥𝑡)

𝜇(𝑎𝑡|𝑥𝑡)
.  [𝑥]+ = 𝑥 𝑖𝑓 𝑥 >

0 and zero otherwise.  

Learning System 

In total, there are three learning processes with each learning 

process consisting of a learner and 100 simulators. Each 

learning process is largely similar to that proposed by Hor-

gan et al. (2018). The final agent is trained for two weeks, 

which is equivalent to four years of game play.  

Effect of Self-Play Curriculum with Three Styles 

To demonstrate the effects of the proposed self-play curric-

ulum, we trained agents with and without the proposed cur-

riculum. A baseline agent was trained with the vanilla self-

play curriculum without any style-related rewards (only win 

reward and HP reward were included) and a pool of past 

selves was used. Meanwhile, three agents with different 

styles were trained with the self-play curriculum using the 

shared pool that we proposed. Our aggressive, balanced and 

defensive agents2 then played 1,000 matches each against 

the baseline agent to measure the performance. As shown in 

Table 3, the agents that followed the learnings from our cur-

riculum outperformed the baseline agent. 

Next, we conducted an ablation study to observe how the 

shared pool helps generalization. We wanted to confirm 

whether an agent would be able to deal with opponents of 

unseen style, when it experienced only a limited range of 

opponents during training. Thus, we created three styles of 

agents trained in exactly the same manner, except that they 

had their own independent opponent pools. We denote the 

three types of agents using shared pools as 𝜋𝑠ℎ
𝑎𝑔𝑔

, 𝜋𝑠ℎ
𝑏𝑎𝑙, and 

𝜋𝑠ℎ
𝑑𝑒𝑓

, and three type of agents using independent pools as 

𝜋𝑖𝑛𝑑
𝑎𝑔𝑔

, 𝜋𝑖𝑛𝑑
𝑏𝑎𝑙, and 𝜋𝑖𝑛𝑑

𝑑𝑒𝑓
. All of six agents were trained for 5M 

steps (equivalent to 6 days) each.  

Our assumption is that the agent trained with the shared 

pool is more robust when it faces opponents it has never en-

countered. Thus, we compared the win rate of 𝜋𝑠ℎ
𝑎𝑔𝑔

 vs. 

{𝜋𝑖𝑛𝑑
𝑏𝑎𝑙 , 𝜋𝑖𝑛𝑑

𝑑𝑒𝑓
} and 𝜋𝑖𝑛𝑑

𝑎𝑔𝑔
 vs. {𝜋𝑖𝑛𝑑

𝑏𝑎𝑙 , 𝜋𝑖𝑛𝑑
𝑑𝑒𝑓

}. This experimental 

 
2 We measured how the average game length differs for each style because 
game length is a good proxy for assessing the degree of defensiveness of 

setting is based on three key ideas. First, 𝜋𝑠ℎ
𝑎𝑔𝑔

 and 𝜋𝑖𝑛𝑑
𝑎𝑔𝑔

 

have the same training settings except for sharing the pool. 

Second, 𝜋𝑠ℎ
𝑎𝑔𝑔

 and 𝜋𝑖𝑛𝑑
𝑎𝑔𝑔

 are evaluated against the same op-

ponents. Finally, although 𝜋𝑠ℎ
𝑎𝑔𝑔

 has encountered other 

styles from its pool, it has not confronted {𝜋𝑖𝑛𝑑
𝑏𝑎𝑙 , 𝜋𝑖𝑛𝑑

𝑑𝑒𝑓
}, for 

they were trained using independent opponent pools. If our 

assumption is correct, 𝜋𝑠ℎ
𝑎𝑔𝑔

 should have a higher winning 

rate. It is to be noted that 𝜋𝑖𝑛𝑑
𝑏𝑎𝑙  and 𝜋𝑖𝑛𝑑

𝑑𝑒𝑓
 are not a single 

model, but 10 models each sampled at the same fixed inter-

vals from their pools. We then conducted the same experi-

ments for the remaining two styles; the results are presented 

in Table 4. As shown in the table, agents trained with shared 

pool outperform their counterparts.  

Based on the data in Table 4, the effect of using a shared 

pool is marginal in the case of aggressive agents. It indicates 

that the strategy spaces in which trainings take place are 

similar whether or not various opponents are provided. This 

is related to the nature of fighting games in which one side 

should fight back if the other side approaches and initiates a 

brawl. Thus, in the case of an aggressive agent that attacks 

consistently, there is a little difference in the experience re-

gardless of the diversity of the opponent’s fighting style. 

Effect of Discarding Passive “No-op” 

As discussed in the previous section, the “no-op” decision 

may be either active or passive. We conducted an experi-

ment to investigate the effect of discarding such passive “no-

op” data from learning. The sparring partner for the experi-

ment was the built-in BAB AI, with a performance compa-

rable to the top 20% of the players. We measured how fast 

agents learned to defeat it, and the results are shown in Fig-

ure 5 (a). If “no-op” ticks are discarded from the learning 

data, the win rate reaches 80% after 70k steps, whereas 170k 

steps are required when “no-op” ticks are included. The 

amount of time steps required to reach 90% win rate was 

reduced to half when passive “no-op” data was skipped. 

an agent’s game play. The results were as follows: 66.6 sec for the aggres-
sive, 91.7 sec for the balanced, and 179.9 sec for the defensive agent. 

 Aggressive Balanced Defensive Average 

Shared 64.8% 79.6% 75.3% 73.6% 

Ind. 64.7% 72.1% 56.5% 64.4% 

Table 4: Generalization performance of three styles of agents 

for both with and without shared pool (7,000 games each) 

 Aggressive Balanced Defensive Average 

Vs. 

Baseline 
59.5% 63.8% 63.2% 62.2% 

Table 3: Win rate of three style of agents against baseline 

(1,000 games each) 



 

 

This experiment confirms that the training performance is 

improved by discarding passive “no-op” from the learning 

data. 

Effect of the Maintaining Move 

To examine the effect of the maintaining move, we devel-

oped two learning processes, with both processes involving 

learning on a self-play basis. One process makes a moving 

decision at every time step, while the other makes a moving 

decision and sends the same decision for 9 more times in a 

row. We measured the entropy of the move policy to observe 

the effects. Entropy of the move policy for a given state 𝑠𝑡 

is as follows.  

H(𝑠𝑡) =  − ∑ 𝜋𝑚𝑜𝑣𝑒(𝑠𝑡) ∗ log 𝜋𝑚𝑜𝑣𝑒(𝑠𝑡) 

Generally, entropy gradually decreases as learning pro-

gresses. Figure 5 (b) shows that the entropy declines faster 

if the technique is applied. A noticeable difference was also 

observed in the quality of movement which the agent 

learned. Before the technique was applied, the agent did not 

make any improvement from random motion, but it learned 

to approach and retreat with data skip.  

The longer the decision was repeated, the agent’s reaction 

became less immediate, but the agent moved more consist-

ently. In this case, we tested 1, 3, 5, 10 ticks for maintaining 

time. 10 ticks (equivalent to 1 s) yielded the best perfor-

mance.  

Pro-Gamer Evaluation 

This section will address the results of both the pre-test and 

the Blind Match, and conditions to ensure fairness for hu-

man players. 

Conditions for Fairness 

Reaction Time 

When humans confront an AI in a real-time fighting game, 

the most important factor that affects the result is the reac-

tion time. Humans require some time to recognize the skill 

used by the opponent and to press a button by moving 

his/her hand. We applied an average of 230 ms of delay for 

the decision of an AI to be reflected in the game, so that the 

AI does not have an advantage. This amount of delay corre-

sponds to the average reaction time of professional players 

in BAB. 

Classes and Skill Set 

There are 11 classes in B&S, and each class has unique char-

acteristics. Since there exists relative superiority among 

classes, we fixed the class of both AI and pro-gamer as “De-

stroyer”. Destroyer is a class that has an infighting style and 

steadily appears in the B&S world championship. Addition-

ally, AI’s and pro-player’s skill trees were set as identical to 

ensure a fair match. The skill tree was chosen to match what 

the majority of users selected, based on the BAB user statis-

tics. 

Evaluation Results 

We invited two prominent pro-gamers, Yuntae Son (GC 

Busan, Winner of 2017 B&S World Championship), and 

Shingyeom Kim (GC Busan, Winner of 2015 and 2016 B&S 

World Championship), to test our agents before the Blind 

Match. Note that the total number of games played is differ-

ent for each style because the testers can play as many games 

as they want for each style. After the pre-test, we went for 

the Blind Match of 2018 World Championship. Our agents 

had matches against three pro-gamers: Nicholas Parkinson 

(EU), Shen Haoran (CHN), and Sungjin Choi (KOR). The 

video recording of the game highlights can be found at 

https://goo.gl/7VUTzV. 

The results of both the pre-test and the Blind Match are 

provided in Table 5. As can be seen from the table, the ag-

gressive agent dominated the game, while the other two 

types of agents had rather intense games. According to the 

interview after the pre-test, we found that this was partly be-

cause human players often need some breaks between fights, 

but the aggressive agent does not permit humans to have 

breaks between battles; rather, the attacks are continuous. 

Conclusion 

Using deep reinforcement learning, we created AI agents 

that competed evenly with professional players in a 3D real-

time fighting game. To accomplish this, we proposed a 

 Aggressive Balanced Defensive 

Pro-Gamer 1 5-1 2-1 1-2 

Pro-Gamer 2 4-0 2-4 4-1 

Blind Match 2-0 1-2 0-2 

Total 
11-1 

(92%) 

5-7 

(42%) 

5-5 

(50%) 

Table 5: Final score of AI vs. Human 

Figure 5. Results of data skipping experiments 



 

 

method to guide the fighting style with reward shaping. 

With three styles of agents, we introduced a novel self-play 

curriculum to enhance generalization performance. We also 

proposed data-skipping techniques to improve data effi-

ciency and enable efficient exploration. Consequently, our 

agents were able to compete with the best BAB pro-gamers 

in the world. The proposed training methods are generally 

applicable to other fighting games. 
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