
Optimistic Regret Minimization for Extensive-Form Games via Dilated
Distance-Generating Functions∗†

Gabriele Farina1, Christian Kroer2, Tuomas Sandholm1, 3, 4, 5

1 Computer Science Department, CMU 2 Columbia University
3 Strategic Machine Inc. 4 Strategy Robot, Inc. 5 Optimized Markets, Inc.

gfarina@cs.cmu.edu, christian.kroer@columbia.edu, sandholm@cs.cmu.edu

Abstract

We study the performance of optimistic regret-minimization
algorithms for both minimizing regret in, and computing Nash
equilibria of, zero-sum extensive-form games. In order to
apply these algorithms to extensive-form games, a distance-
generating function is needed. We study the use of the di-
lated entropy and dilated Euclidean distance functions. For
the dilated Euclidean distance function we prove the first ex-
plicit bounds on the strong-convexity parameter for general
treeplexes. Furthermore, we show that the use of dilated
distance-generating functions enable us to decompose the mir-
ror descent algorithm, and its optimistic variant, into local
mirror descent algorithms at each information set. This de-
composition mirrors the structure of the counterfactual regret
minimization framework, and enables important techniques
in practice, such as distributed updates and pruning of cold
parts of the game tree. Our algorithms provably converge at a
rate of T−1, which is superior to prior counterfactual regret
minimization algorithms. We experimentally compare to the
popular algorithm CFR+, which has a theoretical convergence
rate of T−0.5 in theory, but is known to often converge at a
rate of T−1, or better, in practice. We give an example matrix
game where CFR+ experimentally converges at a relatively
slow rate of T−0.74, whereas our optimistic methods converge
faster than T−1. We go on to show that our fast rate also
holds in the Kuhn poker game, which is an extensive-form
game. For games with deeper game trees however, we find
that CFR+ is still faster. Finally we show that when the goal is
minimizing regret, rather than computing a Nash equilibrium,
our optimistic methods can outperform CFR+, even in deep
game trees.

1 Introduction
Extensive-form games (EFGs) are a broad class of games
that can model sequential interaction, imperfect informa-
tion, and stochastic outcomes. To operationalize them they
must be accompanied by techniques for computing game-
theoretic equilibria such as Nash equilibrium. A notable
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success story of this is poker: Bowling et al. (2015) com-
puted a near-optimal Nash equilibrium for heads-up limit
Texas hold’em, while Brown and Sandholm (2017b) beat
top human specialist professionals at the larger game of
heads-up no-limit Texas hold’em. Solving extremely large
EFGs relies on many methods for dealing with the scale
of the problem: abstraction methods are sometimes used
to create smaller games (Gilpin and Sandholm 2007; ?;
Kroer and Sandholm 2014; Ganzfried and Sandholm 2014;
Brown, Ganzfried, and Sandholm 2015; Kroer and Sandholm
2016), endgame solving is used to compute refined solutions
to the end of the game in real time (Burch, Johanson, and
Bowling 2014; Ganzfried and Sandholm 2015; Moravcik et al.
2016), and recently depth-limited subgame solving has been
very successfully used in real time (Moravčík et al. 2017;
Brown, Sandholm, and Amos 2018; Brown and Sandholm
2019b). At the core of all these methods is a reliance on
a fast algorithm for computing approximate Nash equilib-
ria of the abstraction, endgame, and/or depth-limited sub-
game (Moravčík et al. 2017; Brown, Sandholm, and Amos
2018; Brown and Sandholm 2019b). In practice the most
popular method has been the CFR+ algorithm (Zinkevich et
al. 2007; Tammelin et al. 2015), which was used within all
three two-player poker breakthroughs (Bowling et al. 2015;
Moravčík et al. 2017; Brown and Sandholm 2017b). CFR+

has been shown to converge to a Nash equilibrium at a
rate of T−0.5, but in practice it often performs much bet-
ter, even outperforming faster methods that have a guar-
anteed rate of T−1 (Brown, Kroer, and Sandholm 2017;
Kroer et al. 2018; Kroer, Farina, and Sandholm 2018;
Brown and Sandholm 2019a).

Recently, another class of optimization algorithms has
been shown to have appealing theoretical properties. On-
line convex optimization (OCO) algorithms are online vari-
ants of first-order methods: at each timestep t they receive
some loss function `t (often a linear loss which is a gradient
of some underlying loss function), and must then recom-
mend a point from some convex set based on the series of
past points and losses. While these algorithms are gener-
ally known to have a T−0.5 rate of convergence when solv-
ing static problems, a recent series of papers showed that
when two optimistic OCO algorithms are faced against each



other, and they have some estimate of the next loss faced, a
rate of T−1 can be achieved (Rakhlin and Sridharan 2013a;
Rakhlin and Sridharan 2013b; Syrgkanis et al. 2015). In this
paper we investigate the application of these algorithms to
EFG solving, both in the regret-minimization setting, and
for computing approximate Nash equilibria at the optimal
rate of O(T−1). The only prior attempt at using optimistic
OCO algorithm in extensive-form games is due to Farina et
al. (2019). In that paper, the authors show that by restricting
to the weaker notion of stable-predictive optimism, one can
mix and match local stable-predictive optimistic algorithm
at every decision point in the game as desired and obtain
an overall stable-predictive optimistic algorithm that enables
O(T−0.75) convergence to Nash equilibrium. The approach
we adopt in this paper is different from that of Farina et
al. (2019) in that our construction does not allow one to
pick different regret minimizers for different decision points;
however, our algorithms converge to Nash equilibrium at the
improved rate O(T−1).

The main hurdle to overcome is that in all known OCO
algorithms a distance-generating function (DGF) is needed
to maintain feasibility via proximal operators and ensure that
the stepsizes of the algorithms are appropriate for the convex
set at hand. For the case of EFGs, the convex set is known
as a treeplex, and the so-called dilated DGFs are known
to have appealing properties, including closed-form iterate
updates and strong convexity properties (Hoda et al. 2010;
Kroer et al. 2018). In particular, the dilated entropy DGF,
which applies the negative entropy at each information set,
is known to lead to the state-of-the-art theoretical rate on
convergence for iterative methods (Kroer et al. 2018). An-
other potential DGF is the dilated Euclidean DGF, which
applies the `2 norm as a DGF at each information set. We
show the first explicit bounds on the strong-convexity pa-
rameter for the dilated Euclidean DGF when applied to the
strategy space of an EFG. We go on to show that when a
dilated DGF is paired with the online mirror descent (OMD)
algorithm, or its optimistic variant, the resulting algorithm
decomposes into a recursive application of local online mir-
ror descent algorithms at each information set of the game.
This decomposition is similar to the decomposition achieved
in the counterfactual regret minimization framework, where
a local regret minimizer is applied on the counterfactual
regret at each information set. This localization of the up-
dates along the tree structure enables further techniques, such
as distributing the updates (Brown and Sandholm 2017b;
Brown, Ganzfried, and Sandholm 2015) or skipping updates
on cold parts of the game tree (Brown and Sandholm 2017a).

It is well-known that the entropy DGF is the theoreti-
cally superior DGF when applied to optimization over a
simplex (Hoda et al. 2010). For the treeplex case where
the entropy DGF is used at each information set, Kroer et
al. (2018) showed that the strong theoretical properties of
the simplex entropy DGF generalize to the dilated entropy
DGF on a treeplex (with earlier weaker results shown by
Kroer et al. (2015)). Our results on the dilated Euclidean
DGF confirm this finding, as the dilated Euclidean DGF has
a similar strong convexity parameter, but with respect to the
`2 norm, rather than the `1 norm for dilated entropy (having

strong convexity with respect to the `1 norm leads to a tighter
convergence-rate bound because it gives a smaller matrix
norm, another important constant in the rate).

In contrast to these theoretical results, for the case of
computing a Nash equilibrium in matrix games it has been
found experimentally that the Euclidean DGF often per-
forms much better than the entropy DGF. This was shown
by Chambolle and Pock (2016) when using a particular ac-
celerated primal-dual algorithm (Chambolle and Pock 2011;
Chambolle and Pock 2016) and using the last iterate (as
opposed to the uniformly-averaged iterate as the theory sug-
gests). Kroer (2019) recently showed that this extends to the
theoretically-sound case of using linear or quadratic averag-
ing in the same primal-dual algorithm, or in mirror prox (Ne-
mirovski 2004) (the offline variant of optimistic OMD). In
this paper we replicate these results when using OCO algo-
rithms: first we show it on a particular matrix game, where
we also exhibit a slow T−0.74 convergence rate of CFR+ (the
slowest CFR+ rate seen to the best of our knowledge). We
show that for the Kuhn poker game the last iterate of opti-
mistic OCO algorithms with the dilated Euclidean DGF also
converges extremely fast. In contrast to this, we show that
for deeper EFGs CFR+ is still faster. Finally we compare
the performance of CFR+ and optimistic OCO algorithms
for minimizing regret, where we find that OCO algorithms
perform better.

2 Regret Minimization Algorithms
In this section we present the regret-minimization algorithms
that we will work with. We will operate within the framework
of online convex optimization (Zinkevich 2003). In this set-
ting, a decision maker repeatedly plays against an unknown
environment by making decision x1,x2, . . . ∈ X for some
convex compact set X . After each decision xt at time t, the
decision maker faces a linear loss xt 7→ 〈`t,xt〉, where `t

is a vector in X . Summarizing, the decision maker makes a
decision xt+1 based on the sequence of losses `1, . . . , `t as
well as the sequence of past iterates x1, . . . ,xt.

The quality metric for a regret minimizer is its cumulative
regret, which is the difference between the loss cumulated
by the sequence of decisions x1, . . . ,xT and the loss that
would have been cumulated by playing the best-in-hindsight
time-independent decision x̂. Formally, the cumulative regret
up to time T is

RT :=
T∑

t=1

〈`t,xt〉 − min
x̂∈X

{ T∑

t=1

〈`t, x̂〉
}
.

A “good” regret minimizer is such that the cumulative regret
grows sublinearly in T .

The algorithms we consider assume access to a distance-
generating function d : X → R, which is 1-strongly con-
vex (with respect to some norm) and continuously differ-
entiable on the interior of X . Furthermore d should be
such that the gradient of the convex conjugate ∇d(g) =
argmaxx∈X 〈g,x〉 − d(x) is easy to compute. Following
Hoda et al. (2010) we say that a DGF satisfying these proper-
ties is a nice DGF for X . From d we also construct the Breg-



man divergenceD(x ‖ x′) := d(x)−d(x′)−〈∇d(x′),x−
x′〉.

First we present two classical regret minimization algo-
rithms. The online mirror descent (OMD) algorithm pro-
duces iterates according to the rule

xt+1 = argmin
x∈X

{
〈`t,x〉+

1

η
D(x ‖ xt)

}
. (1)

The follow the regularized leader (FTRL) algorithm pro-
duces iterates according to the rule (Shalev-Shwartz and
Singer 2007)

xt+1 = argmin
x∈X

{〈 t∑

τ=1

`τ ,x

〉
+

1

η
d(x)

}
. (2)

OMD and FTRL satisfy regret bounds of the form RT ≤
O
(
D(x∗‖x1)L

√
T
)

(e.g. Hazan (2016)).
The optimistic variants of the classical regret minimization

algorithms take as input an additional vector mt+1, which is
an estimate of the loss faced at time t+ 1 (Chiang et al. 2012;
Rakhlin and Sridharan 2013a). Optimistic OMD produces
iterates according to the rule (Rakhlin and Sridharan 2013a)
(note that xt+1 is produced before seeing `t+1, while zt+1

is produced after)

xt+1 = argmin
x∈X

{
〈mt+1,x〉+

1

η
D(x ‖ zt)

}
, (3)

zt+1 = argmin
z∈X

{
〈`t+1, z〉+

1

η
D(z ‖ zt)

}
. (4)

Thus it is like OMD, except that xt+1 is generated by an
additional step taken using the loss estimate. This additional
step is transient in the sense that xt+1 is not used as a center
for the next iterate. OFTRL produces iterates according to
the rule (Rakhlin and Sridharan 2013a; Syrgkanis et al. 2015)

xt+1 = argmin
x∈X

{〈
mt+1 +

t∑

τ=1

`τ ,x

〉
+

1

η
d(x)

}
. (5)

Again the loss estimate is used in a transient way: it is used
as if we already saw the loss at time t+ 1, but then discarded
and not used in future iterations.

2.1 Connection to Saddle Points
A bilinear saddle-point problem is a problem of the form
minx∈X maxy∈Y

{
x>Ay

}
,where X ,Y are closed convex

sets. This general formulation allows us to capture, among
other settings, several game-theoretical applications such as
computing Nash equilibria in two-player zero-sum games. In
that setting, X and Y are convex polytopes whose description
is provided by the sequence-form constraints, and A is a real
payoff matrix (von Stengel 1996).

The error metric that we use is the saddle-point residual (or
gap) ξ of (x̄, ȳ), defined as ξ(x̄, ȳ) := maxŷ∈Y〈x̄,Aŷ〉 −
minx̂∈X 〈x̂,Aȳ〉. A well-known folk theorem shows that the
average of a sequence of regret-minimizing strategies for the
choice of losses `tX : X 3 x 7→ (−Ayt)>x, `tY : Y 3 y 7→

(A>xt)>y leads to a bounded saddle-point residual, since
one has

ξ(x̄, ȳ) =
1

T
(RTX +RTY). (6)

WhenX ,Y are the players’ sequence-form strategy spaces,
this implies that the average strategy profile produced by the
regret minimizers is a 1/T(RTX+RTY)-Nash equilibrium. This
also implies that by using online mirror descent or follow-
the-regularizer-leader, one obtains an anytime algorithm for
computing a Nash equilibrium. In particular, at each time T ,
the average strategy output by each of the two regret mini-
mizers forms a ε-Nash equilibrium, where ε = O(T−0.5).

2.2 RVU Property and Fast Convergence to
Saddle Points

Both optimistic OMD and optimistic FTRL satisfy the Regret
bounded by Variation in Utilities (RVU) property, as given
by Syrgkanis et al.:

Definition 1 (RVU property, (Syrgkanis et al. 2015)). We
say that a regret minimizer satisfies the RVU property if there
exist constants α > 0 and 0 < β ≤ γ, as well as a pair of
dual norms (‖ · ‖, ‖ · ‖∗) such that, no matter what the loss
functions `1, . . . , `T are,

RT ≤ α+β
T∑

t=1

‖`t−mt‖2∗−γ
T∑

t=1

‖xt−xt−1‖2. (RVU)

The definition given here is slightly more general than that
of Syrgkanis et al. (2015): we allow a general estimate mt

of `t, whereas their definition requires using mt = `t−1.
While the choice mt = `t−1 is often reasonable, in some
cases other definitions of the loss prediction are more natu-
ral (Farina et al. 2019). In practice, both optimistic OMD and
optimistic FTRL satisfy a parametric notion of the RVU prop-
erty, which depends on the value of the step-size parameter
that was chosen to set up either algorithm.

Theorem 1 (Syrgkanis et al. (2015)). For all step-size param-
eters η > 0, Optimistic OMD satisfies the RVU conditions
with respect to the primal-dual norm pair (‖ · ‖1, ‖ · ‖∞)
with parameters α = R/η, β = η, γ = 1/(8η), where R is a
constant that scales with the maximum allowed norm of any
loss function `.

Theorem 2. For all step-size parameters η > 0, OFTRL
satisfies the RVU conditions with respect to any primal-dual
norm pair (‖ · ‖, ‖ · ‖∗) with parameters α = ∆d/η, β =
η, γ = 1/(4η), where ∆d := maxx,y∈X {d(x)− d(y)}.

Our proof, available in the appendix of the full paper,
generalizes the work by Syrgkanis et al. (2015) by extending
the proof beyond simplex domains and beyond the fixed
choice mt = `t−1.

It turns out that this is enough to accelerate the conver-
gence to a saddle point in the construction of Section 2.1. In
particular, by letting the predictions be defined as mt

X :=

`t−1
X ,mt

Y := `t−1
Y , we obtain that the residual ξ of the aver-



age decisions (x̄, ȳ) satisfies

Tξ(x̄, ȳ) ≤ 2α′

η
+ η

T∑

t=1

(
‖−Ayt + Ayt−1‖2∗ + ‖A>xt −A>xt−1‖2∗

)

− γ ′

η

T∑

t=1

(
‖xt − xt−1‖2 + ‖yt − yt−1‖2

)

≤ 2α′

η
+

(
η‖A‖2op −

γ ′

η

)( T∑

t=1

‖xt − xt−1‖2

+
T∑

t=1

‖yt − yt−1‖2
)
,

where the first inequality holds by plugging (RVU) into (6),
and the second inequality by noting that the operator norm
‖ · ‖op of a linear function is equal to the operator norm of its
transpose. This implies that when the step-size parameter is
chosen as η =

√
γ ′

‖A‖op
, the saddle-point gap ξ(x̄, ȳ) satisfies

ξ(x̄, ȳ) ≤ 2α′‖A‖op

T
√
γ ′ = O(T−1).

3 Treeplexes and Sequence Form
We formalize a sequential decision process as follows. We
assume that we have a set of decision pointsJ . Each decision
point j ∈ J has a set of actions Aj of size nj . Given a
specific action at j, the set of possible decision points that the
agent may next face is denoted by Cj,a. It can be an empty
set if no more actions are taken after j, a. We assume that the
decision points form a tree, that is, Cj,a ∩ Cj′,a′ = ∅ for all
other convex sets and action choices j′, a′. This condition is
equivalent to the perfect-recall assumption in extensive-form
games, and to conditioning on the full sequence of actions and
observations in a finite-horizon partially-observable decision
process. In our definition, the decision space starts with a
root decision point, whereas in practice multiple root decision
points may be needed, for example in order to model different
starting hands in card games. Multiple root decision points
can be modeled by having a dummy root decision point with
only a single action.

The set of possible next decision points after choosing
action a ∈ Aj at decision point j ∈ J , denoted Cj,a, can
be thought of as representing the different decision points
that an agent may face after taking action a and then making
an observation on which she can condition her next action
choice. In addition to games, our model of sequential de-
cision process captures, for example, partially-observable
Markov decision processes and Markov decision processes
where we condition on the entire history of observations and
actions.

As an illustration, consider the game of Kuhn poker (Kuhn
1950). Kuhn poker consists of a three-card deck: king, queen,
and jack. The action space for the first player is shown in
Figure 1. For instance, we have: J = {0, 1, 2, 3, 4, 5, 6};
n0 = 1; nj = 2 for all j ∈ J \ {0}; A0 = {start}, A1 =
A2 = A3 = {check, raise}, A4 = A5 = A6 = {fold, call};
C0,start = {1, 2, 3}, C1,raise = ∅, C3,check = {6}; etc.

The expected loss for a given strategy is non-linear in
the vectors of probability masses for each decision point j.

X0

X3

X6

X2

X5

X1

X4

start

fold call fold call fold call

check raise check raise check raise

jack queen king

check raise check raise check raise

Figure 1: Sequential action space for the first player in the
game of Kuhn poker. denotes an observation point;
represents the end of the decision process.

This non-linearity is due to the probability of reaching each j,
which is computed as the product of the probabilities of all ac-
tions on the path to from the root to j. An alternative formula-
tion which preserves linearity is called the sequence form. In
the sequence-form representation, the simplex strategy space
at a generic decision point j ∈ J is scaled by the decision
variable associated with the last action in the path from the
root of the process to j. In this formulation, the value of a par-
ticular action represents the probability of playing the whole
sequence of actions from the root to that action. This allows
each term in the expected loss to be weighted only by the
sequence ending in the corresponding action. The sequence
form has been used to instantiate linear programming (von
Stengel 1996) and first-order methods (Hoda et al. 2010;
Kroer et al. 2015; Kroer et al. 2018) for computing Nash
equilibria of zero-sum EFGs. Formally, the sequence-form
representation X of a sequential decision process can be ob-
tained recursively, as follows: for every j ∈ J , a ∈ Aj ,
we let X↓j,a :=

∏
j′∈Cj,a X↓j′ , where Π denotes Cartesian

product; at every decision point j ∈ J , we let

X↓j := {(λ1, . . . , λnj
, λ1xa1 , . . . , λnj

xanj
) :

(λ1, . . . , λn) ∈ ∆nj ,xa ∈ X↓j,a ∀ a ∈ Aj},
where we assumed Aj = {a1, . . . , anj}.

The sequence form strategy space for the whole sequential
decision process is then X := {1} × X↓r, where r is the
root of the process. The first entry, identically equal to 1
for any point in X , corresponds to what is called the empty
sequence. Crucially, X is a convex and compact set, and the
expected loss of the process is a linear function over X . With
the sequence-form representation the problem of computing
a Nash equilibrium in an EFG can be formulated as a bilinear
saddle-point problem (see Section 2.1), where X and Y are
the sequence-form strategy spaces of the sequential decision
processes faced by the two players, and A is a sparse matrix
encoding the leaf payoffs of the game.

As we have already observed, vectors that pertain to the
sequence form have one entry for each sequence of the deci-
sion process. We denote with vφ the entry in v corresponding
to the empty sequence, and vja the entry corresponding to
any other sequence (j, a) where j ∈ J , a ∈ Aj . Sometimes,
we will need to slice a vector v and isolate only those entries
that refer to all decision points j′ and actions a′ ∈ Aj′ that



are at or below some j ∈ J ; we will denote such operation
as v↓j . Similarly, we introduce the syntax vj to denote the
subset of nj = |Aj | entries of v that pertain to all actions
a ∈ Aj at decision point j ∈ J . Finally, note that for any
j ∈ J − {r} there is a unique sequence (j′, a′), denoted
pj and called the parent sequence of decision point j, such
that j ∈ Cj′a′ . When j = r is the root decision point, we let
pr := φ, the empty sequence.

4 Dilated Distance Generating Functions
We will be interested in a particular type of DGF which is
suitable for sequential decision-making problems: a dilated
DGF. A dilated DGF is constructed by taking a sum over
suitable local DGFs for each decision point, where each
local DGF is dilated by the parent variable leading to the

decision point: d(x) =
∑
j∈J xpj dj

(
xj

xpj

)
. Each “local”

DGF dj is given the local variable xj divided by xpj , so that
xj

xpj
∈ ∆nj . The idea is that dj can be any DGF suitable

for ∆nj ; by multiplying dj by xpj and taking a sum over J
we construct a DGF for the whole treeplex from these local
DGFs. Hoda et al. (2010) showed that dilated DGFs have
many of the desired properties of a DGF for an optimization
problem over a treeplex.

We now present two local DGFs for simplexes, that are
by far the most common in practice. In the following we let
b be a vector in the n-dimensional simplex ∆n. First, the
Euclidean DGF d(b) = ‖b‖22, which is 1-strongly convex
with respect to the `2 norm; secondly, the negative entropy
DGF d(b) =

∑n
i=1 bi log(bi) (we will henceforth drop the

“negative” and simply refer to it as the entropy DGF), which
is 1-strongly convex with respect to the `1 norm. The strong
convexity properties of the dilated entropy DGF were shown
by Kroer et al. (2018) (with earlier weaker results shown
by Kroer et al. (2015)). However, for the dilated Euclidean
DGF a setup for achieving a strong-convexity parameter of
1 was unknown until now; Hoda et al. (2010) show that a
strong-convexity parameter exists, but do not show what it is
for the general case (they give specific results for a particular
class of uniform treeplexes). We now show how to achieve
this.

We are now ready to state our first result on dilated regular-
izers that are strongly convex with respect to the Euclidean
norm:
Theorem 3. Let d(x) =

∑
j∈J xpjdj(xj/xpj ) where for

all j, dj is µj-strongly convex with respect to the Eu-
clidean norm over ∆nj . Furthermore, define σja :=

µj

2 −∑
j′∈Cja

µj′ , and σ̄ := minja σja. Then, d is σ̄-strongly
convex with respect to the Euclidean norm over X .

We can immediately use Theorem 3 to prove the following
corollary:
Corollary 1. Let σ̄ > 0 be arbitrary, and for all j let dj be
a µj-strongly convex function over ∆nj with respect to the
Euclidean norm, where the µj’s satisfy

µj = 2σ̄ + 2 max
a∈Aj

∑

j′∈Cja
µj′ . (7)

Then, d(x) =
∑
j∈J xpjdj(xj/xpj ) is σ̄-strongly convex

over X with respect to the Euclidean norm.

5 Local Regret Minimization
We now show that OMD and Optimistic OMD run on a
treeplex X with a dilated DGF can both be interpreted as
locally minimizing a modified variant of loss at each infor-
mation set, with correspondingly-modified loss predictions.
The modified local loss at a given information set j takes into
account the loss and DGF below j by adding the expectation
with respect to the next iterate xt↓j . In practice this modified
loss is easily handled by computing xt bottom-up, thereby
visiting j after having visited the whole subtree below.

We first show that the problem of computing the prox
mapping, the minimizer of a linear term plus the Bregman
divergence, decomposes into local prox mappings at each
simplex of a treeplex. This will then be used to show that
OMD and Optimistic OMD can be viewed as a tree of local
simplex-instantiations of the respective algorithms.

5.1 Decomposition into Local Prox Mappings
with a Dilated DGF

We will be interested in solving the following prox mapping,
which takes place in the sequence form:

Prox(g, x̂) = argmin
x∈X

{
〈g,x〉+D(x ‖ x̂)

}
. (8)

The reason is that the update applied at each iteration of
several OCO algorithms run on the sequence-form polytope
ofX can be described as an instantiation of this prox mapping.
We now show that this update can be interpreted as a local
prox mapping at each decision point, but with a new loss ĝj
that depends on the update applied in the subtree beneath j.

Proposition 1 (Decomposition into local prox mappings). A
prox mapping (8) on a treeplex with a Bregman divergence
constructed from a dilated DGF decomposes into local prox
mappings at each decision point j where the solution is as
follows:

x∗j = xpj · argmin
bj∈∆nj

{
〈ĝj , bj〉+Dj

(
bj

∥∥∥∥
x̂j
x̂pj

)}
,

where

ĝj,a = gj,a +
∑

j′∈Cj,a

[
d∗↓j′

(
− g↓j′ +∇d↓j′(x̂↓j′)

)

−dj′
(

x̂j
x̂pj

)
+

〈
∇dj′

(
x̂j′

x̂pj′

)
,
x̂j′

x̂pj′

〉]
.

Hoda et al. (2010) and Kroer, Farina, and Sandholm (2018)
gave variations on a similar result: that the convex conjugate
d∗↓j(−g) can be computed in bottom-up fashion similar to
the recursion we show here. Proposition 1 is slightly different
in that we additionally show that the Bregman divergence
also survives the decomposition and can be viewed as a local
Bregman divergence. This latter difference will be necessary
for showing that OMD can be interpreted as a local RM.



5.2 Decomposition into Local Regret Minimizers
With Proposition 1 it follows almost directly that OMD and
Optimistic OMD can be seen as a set of local regret mini-
mizers, one for each simplex. Each produces iterates from
their respective simplex, with the overall strategy produced
by then applying the sequence-form transformation to these
local iterates.
Theorem 4. OMD with a dilated DGF for a treeplex X cor-
responds to running OMD locally at each simplex j, with
the local loss ˆ̀t constructed according to Proposition 1. Op-
timistic OMD corresponds to the optimistic variant of this
local OMD with local loss predictions ˆ̀t, m̂t+1

j again con-
structed according to Proposition 1 using xt as Bregman
divergence center and xt+1 for aggregating losses below
each simplex. Here the modified loss uses zt↓j′ and xt+1

as Bregman divergence center and aggregating loss below,
respectively. The prediction m̂t+1

j uses zt↓j′ and zt+1.
Unlike OMD and its optimistic variant, it is not the case

that FTRL has a nice interpretation as a local regret min-
imizer. The reason is that the prox mapping in (2) or (5)
minimizes the sum of losses, rather than the most recent
loss. Because of this, the expected value 〈∑t

τ=1 `
τ
↓j ,x

t+1
↓j 〉

at simplex j, which influences the modified loss at parent sim-
plexes, is computed based on xt+1 for all t losses. Thus there
is no local modified loss that could be received at rounds 1
through t that accurately reflects the modified loss needed in
Proposition 1.

6 Experimental Evaluation
We experimentally evaluate the performance of optimistic re-
gret minimization methods instantiated with dilated distance-
generating functions. We experiment on three games:
• Smallmatrix, a small 2 × 2 matrix game. Given a mixed

strategy x = (x1, x2) ∈ ∆2 for Player 1 and a mixed strat-
egy y = (y1, y2) ∈ ∆2 for Player 2, the payoff function
for player 1 is u(x, y) = 5x1y1 − x1y2 + x2y2.

• Kuhn poker, already introduced in Section 3. In Kuhn
poker, each player first has to put a payment of 1 into the
pot. Each player is then dealt one of the three cards, and
the third is put aside unseen. A single round of betting
then occurs: first, Player 1 can check or bet 1. Then,
– If Player 1 checks Player 2 can check or raise 1.
∗ If Player 2 checks a showdown occurs; if Player 2

raises Player 1 can fold or call.
· If Player 1 folds Player 2 takes the pot; if Player 1

calls a showdown occurs.
– If Player 1 raises Player 2 can fold or call.
∗ If Player 2 folds Player 1 takes the pot; if Player 2 calls

a showdown occurs.
If no player has folded, a showdown occurs where the
player with the higher card wins.

• Leduc poker, a standard benchmark in imperfect-
information game solving (Southey et al. 2005). The game
is played with a deck consisting of 5 unique cards with
2 copies of each, and consists of two rounds. In the first
round, each player places an ante of 1 in the pot and re-
ceives a single private card. A round of betting then takes

place with a two-bet maximum, with Player 1 going first.
A public shared card is then dealt face up and another
round of betting takes place. Again, Player 1 goes first,
and there is a two-bet maximum. If one of the players has a
pair with the public card, that player wins. Otherwise, the
player with the higher card wins. All bets in the first round
are 1, while all bets in the second round are 2. This game
has 390 decision points and 911 sequences per player.

Fast Last-Iterate Convergence. In the first set of experi-
ments (Figure 2, top row), we compare the saddle-point gap
of the strategy profiles produced by optimistic OMD and
optimistic FTRL to that produced by CFR and CFR+. Op-
timistic OMD and optimistic FTRL were set up with the
step-size parameter η = 0.1 in Smallmatrix and η = 2
in Kuhn Poker, and the plots show the last-iterate conver-
gence for the optimistic algorithms, which has recently re-
ceived attention in the works by Chambolle and Pock (2016)
and Kroer (2019). Finally, we instantiated optimistic OMD
and optimistic FTRL with the Euclidean distance generat-
ing function as constructed in Corollary 1. The plots show
that—at least in these shallow games—optimistic methods
are able to produce even up to 12 orders of magnitude better-
approximate saddle-points than CFR and CFR+.

Interestingly, Smallmatrix appears to be a hard instance
for CFR+: linear regression on the first 20 000 iterations of
CFR+ shows, with a coefficient of determination of roughly
0.96, that log ξ(xT∗ ,y

T
∗ ) ≈ −0.7375 · log(T ) − 2.1349,

where (xT∗ ,y
T
∗ ) is the average strategy profile (computed

using linear averaging, as per CFR+’s construction) up to
time T . In other words, we have evidence of at least one game
in which the approximate saddle-point computed by CFR+

experimentally has residual bounded below by Ω(T−0.74).
This observation suggests that the analysis of CFR+ might
actually be quite tight, and that CFR+ is not an accelerated
method.

Figure 2 (bottom left) shows the performance of OFTRL in
Leduc Poker, compared to CFR and CFR+ (we do not show
optimistic OMD, which we found to have worse performance
than OFTRL). Here OFTRL performs worse than CFR+.
This shows that in deeper games, more work has to be done
to fully exploit the accelerated bounds of optimistic regret
minimization methods.

Comparing the Cumulative Regret. We also compared the
algorithms based on the sum of cumulative regrets (again we
omit optimistic OMD, which performed worse than OFTRL).
In all three games, OFTRL leads to lower sum of cumulative
regrets. Figure 2 (bottom right) shows the performance of
OFTRL in Leduc Poker. Here, we used the usual average of
iterates x̄ := 1/T

∑T
t=1 x

t (note that the choice of averaging
strategy has no effect on the bottom right plot.)

OFTRL’s performance matches the theory from Theorem 2
and Section 2.2. In particular, we observe that while OFTRL
does not beat the state-of-the-art CFR+ in terms of saddle-
point gap, it beats it according to the regret sum metric. The
fact that CFR+ performs worse with respect to the regret
sum metric is somewhat surprising: the entire derivation of
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Figure 2: (Left and upper right) Saddle-point gap as a function of the number of iterations. The plots show the last-iterate
convergence for OOMD and OFTRL.(Lower right) Sum of cumulative regret for both players in Leduc. Optimistic OMD
(OOMD) and OFTRL use step-size parameter η = 0.1 in Smallmatrix and η = 2 in Kuhn. OFTRL uses step-size parameter
η = 200 in Leduc.

CFR and CFR+ is based on showing bounds on the regret
sum. However, the connection between regret and saddle-
point gap (or exploitability) is one-way: if the two regret
minimizers (one per player) have regret R1 and R2, then
the saddle point gap can be easily shown to be less than or
equal to (R1 + R2)/T . However, nothing prevents it from
being much smaller than (R1 +R2)/T . What we empirically
find is that for CFR+ this bound is very loose. We are not
sure why this is the case, and it potentially warrants further
investigation in the future.

7 Conclusions
We studied how optimistic regret minimization can be applied
in the context of extensive-form games, and introduced the
first instantiations of regret-based techniques that achieve
T−1 convergence to Nash equilibrium in extensive-form
games. These methods rely crucially on having a tractable
regularizer to maintain feasibility and control the stepsizes
on the domain at hand—in our case, the sequence-form poly-
tope. We provided the first explicit bound on the strong
convexity properties of dilated distance-generating functions
with respect to the Euclidean norm. We also showed that
when optimistic regret minimization methods are instantiated
with dilated distance-generating functions, the regret updates
are local to each information set in the game, mirroring the
structure of the counterfactual regret minimization frame-
work. This localization of the updates along the tree structure
enables further techniques, such as distributing the updates
or skipping updates on cold parts of the game tree. Finally,
when used in self play, these optimistic regret minimization
methods guarantee an optimal T−1 convergence rate to Nash
equilibrium.

We demonstrate that in shallow games, methods based on
optimistic regret minimization can significantly outperform
CFR and CFR+—even up to 12 orders of magnitude. In
deeper games, more work has to be done to fully exploit the
accelerated bounds of optimistic regret minimization meth-
ods. However, while the strong CFR+ performance in large
games remains a mystery, we elucidate some points about its
performance—including showing that its theoretically slow
convergence bound is somewhat tight. Finally, we showed
that when the goal is minimizing regret, rather than comput-
ing a Nash equilibrium, optimistic methods can outperform
CFR+ even in deep game trees.
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