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Abstract

Hanabi is a cooperative game that challenges existing AI
techniques due to its focus on modeling the mental states of
other players to interpret and predict their behavior. While
there are agents that can achieve near-perfect scores in the
game by agreeing on some shared strategy, comparatively lit-
tle progress has been made in ad-hoc cooperation settings,
where partners and strategies are not known in advance. In
this paper, we show that agents trained through self-play us-
ing the popular Rainbow DQN architecture fail to cooperate
well with simple rule-based agents that were not seen during
training and, conversely, when these agents are trained to play
with any individual rule-based agent, or even a mix of these
agents, they fail to achieve good self-play scores.

Cooperative multi-agent problems with hidden information
are challenging for humans and AI systems due to the need
to model other actors’ mental states. This model can be
used both to predict their future behavior and to infer un-
seen features of the world through the lens of their ob-
served behavior. The ability to impute distinct mental states
to oneself and others has been referred to as having a the-
ory of mind (Premack and Woodruff 1978). Hanabi (Antoine
Bauza, 2010) is a cooperative card game that has received
attention of AI researchers because strategies for playing it
rely heavily on theory of mind and communication.

While agents that achieve near-perfect scores in a self-
play setting using a shared strategy have been developed
for the game (Bouzy 2017; Foerster et al. 2018; Wu 2016),
comparatively little progress has been made on ad-hoc coop-
eration settings, where the identity (and behavior) of other
agents is not known in advance. In particular, there are to
our knowledge no Reinforcement Learning (RL) agents de-
signed to play either with humans or with simple rule-based
agents inspired by human play such as the ones described
by (Walton-Rivers et al. 2017).

In this paper, we examine the behavior of RL agents
trained using the Rainbow DQN architecture (Hessel et
al. 2018) when paired with the aforementioned rule-based
agents. The main question we address is: can these RL
agents cooperate well with partners that were not seen dur-
ing training?

We answer this question negatively in two ways: first, we

show that Rainbow agents trained purely through self-play
perform very poorly when paired with the rule-based agents
we selected.

Second, we show that Rainbow agents that were trained
with one or more rule-based agents as partners fail to play
well with a particular “unseen” partner: itself. In other
words, it fails to perform well in self-play, despite being able
to achieve reasonable scores with its training partners.

Related Work
Hanabi
In Hanabi, players draw from a pool of cards featuring a
color and a numerical rank and attempt to collectively play
cards from each color in ascending order of rank, making
one pile for each color. However, each player can only see
cards in the other players’ hands, but not their own cards. If
a card is played in the wrong order, the group loses a life,
and if three lives are lost the game is over.

Communication between players is not allowed except for
a limited number of hint actions. Each hint action costs an
information token from a shared pool and allows the active
player to choose one of the other players and point to all the
cards with a chosen color or rank on that player’s hand. A
player may also discard a card from their hand in order to
recoup an information token for the group, but in doing so
risks discarding a card that was necessary to complete one
of the piles (as the number of cards with each rank and color
in the deck is limited). When the deck runs out, players take
one last turn each, and then the game is over.

The group scores one point for each card played correctly,
up to a maximum of 25, corresponding to five cards played
for each of the five colors. If the group loses all lives it scores
zero regardless of its partial score up to that point. Some pre-
vious research, such as (Walton-Rivers et al. 2017), use an
alternative “lenient” scoring scheme where the group keeps
their partial score even if all lives run out. Unless otherwise
noted, all scores reported in this paper correspond to the first
(“strict”) scheme and the 2-player version of the game.

The first agents for playing Hanabi are by (Osawa 2015),
whose best agent attempts to play cards that are known to
be playable (“safe”), discard cards that are known to never
be playable again (“useless”) and give hints about playable



cards owned by other players, keeping track of the informa-
tion other players already know to avoid redundant hints.

Since then, many researchers have addressed AI problems
using Hanabi as testbed. Some of the most successful (Cox
et al. 2015; Bouzy 2017) are based on a “hat-guessing”
convention which, by agreeing on a clever encoding of the
meaning of hints that can be interpreted by the whole table
at once (not just the receiving player), can achieve average
scores above 24 on the 4- and 5-player versions of the game.

Eger and colleagues created an “intentional” agent for
Hanabi, which is meant to be easily interpretable, and eval-
uated it with humans (Eger, Martens, and Córdoba 2017).
Other work such as (Gottwald, Eger, and Martens 2018)
and (Eger and Gruss 2019) explore the use of external com-
munication channels, such as eye gaze or the timing between
actions which could (wittingly or unwittingly) play a role in
games involving humans.

While most of these authors relied on their own imple-
mentations of the game, two environments have emerged
and been made openly available as resources for new re-
searchers: the CoG (previously CIG) competition Java envi-
ronment (Walton-Rivers, Williams, and Bartle 2019), which
combines many of the previous agents in a rule-based
paradigm and the Hanabi Learning Environment (Bard et al.
2020), focused on reinforcement learning.

Rule-Based Agents and the CoG competition
environment
The CoG competition environment (Walton-Rivers,
Williams, and Bartle 2019) combines many of the previous
agents in a single rule-based paradigm. They provide an
environment, written in Java, for simulating the game,
which also allows the user to specify a new agent by simply
providing an ordered list of rules which the agent should
follow. Their environment comes with enough rules to re-
produce various agents in the literature up to that point, plus
some agents implemented by the authors (Walton-Rivers
et al. 2017). Users of the environment can also specify
new rules. Out of the agents considered in (Walton-Rivers
et al. 2017), the best at self-play is Piers, which (in our
Java reimplementation) achieves a score of 17.31. They
organized a competition, which ran in 2018 and 2019 at the
CIG/CoG conferences using this environment, which we
will refer to from now on as the Java environment.

Building upon this paradigm, a method for creating new
agents using a Genetic Algorithm to search for a sequence
of rules that maximizes score either in the self-play set-
ting or when paired with other rule-based agents was pro-
posed in (Canaan et al. 2018b). The method was expanded
in (Canaan et al. 2019) to procedurally generate agents
which display behaviorally diverse behaviors using MAP-
Elites (Mouret and Clune 2015). Agents generated through
such a process could be useful for the purposes of train-
ing RL agents, but, for this paper, would require us to re-
implement a larger number of rules from the Java environ-
ment into the Python environment than the ones needed to
reproduce the seven rule-based agents discussed. Another
work that builds upon the Java environment is the Monte
Carlo Tree Search (MCTS) agent by (Goodman 2019), win-

ner of the 2018 and 2019 competitions. This agent achieves
a score of 20.5 at self-play in the “lenient” scoring scheme.

The Hanabi Learning Environment
Bard and colleagues recently introduced an environment for
Reinforcement Learning in Hanabi written in Python (Bard
et al. 2020), which we will refer to as the Python en-
vironment. The paper introduces a Rainbow DQN agent
(Rainbow) and an Actor Critic Hanabi Agent (ACHA).
Rainbow is based on an architecture by (Hessel et al. 2018)
which achieved state-of-the-art perfomance on the Arcade
Learning Environment (Bellemare et al. 2013) by combin-
ing multiple improvements to the DQN variant of Q learn-
ing (Mnih et al. 2013). In Hanabi, Rainbow achieves a self-
play score of 20.64 after 100 million training steps.

ACHA is based on the Importance Weighted Actor-
Learner architecture (Espeholt et al. 2018) and achieves a
self-play score of 22.73 in Hanabi with 10 billion training
steps.

The state-of-the-art for 2-player Hanabi is the Bayesian
Action Decoder (BAD), described in (Foerster et al. 2018).
It achieves a self-play score of 24.17 with 16.3 billion train-
ing steps by exploring the space of deterministic policies.

While ACHA and BAD are more powerful than
Rainbow, we chose to use Rainbow as basis of this work
for three reasons: first, it is the only one with an open-
source implementation (which accompanies the Python en-
vironment). Second, it is shown to achieve good results with
a much more modest training budget. Finally, it is the only
one of the three that we deemed to have any possibility of
cooperating well with the rule-based agents we’re interested
in; both BAD and ACHA have been observed to make use
of exotic conventions (such as using a color hint to indicate
that an arbitrary card is playable or should be discarded).
BAD is designed from the ground up to learn a shared con-
vention, and ACHA was observed to learn different conven-
tions with each training run, and as a result different ACHA
agents play very badly with each other.

Experiments
All experiments are based on the two-player version of the
game, and we used the strict scoring scheme (where the
group scores zero if it runs out of lives) during both train-
ing and evaluation.

Experiments were run on a variety of computers: a macOS
Mojave iMac with a 3.8GHz Intel Core i5 processor (quad-
core), a macOS Sierra MacBook Pro with a 2.9 Intel Core
i7 processor (quad-core), a Linux machine with a 3.5 GHz
Intel Core i7-6950X Extreme Edition (10 core) and Cuda
5.1 with three Titan X GPUs and a Linux machine with a
3.5 GHz Intel Core i7-5930K 3.5 GHz and Cuda 5.1 with
three GTX 1080 GPUs . Performance varied significantly
depending on the computer being used, the experiment be-
ing considered and how many processes (including some not
related to this paper) were run at a time on each computer,
with agents training at anywhere from 100 to 400 steps per
second.

The Java and Python code for all experiments is available
at https://github.com/rocanaan/hanabi-ad-hoc-learning.



Rule-based agent Self-Play (Java) Score (Python)
IGGI 15.77 15.76

Internal 11.17 10.01
Outer 14.56 13.78

LegalRandom 0.00 0.00
V DB 13.39 16.12
Flawed 0.00 0.00
Piers 17.31 17.06

Table 1: Comparison of scores between the Java and Python
implementations of the seven rule-based agents. The largest
Standard Deviation (SD) of any score is 4.9 and the largest
Standard Error of the Mean (SEM) is 0.16.

Re-implementation of Rule-based Agents
Our first step was to re-implement, in the Python environ-
ment, the seven rule-based agents Walton-Rivers and coau-
thors use as baseline for ad-hoc play in (Walton-Rivers et
al. 2017). Some of these agents were implemented for that
paper, while other were themselves re-implementations of
agents that were previously published by other authors. We
give a brief overview of these agents’ behavior below:

LegalRandom is the simplest of the rule-based agents.
It simply picks one of the legal actions at random to play at
each turn.

Internal and Outer were originally designed by (Osawa
2015) and both prioritize playing a card known to be safe,
followed by discarding a card known to be useless, followed
by giving a hint (prioritizing playable cards), followed by
discarding randomly. The difference is that Internal does
not keep track of other player’s knowledge about their cards,
and is therefore liable of giving repeated hints. Outer keeps
track of this knowledge and will always provide new infor-
mation with each hint.

V DB (short for van den Bergh) was originally designed
by (van den Bergh et al. 2016) by using game simulations
to explore variations in the high-level strategy taken by the
Osawa agents. Among these variations, the agent will take
risks in playing cards that are not guaranteed to be safe, as
long as the probability of being playable is greater than a
certain threshold (empirically determined to be 60%). The
agent will also give hints about useless cards or will give
hints about as many cards as possible if no playable card
can be hinted at.

IGGI and Piers were first introduced in (Walton-Rivers
et al. 2017). IGGI only plays safe cards, and also prefers
to discard its oldest card (the one that has been held for the
longest time in hand) if no card in its hand is known to be
useful. This potentially makes it more predictable to its part-
ners. Piers uses the same playability threshold of 60% as
V DB, but will also play its most likely playable card at the
last round of the game if more than one life is left (in an
attempt to score one extra point) and will only give hints
about useless cards if there are fewer than 4 information to-
kens left.

Finally, Flawed was also introduced in (Walton-Rivers
et al. 2017) to be deliberately bad when playing with agents
who aren’t adapting to its behavior. It achieves this by giving

hints at random and also by playing its most likely playable
card with a threshold of just 25%. It is intended to play rea-
sonably well with agents that give it lots of information, but
will start playing in a very risky manner otherwise.

Although all of these agents can be described at a high
level in a few sentences, there is surprising nuance in their
implementation. For example, some rules for playing a safe
card differ in whether they consider only “positive” informa-
tion from received hints or also “negative” information from
the same hints (cards identified as not being a certain color
or rank) or information available by a process of elimina-
tion after counting the cards visible in the discard pile and
other players’ hand. Many hint rules also differ in how they
handle cases where multiple hints would satisfy the rule:
some break the tie randomly, some consider what informa-
tion is already known by the player and some prefer hinting
about colors than ranks (or vice-versa). We attempted to be
as faithful as possible to the rules as implemented in the Java
environment, but it is possible that some nuances might have
been missed, leading to small discrepancies.

For the remainder of the paper, we will use the agents’
name with a J or P subscript to denote either the origi-
nal Java implementation or our re-implementation of a rule-
based agent e.g. PiersJ (Java) or PiersP (Python).

Self-Play Rainbow Agents
We trained five independent instances of Rainbow in the
self-play regime. We denote those by RainbowSPi where i
is an index from 1 to 5. Although (Bard et al. 2020) has pre-
viously trained Rainbow agents using the exact same proce-
dure, they were either validated in self-play mode or with
instances of ACHA as partners, where they were shown
to not cooperate well. As previously discussed, they were
shown to achieve very low scores when paired with ACHA,
but it is unclear if this was simply because ACHA is a bad
cooperator or if Rainbow itself is also not good at playing
with other strategies. The authors have noted, however, that
Rainbow seems to converge on the same strategy every time
it is trained, but did not provide numerical results showing
how well independently trained instances of Rainbow play
together.

So our training of RainbowSP serves two purposes: first,
it enables us to establish numerically whether Rainbow
learns strategies that play well together from run to run, and
secondly and most importantly, whether it plays well with
human-inspired strategies such as those used by the rule-
based agents. To our knowledge, the only other work where
a learning agent (as opposed to rule-based or those based on
tree-search) has been paired with human-inspired agents for
evaluation has been in (Bard et al. 2020),where ACHA was
paired with SmartBot (O’Dwyer 2018), achieving a score of
effectively zero.

The architecture we use for this paper is the same as used
in (Bard et al. 2020): it is a 2-layer Multi-Layer Perceptron
with 512 nodes per hidden layer, that takes a representation
of the game state composed of 658 binary values and outputs
one of the up to 20 legal actions to take. All hyperparameters
were the same as those used in the original paper.



IGGI Internal Outer LegalRandom V DB Flawed Piers Average
IGGI 15.87 12.48 15.25 0.00 16.50 0.15 16.85 11.20

Internal 12.48 10.20 11.81 0.00 13.39 0.01 13.67 8.79
Outer 15.25 11.81 13.79 0.00 14.85 0.04 15.65 10.20

LegalRandom 0.01 0.00 0.00 0.00 0.01 0.00 0.02 0.01
V DB 16.50 13.39 14.85 0.01 16.06 0.15 17.23 11.17
Flawed 0.15 0.01 0.04 0.00 0.15 0.00 0.16 0.07
Piers 16.85 13.67 15.65 0.02 17.23 0.16 16.92 11.50

Table 2: Results obtained when pairing rule-based agent with one another. In the diagonal, the self-play performance for each
of the agents. The maximum SD and SEM are 4.77 and 0.15 respectively.

RainbowSP1 RainbowSP2 RainbowSP3 RainbowSP4 RainbowSP5 Average
RainbowSP1 17.79 19.01 18.30 19.11 18.93 18.63
RainbowSP2 19.01 18.95 18.31 19.22 18.49 18.80
RainbowSP3 18.30 18.31 18.13 19.33 18.74 18.56
RainbowSP4 19.11 19.22 19.33 19.19 18.53 18.08
RainbowSP5 18.93 18.49 18.74 18.53 18.70 18.68

Table 3: Results obtained when pairing each version of RainbowSP agents with one another. In the diagonal, the self-play
performance for each of the agents. The maximum SD and SEM are 4.2 and 0.13 respectively.

RainbowSP1 was trained for 37.5 million steps.
RainbowSP2 was trained for 55 million steps.
RainbowSP3, RainbowSP4 and RainbowSP5 were
trained for 47.5 million steps each.

Agents Paired with Known Partners for Training
Our next step was to train RL agents that are specialized
at playing with each of the seven rule-based agents. We
paired each rule-based agent with a new instance of the
same Rainbow DQN architecture described above, using the
scores obtained in the paired games as training reward. The
resulting agents will be collectively referred to as paired
rainbow agents, and individually by a subscript indicating
the name of the rule-based agent used during training e.g.
RainbowPiers.

These agents can illustrate the performance that can be
obtained when training a RL agent to play with a spe-
cific partner and, more interestingly, could help us explore
whether some rule-based agents serve as better training part-
ners than others, by comparing the performance of each of
those agents with partners other than the ones they trained
with (including themselves). These agents were trained for
a total of 27.5 million steps each.

Agent Paired with Unknown Partner for Training
We also ran a set-up where the partner used for each game
during training was sampled uniformly from the pool of
seven rule-based agents. We call this agent RainbowAll, as
it had access, during training time, to all seven rule-based
agents.

This agent can be used to illustrate an ad-hoc scenario
where the agent has played with all the agents it will en-
counter during validation, but their identity is unknown both
during training and validation. It was also trained for a total
of 27.5 million steps.

Results
All results below were achieved by playing 1000 games be-
tween the relevant pair of agents after training. With the ex-
ception of self-play games involving the original rule-based
agents in the Java environment for validation purposes, all
games were played in the Python environment.

Validation of Rule-Based Re-Implementations
We validated our new rule-based agents by comparing the
self-play score of each rule-based agent in the Java environ-
ment as implemented in (Canaan et al. 2018a) and the new
versions implemented in Python for this paper. The results
of this validation are shown on table 1.

Most agents are within 1 point of their original score
on the Java environment. V DB shows the greatest discrep-
ancy with difference over 2 points. These results are, for the
most part, comparable to the differences of 0.7 to 1.5 points
by (Walton-Rivers et al. 2017) when they evaluated their
own re-implementations of Internal, Outer and V DB. In-
terestingly, the difference between V DBJ and V DBP van-
ishes in the 3-player setting of the game (the one the agent
was originally developed for), and there is a 1.5 point gap
between the V DB score reported in (Walton-Rivers et al.
2017) and (van den Bergh et al. 2016).

Since no previous work has attempted to bridge the gap
between the Java and Python environments, it is impossible
to know how much of the discrepancy is due to errors on our
side or due to possible subtle differences between the envi-
ronments themselves. Regardless, most agents achieve com-
parable scores between the two versions (with the big ex-
ception of V DB achieving better scores in our new Pyhton
version) so they were deemed good enough for our purposes
of providing RL agents with partners that implement simple,
but reasonably effective (with the exception of Random and
Flawed) human-inspired strategies.



IGGI Internal Outer Random V DB Flawed Piers Average
RainbowSP1 4.03 3.80 4.28 0.00 5.98 0.03 7.71 3.69
RainbowSP2 4.08 3.76 7.05 0.00 8.94 0.02 8.83 4.67
RainbowSP3 3.64 2.44 5.99 0.00 8.00 0.01 7.74 3.97
RainbowSP4 4.76 3.37 5.63 0.00 8.07 0.02 8.35 4.31
RainbowSP5 4.51 3.65 5.56 0.00 8.62 0.07 8.03 4.35

Table 4: Results obtained when pairing each version of RainbowSP agents with each rule-based agent. The maximum SD and
SEM are 5.32 and 0.17 respectively.

Note that LegalRandom and Flawed scoring zero is ex-
pected: both of these agents will too often play cards at ran-
dom, almost certainly losing all lives and scoring zero as re-
sult. The average self-play score across all seven rule-based
Python agents was 10.39, which is a useful number to com-
pare to the performance achieved by rainbow agents paired
with the rule-based agents: a lower number means that the
rule-based agents would be better off, on average, paired
with themselves.

To get a feel for whether these agents play well with each
other, we also put the seven Python implementations of the
rule-based agents to play among themselves. Table 2 shows
the results of playing each match-up for 1000 games, ran-
domizing which player goes in the starting position.

All agents except Flawed and LegalRandom achieve
reasonable scores, with the agents that are better at self-play
also performing better when paired with the others. Weaker
agents seem to benefit from being paired with stronger
agents, with Internal and Outer achieving better scores
when paired with IGGI , V DB and Piers than their own
self-play scores.

Performance of Rainbow Agents trained through
Self-Play
We then took the five instances of Rainbow trained through
self-play and paired them with each other for evaluation. The
purpose was to verify and quantify the observation made
by (Bard et al. 2020) that independently trained versions of
the agent play well with each other. The result of this evalua-
tion can be seen on table 3, which confirms their observation.

All agents achieve similar performance with other agents
as their self-play performances. Note that the first agent is, in
fact, better off being paired with any of the other four agents
than with itself, possibly due to having fewer training steps
and the worst self-play performance. Agent 4 has both the
best self-play performance and the best average score when
paired with the other four agents.

Next, we paired each of those five agents with the seven
rule-based agents we implemented. The results can be seen
on table 4. Unfortunately, the Rainbow agents were unable
to play well with the rule-based agents. While the rule-
based agents have a combined self-play score of 10.39, the
best RainbowSP for playing with them was RainbowSP2,
which scores 4.67 points on average. RainbowSP2 was the
one with the most training time, but not the highest self-
play score. While the added training time might have helped
the agent face a greater diversity of scenarios, it is unclear
whether added training time (on a self-play regime) would

have a positive or negative effect in the long run: it is pos-
sible that, after some point, the agent would start learning
strategies that improve self-play score at the cost of perfor-
mance with other agents.

The best rule-based agents at playing with the
RainbowSP agents are V DB and Piers, who score
around 8 points each. These are also the only two agents in
the pool (other than Flawed and LegalRandom) that will
play cards that aren’t 100% certain to be playable, which
might fare comparatively well with the RainbowSP agents’
preference for hinting at playable cards.

Performance of Paired Agents
Our final experiments concerned Rainbow agents that were
trained to play with one or more of the rule-based agents.
These agents were expected to play better with their respec-
tive partners than the ones trained on a self-play regime, but
it was not clear whether they would also play better with
unseen partners, and what their own self-play score would
be.

Table 5 shows the results of pairing, after training, each
Rainbow agent that was trained with a rule-based partner
with all rule-based partners. We also show the results for the
RainbowAll agent, who played all rule-based agents uni-
formly during training.

The best agent for this scenario is, unsurprisingly,
RainbowAll, with an average of 9.78 across all seven pair-
ings. Other than RainbowAll, the two next best agents are
the ones trained with V DB and Piers, with average scores
slightly above 7 points. Among the rule-based agents, IGGI
had the best pairings on average across the Rainbow agents,
with 9.95 points, despite the fact that RainbowIGGI , who
trained with it, came in only at third place among the Rain-
bow agents. A possible explanation is that IGGI is com-
pletely deterministic and only acts on known (not inferred)
information. This would make it a very stable partner dur-
ing test time, but not the best partner for training, as playing
with it wouldn’t lead to many diverse situations.

Next, table 6 shows the results when considering only the
Rainbow agents when tested with their respective training
partners, for comparison with the rule-based agents’ original
self-play score. The only Rainbow agent to achieve better
performance with their partner than the original agent’s self-
play performance was RainbowFlawed. Some of the other
agents are close to the original score and could conceivably
achieve it with some extra training.

Interestingly, the average of these seven pairings is only
8.76, lower than the 10.38 average of RainbowAll. This is



IGGI Internal Outer Random V DB Flawed Piers Average
RainbowIGGI 11.01 2.83 2.08 0 7.33 0 4.96 4.03

RainbowInternal 11.03 9.27 8.19 0 10.10 0.05 9.78 6.91
RainbowOuter 8.65 3.51 8.42 0 7.02 0.02 7.18 4.97
RainbowRandom 0 0 0 0 0.03 0 0.01 0.00
RainbowV DB 14.91 6.26 7.86 0 15.92 0 11.43 8.05
RainbowFlawed 3.29 2.87 3.06 0.01 5.93 1.51 6.00 3.24
RainbowPiers 14.37 4.57 8.43 0 10.03 0.007 15.21 7.52
RainbowAll 16.31 10.85 13.67 0.00 15.70 0.32 15.8 10.38

Table 5: Scores obtained by matching each paired Rainbow agent (rows) with every rule-based agent (columns). Highest SD is
7.4 and highest SEM is 0.23.

Rainbow Agent Paired score Original score
RainbowIGGI 11.01 15.77

RainbowInternal 9.27 10.01
RainbowOuter 8.42 13.78
RainbowRandom 0 0.00
RainbowV DB 15.92 16.12
RainbowFlawed 1.51 0.00
RainbowPiers 15.21 17.06

Table 6: Comparison of the score obtained by a paired rain-
bow agent when paired with its training partner (Paired
Score) and the self-play score of its training partner (Origi-
nal Score). Highest SD is 5.18 and highest SEM is 0.16.

Rainbow agent Self-play score
RainbowIGGI 0.37

RainbowInternal 3.91
RainbowOuter 0.37
RainbowRandom 0
RainbowV DB 1.68
RainbowFlawed 1.96
RainbowPiers 4.17
RainbowAll 5.62

Table 7: Score of each paired Rainbow agent evaluated in
self-play mode. Highest SD is 6.16 and highest SEM is 0.19.

despite RainbowAll having only 1/7 of the training time
with each rule-based agent and not knowing, during test
time, the identity of its partner. It is possible that being ex-
posed to a variety of behaviors by all agents might be better
(at least with the training budget given) than attempting to
learn the “perfect” strategy for each partner.

Finally, table 7 shows the score of each RainbowPaired

agent on self-play. All but one self-play scores are below 5,
meaning most of these agents are worse at self-play than the
RainbowSP agents are at cooperating with the rule-based
agents. IGGI and Outer are particularly poor training part-
ners for this scenario (even worse than Flawed). These are
the two most deterministic agents, who also never act on
partial information. This might have the double effect of not
only exposing the training agent to little variety of behavior,
but also failing to expose it to situations where it is punished

for acting in misleading ways. This could lead, for example,
to an agent that learns to expect every hint received to be
about a playable card (as both IGGI and Outer prefer do-
ing) but who never learned not to give hints about unplayable
cards (as neither IGGI or Outer will act -wrongly!- on this
partial information). This is a recipe for disaster when the
challenge is changed to self-play.

Conclusion and future work
We trained agents using the popular Rainbow DQN archi-
tecture in Hanabi using self-play, a single rule-based partner,
and a mix of rule-based partners. Our results show that the
agents trained with self-play fail to cooperate well with any
of the rule-based agents. Agents trained to play with rule-
based agents could, in some cases, obtain results compara-
ble to the self-play scores of those rule-based agents, and
could conceivably surpass that benchmark with more train-
ing. However, they also did not play well with agents not
seen during training, wich includes themselves, as their self-
play performance was very poor.

Hanabi owes its interest as an AI testbed in large part due
to the challenge of ad-hoc play, where the unique nature
of its hidden information and its restricted communication
channel seem to require something resembling a theory of
mind. However, our results, alongside previously published
results on ACHA (Bard et al. 2020) and BAD (Foerster
et al. 2018) indicate that currently published agents all fail
to achieve reasonable scores with unseen partners, despite
being able to achieve around 20 points or more (out of a
maximum of 25) in the self-play setting.

A possible course of action might be to use an even wider
variety of agents during training, such as agents procedurally
generated by a Quality Diversity (or similar) algorithm such
as is done in (Canaan et al. 2019), tree-search agents such
as (Goodman 2019) or even other RL agents trained with di-
verse sets of hyperparameters and reward functions, such as
the Starcraft League seen in (Arulkumaran, Cully, and To-
gelius 2019). One can then attempt to identify which part of
the strategy space the other partner seems to be occupying,
then pick an appropriate response.

Another question worth investigating is whether addi-
tional training time helps or hurts when playing with agents
not seen during training. At which point (if ever) does the
agent start to overfit, improving performance when paired



with the training agents at the cost of performance with held-
out agents? Would regularization techniques such as L1 and
L2 regularization (Ng 2004) or dropout regularization (Hin-
ton et al. 2012) improve performance with unseen agents?

Yet another question is what is the impact of the choice
of scoring scheme. An agent trained with the more lenient
scoring scheme might perform better, even if evaluated on
the stricter scheme, as it would receive a more meaningful
learning signal in the early stages of training, where scores
will likely be all zero in the strict scheme.
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