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Abstract

Deep Reinforcement Learning (DRL) combines the
benefits of Deep Learning and Reinforcement Learn-
ing. However, it still requires long training times and a
large number of instances to reach an acceptable per-
formances. Transfer Learning (TL) offers an alterna-
tive to reduce the training time of DRL agents, using
less instances and possibly improving performance. In
this work, we propose a transfer learning formulation
for DRL across tasks. Relevant source tasks are se-
lected considering the action spaces and the Wasser-
stein distances of an output in a hidden layer of a con-
volutional neural network. Rather than transferring the
whole source model, we propose a method for select-
ing only relevant kernels based on their entropy values,
which results in smaller models that can produce bet-
ter performances. In our experiments we use Deep Q-
Networks (DQN) with Atari games We evaluated the
proposed method with dierent percentages of selected
kernels and show that we can obtain similar perfor-
mances than DQN in less interactions and with smaller
models.

1 Introduction

Deep Reinforcement Learning (DRL) takes advantage of
both, Deep Learning (DL) and Reinforcement Learning
(RL), to learn from experience and raw to solve com-
plex learning tasks. Impressive results have been obtained
in several problems of outstanding complexity, as obtain-
ing human-level control in Atari games (Mnih et al. 2015;
Bellemare et al. 2013; Hessel et al. 2018), beating human ex-
perts in challenging games like Go (Silver et al. 2016; 2018),
and even Starcraft, a very complex strategical game (Zam-
baldi et al. 2018). Nevertheless, DRL methods still require of
long training times even with specialized hardware, as well
as large numbers of instances in order to reach satisfactory
performances.

Transfer Learning (TL) offers an alternative to reduce
training times and the number of necessary instances to
achieve acceptable performance. TL reuses previously ob-
tained knowledge from one or more source tasks to learn
a new target task. Several authors have used TL in DRL.
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Some of them use a distillation approach based on a teacher-
student scheme to obtain a model with less parameters
than the source one, but they are trying to learn the same
task, while others try to obtain a generic model for dif-
ferent tasks (a.k.a. policy distillation) (Rusu et al. 2015;
Schmitt et al. 2018; Parisotto, Ba, and Salakhutdinov 2016;
Yin and Pan 2017; Rusu et al. 2016). Other approaches use
fine-tuning, in one (de la Cruz et al. 2016) (transfer knowl-
edge directly to the target task) or in two steps (find a in-
termediate representation with a deep model, then train the
agent with DRL algorithm) (Mittel, Munukutla, and Yadav
2018; Carr, Chli, and Vogiatzis 2018).

(a) Uniform output (b) Output with diverse
values

Figure 1: Examples of convolution outputs of two different
kernels

We propose a new distance measure to identify, among a
set of candidate source tasks, one that could be more use-
ful to transfer for a new target task, while trying to avoid
negative transfer. The proposed measure is based on a com-
parison between action spaces of source and target tasks, to-
gether with the Wasserstein distance between distributions
of attributes extracted from the output of convolutional lay-
ers. The idea is to compare visual attributes extracted by a
pre-trained model, that could be useful for the target task.
Contrary to standard approaches that transfer the whole
model (e.g., in a straightforward fine tuning setting), we per-
form an additional filtering process where we select only the
most relevant kernels from the source DQN based on their
entropy values. We hypothesize that kernels that produce
outputs with the most diverse values are better to transfer
than those that produce uniform/uninformative values, see



e.g., Figure 1. The proposed method was tested on several
games of the Atari Learning Environment (ALE) (Bellemare
et al. 2013) and we transfer different percentages of kernels
in each convolutional layer.

The main advantages of the proposed approach are: the
kernel selection avoids to transfer useless elements to the
target task, this accelerate the training of the target model
because the number of parameters is reduced. The predic-
tion of one model that improves target model training is a
relevant problem approached in this work. Our experimen-
tal results show that the proposed approach can significantly
reduce the training time when compare with the same algo-
rithm without transfer learning.

This paper is organized as follows. Section 2 presents
some background information on DRL and TL. Related
work is analysed in Section 3. The proposed measure to pre-
dict the most useful task and the kernel selection method are
presented in Sections 4 and 5, respectively. Experimental re-
sults are described in Section 6 and conclusions and future
research work are given in Section 7.

2 Background

In this section we review the relevant topics to this paper.
First, we present a description of DRL and then we describe
a TL framework.

Deep Reinforcement Learning

A Reinforcement Learning problem can be modeled as a
Markov Decision Process (MDP) described by a 5-tuple
(S, A, P, R,~): where S is a finite set of states; A, a finite
set of actions; P(s'|s,a) a probability state transition func-
tion; R, a reward function, and a discount factor v (Sutton,
Barto, and others 2018).
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Figure 2: Interaction between the agent and the environ-
ment (Sutton, Barto, and others 2018)

action

In RL an agent interacts with the environment, as shown
in Figure 2, to maximize an expected accumulated reward
function. Deep Reinforcement Learning (DRL) algorithms
are used when we want to approximate a policy and/or value
functions using deep networks due to the size of action-state
space (e.g., Atari games). After an interaction between the
agent and the environment, the weights of an ANN are up-
dated through backpropagation, taking into account the re-
ward in a loss function (Mnih et al. 2015). For instance,
some methods approximate the g-value (Mnih et al. 2015),
others approximate both the state value and the g-value func-
tions (Mnih et al. 2016) through gradient updates.

Most of the proposed DRL approaches are tested on the
Atari Learning Environment (ALE) (Bellemare et al. 2013).
This framework takes into account the states as the frames
of a game, the actions are the combinations of the joystick
movements and the button, and the obtained reward is sim-
plified into three values [-1,0,1] (-1 when there is a negative
change in the score, O for no change, and 1 for a positive
change in the score).

The first approach that showed robust results in Atari
games was Deep Q-Networks (Mnih et al. 2015) (DQN).
Two novel strategies were used to obtain human-level per-
formance in some games: experience replay and using an
on-line and target networks. In experience replay a stack of
experiences is used to randomly select instances to train the
network. The other strategy used an on-line fixed network
to update the target network during the training which were
interchanged after several iterations. The target network was
used to generate new instances.

In recent years several variations to this algorithm have
been proposed: dueling networks architecture (Wang et al.
2015), prioritized experience replay (Schaul et al. 2015), ap-
proximating the output with a discrete distribution instead
one value (Bellemare, Dabney, and Munos 2017); a combi-
nation of some techniques as rainbow (Hessel et al. 2018),
among others. Nevertheless, these techniques are still com-
putational expensive even with specialized hardware and a
large number of instances are required to reach an accept-
able performance.

Transfer Learning

Transfer Learning (TL) offers an alternative to reduce train-
ing times, by reusing previously obtained knowledge in
source tasks to quickly learn a new target task. Ideally a TL
method could achieve a jump-start, converge faster, and pos-
sibly obtain a better asymptotic performance (e.g., see (Tay-
lor and Stone 2009) and Figure 3).
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Figure 3: Performance of training with and without trans-
fer (Taylor and Stone 2009).

TL uses a source task with sufficient label examples to ob-
tain a conditional distribution P(Y;|Xy), using a marginal
distribution P(X;), where X, = {x1,%2,...,z,} are the
instances and Y; = y1, ...,y are the labels for the source



task. The target task has few examples, insufficient to ap-
proximate the conditional distribution P(X,|Y?). TL can ap-
proximate the conditional probability distribution of the tar-
get task using P(X;), P(X;|Y5), and P(X;) (Pan and Yang
2009). One potential problem of TL is negative transfer, that
appears when training with information from a source task
has worse results than training the agent from scratch. To
apply TL in the context of DRL, we need to define how to
select potentially relevant source tasks and what information
to transfer from the source to the target task.

3 RELATED WORK

Some research on TL for DRL has focused on using a
pre-trained model to train a new one with less neurons
for the same task aiming to obtain similar performance
(policy distillation). The main advantage is that the target
model has lower parameters and can be used in devices
with few resources (i.e., a cellphone). However, in some
cases the performance of the target model can be worst
than the source model. For example, in (Rusu et al. 2015;
Schmitt et al. 2018) two methods based on the teacher-
student scheme are presented, where the teacher (source task
model) is used to supervise the student training using regu-
larizers. In (Schmitt et al. 2018), the authors improve the
training of the agents 9.58 times (fewer steps), but they do
not experiment with Atari games that is an important base-
line for DRL agents.

In (Rusu et al. 2015) the authors proposed a multitask
model, where they add a layer for each added task, so they
obtain a model with more parameters, the main advantage is
that a model for different task is obtained.

Parisotto et al. (Parisotto, Ba, and Salakhutdinov 2016)
and Yin & Pan (Yin and Pan 2017) proposed a method that
generalize a hidden layer for different games. Additionally,
in (Parisotto, Ba, and Salakhutdinov 2016) a TL approach in
two steps, one to obtain general features in a model and the
other to fine-tune them to a specific task. Also, a progressive
learning technique is used to obtain a model that works on
several Atari games (Rusu et al. 2016), where for each new
learned task a new set of layers are added to the CNN. A
disadvantages of these works is that the obtained model has
more parameters than the source one. They also select the
source and target task in an intuitive way and do not take into
account other tasks that could be more relevant according to
the pre-trained model.

There are approaches where a model is trained for two
tasks at the same time. In (Mittel, Munukutla, and Yadav
2018) a generative model is trained for two similar games
(Breakout and Pong), then the generative model is used to
train an actor-critic approach for each game. A similar ap-
proach is proposed by Carr et al. (Carr, Chli, and Vogiatzis
2018), where an autoencoder is trained for different tasks,
then a DRL approach is applied to train each task using part
of the autoencoder. In (de la Cruz et al. 2016) a work based
on fine tuning is presented, where the authors transfer dif-
ferent number of layers and outperform the baseline model.
The main limitation of these works is that they use a two-
steps training, one to obtain a hidden representation for ev-
ery task, and in a second step they train separately the task

using a DRL algorithm. In our research, we use a one-step
approach where we transfer relevant knowledge of a pre-
trained model to the target task, avoiding the first step.

The kernel selection in this paper could be seen as a
pruning method for selecting the most useful kernels ac-
cording to the target task. Pruning methods select the best
weights/kernels of a model and remove the less useful ones
in order to reduce the number of parameters in a neu-
ral net. Consequently, the obtained model could be used
in computers with limited resources. According to (He
et al. 2018), pruning methods can be divided into: data
dependent filter pruning (He et al. 2018; Luo and Wu
2017), that use the training or testing data to select the
filters. While, data independent filter pruning (Li et al.
2016), that seearch for the most useful filters based on
the magnitude of the obtained weights after training. Our
approach is similar to the method proposed by Jian-Hao
Luo (Luo and Wu 2017), where they propose a pruning
method using the entropy values of the entire outputs of
features maps produced in the convolutional layers using
the test dataset. Instead, we use the maximum value in
each position of the generated feature map, obtaining a
summary of those outputs. Lou approach is used for prun-
ing classification models (AlexNet (Krizhevsky, Sutskever,
and Hinton 2012), VGG (Simonyan and Zisserman 2014),
GoogleNet (Szegedy et al. 2015) and ResNet (He et al.
2016)), instead of that we transfer the kernels for a new
model in a new task.

4 MEASURING TASKS DISTANCE

Having a set of source tasks it is important to select one that
will obtain an effective training (avoid negative transfer and
in some cases outperform the baseline performance) in the
target task. In order to solve the last problem we propose a
novel distance measure based in two important elements of a
MDP: the state space (for our experiments, frames of a video
game) and the action spaces (combination of joystick and a
button).

To compare the state space we use the output of a hidden
layer using the pre-trained model in a source task. Also, we
propose a comparison between action spaces (source and tar-
get task). The proposed measure can be seen in Equation 1,
where cnng is a pre-trained CNN in the source task and Ay,
Ay are the action spaces of the source and target task respec-
tively. Each part of the distance are described in the next
subsection.

d(enng, Ag, Ar) = a-disty(cnng)+ (1 —«) - disto(Ag, At)
1
Finding the optimal value for o could be a limitation of
the proposed measure and it is important to select this value
carefully. In preliminary tests we found that a value of o =
0.5 provides a good equilibrium between the two parts of
the measure, as shown in the experimental results. In order
to get both parts of the measure in the same range [0, 1] we
normalize the outputs.



Comparing State Spaces

For comparing the state space we use samples of instances
of the source and target tasks and evaluate them into a pre-
trained model of the source task. The proposed method for
obtaining the first part of the Equation 1 is shown in Fig-
ure 4, where each instance of the source and target samples
are evaluated in the pre-trained model of the source task.
The rationale of the measure is to find if instances of the
source and target tasks produce similar distributions in the
output of a hidden layer. The main assumption is that similar
distributions imply high relevance of the source task to the
target task. We use the Wasserstein metric (Vallender 1974)
to find the distance between these two distributions. We use
this metric because of the advantages between other mea-
sures as the kullback-leibler divergence that not satisfy the
triangle inequality.

To apply the Wasserstein metric in both tasks we find a
discrete distribution of each attribute (a € At, where At
is the attribute space) of the output in a hidden layer of a
CNN. So we use a numerical vector after applying a flatten
operation over the output of the selected convolutional layer,
in this case we use the deepest convolutional layer. Then, we
will have a distribution for each attribute for both samples
source and target. Then, we find the Wasserstein distance
between the corresponding distribution. Finally, we sum the
results of the distances and the obtained value is the result
of the comparison between state space.

We propose to find the distribution of each attribute in or-
der to obtain specific information about how is the behaviour
of both tasks in the model, while using the entire values ex-
tract general information about the outputs of the model.

Comparing Action Spaces

In order to compare the action spaces (Aj and A, action
spaces of source and target action spaces, respectively) we
propose the Equation 2. This equation returns the maximum
distance value if both action spaces are disjoint, in other
case, it compares the intersection between the two sets in
the first part, and the cardinality of the difference in both di-
rections, source and target action spaces, with respect to the
universe of actions (A). In the numerator of Equation 2 we
add one to avoid divisions by zero and we use the cardinality
of the universe of actions to compare all the source tasks.

2if AN A, =0
1 + [Ao—Ak|+1
‘AkﬁAn‘ Au*lAkao‘

@

else

da(Ar, Ap) = {

The behaviour of the Equation 2 can be seen in Fig-
ure 5, where we can observe that higher differences imply
higher distance values, while smaller differences produce
the smaller distance values. The equation, contrary to other
measures like the Jaccard index (Real and Vargas 1996),
considers the entire action space of all the tasks, and it need
to be asymmetric in order to compare the difference between
both task, if this value is higher the performance of the se-
lected task could not have good performance in the target
task.
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Figure 4: Method to obtain the first part of the measure.
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Figure 5: Behaviour of the Equation 2 using an action space
of 100 for both source and target task. The x and y axes cor-
respond to the difference between the sets of action spaces
|Arp—A,| and |A,— Ay, z represents the value of the second
part in Equation 2.



S SELECTING RELEVANT KERNELS

In this section we describe the method for selecting the most
relevant kernels of the source model to the target task. The
hypothesis is that those kernels that produce outputs with
diverse values with different inputs, such as the one plotted
in Figure 1b are more relevant than kernels that that produce
a uniform output, like the plotted in Figure 1a. To measure
diversity we use entropy.

The proposed method for selecting the kernels works as
follows. First, we evaluate samples of the target task over a
pre-trained model in the source task, to obtain a feature map
of each kernel. Then, we seek for the maximum value in each
position of the feature map, here we combine all the outputs
in a new feature map with the maximum value in each posi-
tion. In order to obtain the entropy value of each kernel we
discretize the combined feature map using histograms (10
bins with size=0.1) after a normalization process with val-
ues between [0,1] (Figure 6).

Finally, in each layer we select those kernels with the
largest entropy values to build a new model for the target
task, we transfer a percentage of kernels in each convolu-
tional layer. Then we fine-tune the model as the baseline
training. In the next section we report results with different
percentages of kernels.
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Figure 6: Kernel selection method.

6 RESULTS

We use the original DQN architecture to test our proposed
method (Mnih et al. 2015), but other architecture could be
used as well. Due to processing time restrictions we select
nine games which obtained better human performance, then
among them we seek for a uniform selection based on the
normalized performance (three of the first-top games, three
in of the middle-top and three of the worst): Atlantis (AT),
Boxing (BX), Breakout (BR), Freeway (FW), Gopher (GP),
Pong (PN), Space Invaders (SI), Up and Down (UD), and
Video Pinball (VP).

The source architecture follows the original DQN archi-
tecture {32,64,64,512}, the first three number correspond
to the number of filters in the convolutional layers and the
last one to the number of neurons in the fully connected
layer. For our experiments we transfer different percentages
of kernels in each convolutional layers: 25% {8,16,16,128}
50% {16,32,32,256}, and 75% {24,48,48,684}. The fully
connected layer and the output one are initialized with ran-
dom numbers using Glorot’s initialization (Glorot and Ben-
gio 2010).

We use dopamine-rl library (Castro et al. 2018) to test
our approach, this library follows the recommendations
of (Machado et al. 2018), so an iteration corresponds to train
the model with 2,500,000 instances followed by 125,000 in-
stances of testing with an € — greedy policy with e = 0.001.
We use as baseline the best accumulated reward of five inde-
pendent runs that are provided by dopamine-rl experiments
(also, this models are used to apply our TL approach). Two
modifications are applied to the DQN algorithm in our ex-
periments: we use prioritized experience replay and instead
of RMSprop we use Adam optimizer.

In the experiments, we reported only the results of the best
two tasks selected by our proposed measure with o = 0.5
due to hardware limitations. In preliminary experiments we
noticed that the best source to transfer was always among
the top two tasks selected by our measure.

The top two selected tasks by our measure for 25%, 50%,
and 75% of transferred kernels, are presented in Table 1, in
the columns 1st and 2nd. The selected tasks are different
because we apply first the kernel selection, then we evaluate
the obtained models with our distance measure.

For our experiments we use a §-GPU Nvidia GTX 1080 Ti
computer with 128GB in RAM memory, an iteration of each
experiment finish in approximately forty minutes. The num-
ber of iterations that takes each transferred model to reach
the baseline score and the time gain for different percent-
ages of kernel transferring are shown in Table 1, for 25%,
50% and 75% of transferring, respectively.

It can be seen that after training the target models with
25% of the kernels we obtain scores that are close to the
baseline in 3/9 games and only one of them outperforms the
baseline scores (see Figure 8a). We hypothesize that the size
of the model is not big enough to capture the relevant pat-
terns of the games and it is also very likely that relevant
kernels are discriminated because of the target model size.
When we transfer 50% of the kernels there is a clear im-
provement over the previous experiment. The results shows
that in 7/9 games the simplify model outperforms the base-
line scores, in one game it obtains a similar performance,
and in one game it has a clearly worst performance (see Fig-
ure 8b).

The worst case is the selection of the Boxing model for
the game Gopher, however, the second selected model out-
performs the baseline score. After looking more closely to
the Gopher instances in the Boxing pre-trained model we
can appreciate that this produces uniform outputs (every po-
sition in the feature map has zero values), where the kernels
produce negative values and ReLU activation deviate this
values to zero as can be seen in Figure 7. As future work we



25% 50% 75%

Target Ist 1 Gain | 2nd 1 Gain Ist 1 Gain | 2nd 1 Gain Ist 1 Gain 2nd 1 Gain
BX GP  +50 0 VP +50 0 SI 25 16.6 GP 35 10 PN 29 14 GP  +50 0
FW UD  +50 0 GP  +50 0 UD 22 7.3 GP 21 8 UD 17 10.66 | BX  +50 0
UD BX  +50 0 VP 48 0 GP 29 10 VP 31 8.6 FW 15 1933 | BX +50 0
AT VP 450 0 SI +50 0 VP 450 0 GP  +50 0 PN 34 10 SI 33 10.6
PN GP  +50 0 SI +50 0 SI 44 4 GP 28 14.6 GP 47 2 SI +50 0
BR VP 450 0 GP  +50 0 PN 46 2.6 SI +50 0 PN 45 333 SI +50 0
GP BX  +50 0 VP +50 0 BX  +50 0 SI 41 53 PN 26 15.33 SI 34 10

SI VP 450 0 BX 450 0 BX  +50 0 GP  +50 0 PN +50 0 GP  +50 0
VP BX  +50 0 AT 450 0 SI 38 0 PN 45 0 PN 43 0 UD  +50 0

Table 1: Iterations and gain time in hours to reach the baseline, the full training time is 34 hours, ”+50” means negative transfer,

I=iterations.
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Figure 7: Deviation produced by ReL.U activation function.

In the case where we transfer 75% of the kernels we can
see a similar behavior than when we transfer only 50%.
In 8/9 games the performance of out approach outperform
the maximum baseline score, and only one game (Space In-
vaders) obtains negative transfer. We can see that our mea-
sure obtain better prediction when the percentage of trans-
ferring is higher. While, transferring 50% predicts a use-
ful model in 4/9 games in the fist position, but in the same
number of cases (4/9) the second nearest task obtain better
performance than the nearest one according to our distance
measure.

From the experiments, we can see that: (i) it is possible to
use transfer learning to learn a new game using a different
game model and (ii) we can even use a simplified model
and learn is less iterations (iii) the proposed measure shows
most robustness while the percentage of transfer increase,
75% predicts 7/9 useful models as the nearest one, while
50% predicts a useful model in 4/9 cases as the nearest and
the same in the second position (iv) in the best cases our
experimental results show that an agent could be trained in
few hours transferring knowledge to a new case (i.e. UD to
FW case arise baseline performance in 14.67 hours while the
full experiment take 34 hours) and in other cases take more
time but the baseline performance is outperformed (PN to
VP took more time to reach the baseline performance but
they reach a 1.59 better performance).

7 CONCLUSIONS AND FUTURE WORK

We present a new distance measure to select relevant source
tasks for a target task. Although not shown for all the games,
i.e., we cannot guarantee, without further experiments, that
we are truly selecting the best source, the best selected task

with our measure is able to outperform in most of the cases
the baseline. We also propose a method to select the most
relevant kernels of a pre-trained model. The experimental
results show that we can transfer half of the kernels and
still outperform, in most of the cases, the baseline model
(the best accumulated reward of five independent runs of
dopamine-rl library (Castro et al. 2018)).

As future work, we would like to establish a clear cri-
terion to decide the right percentage of kernels to transfer
depending on the source and target tasks. We would like to
do experiments with other DRL methods, with more games,
and in different domains, in particular, for solving classifi-
cation problems.
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Appendix A. Learning Curves

In this section we present the full learning curves of our experiments, the baseline of our experiments is the best score obtained
by five independent runs during the first 50 iterations. The learning curves are shown in Figures 9, 10 and 11.
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Figure 9: Learning curves when we transfer 25% of the kernels.
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Figure 10: Learning curves when we transfer 50% of the kernels.
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