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Abstract

Providing Reinforcement Learning (RL) agents with human
feedback can dramatically improve various aspects of learn-
ing. However, previous methods require human observer to
give inputs explicitly (e.g., press buttons, voice interface),
burdening the human in the loop of RL agent’s learning pro-
cess. Further, it is sometimes difficult or impossible to obtain
the explicit human advise (feedback), e.g., autonomous driv-
ing, disabled rehabilitation, etc. In this work, starting from
game playing, we investigate capturing human’s intrinsic re-
actions as implicit (and natural) feedback through EEG in the
form of error-related potentials (ErrP), providing a natural
and direct way for humans to improve the RL agent learn-
ing in various visual-based games. As such, the human intel-
ligence can be integrated via implicit feedback with RL al-
gorithms to accelerate the learning of RL agent. We develop
three reasonably complex 2D discrete navigational games to
experimentally evaluate the overall performance of the pro-
posed work. Major contributions of our work are as follows,
(i) we propose and experimentally validate the zero-shot
learning of ErrPs, where the ErrPs can be learned for one
game, and transferred to other unseen games, (ii) we pro-
pose a novel RL framework for integrating implicit human
feedbacks via ErrPs with RL models, improving the label ef-
ficiency and reducing human cognitive load, and (iii) com-
pared to prior works, we scale the application of ErrPs to rea-
sonably complex environments, and demonstrate the signif-
icance of our approach for accelerated learning through real
user experiments.

Introduction
AI systems are increasingly applied to real-world tasks that
involve interaction with humans. And humans are often in
the loop of the RL agent’s learning process. Self-driving
cars learn with humans ready to intervene in dangerous sit-
uations. Facebook’s algorithm for recommending trending
news stories has humans filtering out inappropriate content.
Therefore RL with human-in-the-loop has inspired several
research efforts where either an alternative (or supplemen-
tary) feedback is obtained from the human participant, such
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as human rankings or ratings (El Asri et al. 2016), human
robot interaction and rehabilitation engineering for the dis-
abled (Iturrate, Montesano, and Minguez 2010; Knox 2012),
or the learning is performed through human demonstrations
(Ng, Harada, and Russell 1999). Such approaches with ex-
plicit human input despite being highly effective, severely
burdens the human interacting with RL agent. Further, it
is difficult or even impossible to obtain the explicit human
feedback in various situations, e.g., autonomous driving, dis-
abled users, etc.

In this paper, we investigate an alternative paradigm that
substantially increases the richness of the reward functions,
while not severely burdening the human-in-the-loop. We
study the use of electroencephalogram (EEG) based brain
waves of the human-in-the-loop to generate the reward func-
tions that can be used by the DRL algorithms. Such a model
will benefit from the natural rich activity of a powerful sen-
sor (the human brain), but at the same time not burden the
human if the activity being relied upon is intrinsic. This
paradigm is inspired by a high-level error-processing system
in humans that generates error-related potential/negativity
(ErrP or ERN) (Scheffers et al. 1996).When a human recog-
nizes an error made by an agent, the elicited ErrP can be cap-
tured through EEG to inform agent about the sub-optimality
of the taken action in the particular state.

As a baseline contribution, we demonstrate the feasibility
of capturing error-potentials of a human observer watching
an agent learning to play several different Atari-games, and
then decoding the signals appropriately and using them as
an auxiliary reward function to a DRL algorithm. We show
that a full access approach, inquiring human feedback on ev-
ery state-action pair visited by RL agent, can significantly
speedup the training convergence of DRL algorithm. We
contend that while obtaining such implicit human feedback
through EEG is less burdensome, it is still a time-intensive
task for the subject and the experimenter alike. This, com-
bined with the noisy EEG signals and stochasticity in infer-
ring error-potentials, raises significant challenges in terms of
the practicality of the solution.

In this context, we first argue that the definition of Er-
rPs is generalizable across different environments. We show
that ErrPs of an observer can be learned for a specific game,



and the definition used as-is for another game without re-
quiring re-learning of the ErrP. This is notably different
from previous approaches (Chavarriaga and Millán 2010;
Salazar-Gomez et al. 2017), where the labeled ErrPs are ob-
tained in the same environment (where the RL task is per-
formed). For any new and unseen environment, it does not
require the human to go through the training phase again,
and assumes no prior knowledge about the optimal state-
action pairs of the environment.

We present a framework to integrate DRL with human in-
telligence based on the implicit human feedback mechanism
(via ErrP) in a practical, sample-efficient manner. This re-
duces the cost of human supervision sufficiently allowing
the DRL systems to train. Our proposed framework allows
humans to provide their feedback implicitly before the agent
starts training. Based on the human feedback obtained dur-
ing pre-training, a quality (Q) function is learned over these
imperfect demonstrations to provide the supplementary re-
ward to the RL agent. We present results from real ErrP ex-
periments to evaluate the acceleration in learning, and sam-
ple efficiency, in the proposed frameworks. In summary, the
novel contributions of our work are,

1. We demonstrate the generalizability of error-potentials
over various Atari-like environments (discrete grid-based
navigation games, studied in this work), enabling the es-
timation of implicit human feedback in new and unseen
environments.

2. We propose a novel RL framework to integrate DRL
model with implicit human feedback via ErrP in a prac-
tical, sample-efficient manner. Based on the proposed
framework of learning from imperfect demonstrations, we
only need human ErrP labels on the demonstrations given
initially, reducing the number of inquiring human feed-
back without performance degradation.

3. We scale the implicit human feedback (via ErrP) based
RL to reasonably complex environments and demonstrate
the significance of our approach through experiments on
various human subjects.

Related Work
(Daniel et al. 2015; El Asri et al. 2016; Wang, Liang, and
Manning 2016) studied RL from human rankings or ratings,
however rely on explicit human feedback, and assume that
the feedback is noiseless. Demonstrations have been com-
monly used to improve the efficiency of RL (Kim et al. 2013;
Chemali and Lazaric 2015; Piot, Geist, and Pietquin 2014),
and a common paradigm is to initialize RL algorithms with
good policy or Q function (Nair et al. 2018; Hester et al.
2018; Gao et al. 2018). In this work, we use rely on implicit
feedback from non-expert humans (via ErrPs) which is in-
herently noisy.

(Chavarriaga and Millán 2010; Iturrate, Montesano, and
Minguez 2010; Salazar-Gomez et al. 2017) demonstrate the
benefit of ErrPs in a very simple setting (i.e., very small
state-space), and use ErrP-based feedback as the only re-
ward. Moreover, in all of these works, the ErrP decoder is
trained on a similar game (or robotic task), essentially us-
ing the knowledge that is supposed to be unknown in the RL

task. In our work, we use labeled ErrPs examples of very
simple and known environments to train the ErrP decoder,
and combine with the recent advances in DRL in a sample-
efficient manner for reasonably complex environments.

Preliminaries and Setup
Definitions Consider a Markov Decision Process (MDP)
problem M , as a tuple < X ,A, P, P0, R, γ >, with state-
space X , action-space A, transition kernel P , initial state
distribution P0, accompanied with reward function R, and
discounting factor 0 ≤ γ ≤ 1. Here the random variable
Z(s, a) denotes the accumulated discounted future rewards
starting from state s and action a. In this work, we only con-
sider MDP with discrete actions and states. In model-free
RL method, the central idea of most prominent approaches
is to learn the Q-function by minimizing the Bellman resid-
ual, i.e., L(Q) = Eπ

[(
Q(x, a)−r−γQ(x′, â)

)2]
, and tem-

poral difference (TD) (Tesauro 1995) update where the tran-
sition tuple (x, a, r, x′) consists of a consecutive experience
under behavior policy π. Modern techniques in DRL such as
DQN (Mnih et al. 2015) and the target network (Van Hasselt,
Guez, and Silver 2016) are also adopted here.

Bayesian Deep Q Network We introduce the DQN model
adopted in this paper. Bayesian DQN is a neural architecture
where the Q-function is approximated as a linear function,
weighted by ωa, , a ∈ A, of the feature representation of
states φθ(x) ∈ Rd, parameterized by neural network with
weights θ (Osband, Russo, and Van Roy 2013). Here by uti-
lizing the DQN architecture and imposing Gaussian distri-
butions over ωa, the Bayesian linear regression (BLR) (Ras-
mussen 2003) can give us the posterior of ωa as below

ωa ∼ N (ω̄a, Cova), ω̄a :=
1

σ2
ε

CovaΦθaya,

Cova :=

(
1

σ2
ε

ΦθaΦθa
T

+
1

σ2
I

)−1
, a ∈ A (1)

where we construct disjoint replay buffer Da corresponding
to experience with action a, and a matrix Φθa ∈ Rd×|Da|,
vector ya, i.e., the concatenation of state features and target
values in set Da. Therefore the posterior of Q value can be
the Gaussian distribution as below,

Q(x, a) ∼ N (ω̄Ta φθ(x), φθ(x)
T
Covaφθ(x)) (2)

System Setup and Data Collection
We consider a setup where a non-expert human is silently
observing (and assessing) a computer agent (driven by RL)
interacting with an environment. The human’s intrinsic re-
actions to the agent’s behavior is sensed as implicit feed-
back by placing electrodes on the human scalp and moni-
toring what are known as event-related potentials (ErrPs).
The implicit feedback is then used to augment the agent’s
learning in the RL tasks. We develop a system to obtain
and accurately decode the implicit human feedback (specif-
ically error-related event potentials) for state-action pairs in
an Atari-type environment.



Game Environments We have developed three discrete-
grid based navigation games in OpenAI Gym emulating
Atari framework (Brockman et al. 2016), namely (i) Wob-
ble, (ii) Catch, and (iii) Maze, shown in Fig. 1(a). We use the
default Atari dimensions (i.e., 210x160 pixels). The source
codes of the games can be found in the public repository1,
and can be used with the OpenAI Gym module.
Wobble: Wobble is a simple 1-D cursor-target game, where
the middle horizontal plane is divided into 20 discrete
blocks. At the beginning of the game, the cursor appears at
the center of the screen, and the target appears no more than
three blocks away from the cursor position. The action space
for the agent is moving one step either left or right. The game
is finished when the cursor reaches the target. Once the game
is finished, a new game is started with the cursor in place.
Catch: Catch is a simplistic version of Eggomania2 (Atari
2600 benchmark), where we display a single egg on the
screen at a time. The screen dimensions are divided into
10x10 grid space, where the egg and the cart, both occu-
pies one block. The action space of the agent consists of
“NOOP” (no operation), “moving left” and “moving right”.
At the start of the game, the horizontal position of the egg is
chosen randomly. At each time step, the egg falls one block
in the vertical direction.
Maze: Maze is a 2-D navigational game, where the agent
has to reach to a fixed target. The Atari screen is centered
and divided into 10x10 equal-sized blocks. The agent and
target occupy one block. The action space consists of four
directional movements. The maze architecture is kept fixed
for the purpose of this work. If an agent moves, but hits a
wall, a quick blinking of the agent is displayed, to show the
action taken by the agent.

EEG experimental protocol: We designed and devel-
oped an experimental protocol, where a machine agent plays
a computer game, while a human silently observes (and as-
sesses) the actions taken by the machine agent. These im-
plicit human reactions are captured by placing raw elec-
trodes on the scalp of the human brain in the form of EEG.
The electrode cap was attached with the OpenBCI3 platform,
which was further connected to a desktop machine over the
wireless channel. In the game design (developed on OpenAI
Gym), we open a TCP port, and continuously transmit the
current state-action pair using the TCP/IP protocol. We used
OpenViBE software (Renard et al. 2010) to record the hu-
man EEG data. OpenViBE continuously listens to the TCP
port (for state-action pairs), and timestamps the EEG data in
a synchronized manner. A total of five human subjects were
recruited using standard procedures. We recruited five hu-
man subjects (mean age 26.8± 1.92, 1 female) for collecting
the EEG data. For each subject, we conducted three separate
sessions over multiple days. For each subject-game pair, the
experimental duration was less than 15 minutes. The agent
took action every 1.5 seconds. All the research protocols for
the user data collection were reviewed and approved by the
Georgia Tech Institutional Review Board.

1https://github.com/meagmohit/gym-maze
2https://en.wikipedia.org/wiki/Eggomania
3http://openbci.com

(a) Game Environments (b) Experiment Bench

Figure 1: Experimental framework

Integrating DRL with Implicit Human
Feedback: A Naive Approach

In this section, we provide our baseline contribution, i.e., (i)
we demonstrate the feasibility of capturing error-potentials
of a human observer watching an agent learning to play sev-
eral different Atari-games using EEG, and then decoding the
signals appropriately, and (ii) using them as an auxiliary re-
ward function to a DRL algorithm with the intent of accel-
erating its learning of the game.

Obtaining the Implicit Human Feedback:
Decoding ErrPs
We rely on the Riemannian Geometry framework for the
classification of human’s intrinsic reaction (captured in the
form of ErrPs) (Barachant and Congedo 2014; Congedo,
Barachant, and Andreev 2013).We consider the classifica-
tion of error-related potentials as a binary classification task
indicating the presence (i.e., action taken by the agent is
incorrect) and absence of error (i.e., action taken by the
agent is correct). The Riemannian Geometry based frame-
work was first proposed in (Barachant and Congedo 2014;
Congedo, Barachant, and Andreev 2013) to translate the
raw EEG signals into meaningful labels4. The raw EEG
data is bandpass filtered in [0.5, 40] Hz. Epochs of 800ms
were extracted relative to pre-stimulus 200ms baseline, and
were subjected to spatial filtering. In spatial filtering, proto-
type responses of each class, i.e., “correct” and “erroneous”,
are computed by averaging all training trials in the corre-
sponding classes(“xDAWN Spatial Filter” (Rivet et al. 2009;
Barachant and Congedo 2014; Congedo, Barachant, and An-
dreev 2013)). “xDAWN filtering” projects the EEG signals
from sensor space (i.e., electrode space) to the source space
(i.e., a low-dimensional space constituted by the actual neu-
ronal ensembles in brain firing coherently). The covariance
matrix of each epoch is computed, and concatenated with
the prototype responses of the class. Further, dimensionality
reduction is achieved by selecting relevant channels through
backward elimination (Barachant and Bonnet 2011). The fil-
tered signals are projected to the tangent space (Barachant
et al. 2013; 2011) for feature extraction. The obtained fea-
ture vector is first normalized (using L1 norm) and fed to a
regularized regression model. A threshold value is selected
for the final decision by maximizing accuracy offline on the

4The authors successfully applied the framework and won mul-
tiple Kaggle challenges. E.g., https://www.kaggle.com/c/inria-bci-
challenge. Later, this framework was successfully adapted in many
other error-potential decoding works (Salazar-Gomez et al. 2017).



training set. We present the algorithm to decode the ErrP
signals in Algorithm 1.

Algorithm 1: Riemannian Geometry based ErrP
classification algorithm (Barachant et al. 2013)

Input : raw EEG signals EEG
1 Pre-process raw EEG signals ;
2 Spatial Filtering: xDAWN Spatial Filter (nfilter) ;
3 Electrode Selection: ElectrodeSelect (nelec,

metric=’riemann’) ;
4 Tangent Space Projection : TangentSpace(metric =

“logeuclid”) Normalize using L1 norm ;
5 Regression: ElasticNet ;
6 Select decision threshold by maximizing accuracy

The Full Access Method

With the availability of implicit human feedback, we explore
how the training of state-of-the-art DRL algorithms can be
accelerated. A naive approach is to obtain feedback on ev-
ery state-action pair while RL agent is learning (also known
as full access). It is to add a negative penalty to the reward
whenever ErrP is detected, and keep using the original re-
ward from the environment whenever ErrP is not detected.
The evaluation result of this method based on real ErrP data
are presented later in the evaluation section, validating that
this method can speed up the training convergence of RL
agent significantly. However, obtaining the human feedback
for every state-action pair is time-intensive and undesirable
from a practical point of view. Ideally, an approach is desir-
able where the human feedback is obtained only for state-
action pairs for which the learning agent has highest uncer-
tainty.

Towards Practical Integration of DRL with
Implicit Human Feedback

In this section, we propose two approaches towards inte-
grating human implicit feedback with recent advances in
DRL and make the ErrP-agumented RL deployable into
practical system. Firstly, we show that ErrPs of an ob-
server can be learned for a specific game, and the definition
used as-is for another game without requiring re-learning
of the ErrP. Further, in order to utilize ErrP data more ef-
ficiently, we propose a RL framework to integrate RL with
the implicit human feedback mechanism (via ErrP) to ac-
celerate the RL agent’s learning process. Specifically, we
first obtain the implicit human feedback before the train-
ing of the RL agent. It exploits the initially given trajec-
tories criticized by ErrP labels and learn a reward func-
tion for augmenting the following RL agent, where human
with some prior knowledge is needed to specify some per-
turbed expert trajectories. Recently, Q function is shown to
have better generalization in state-space if trained expert
demonstrations perturbed by some noise (Laskey et al. 2017;
Luo, Xu, and Ma 2019).

ErrP Generalization across Environments
Error-potentials in the EEG signals is studied under two ma-
jor paradigms in human-machine interaction tasks, (i) feed-
back and response ErrPs: error made by human (Carter
et al. 1998; Falkenstein et al. 2000; Blankertz et al. 2003;
Parra et al. 2003; Holroyd and Coles 2002), (ii) interaction
ErrPs: error made by machine in interpreting human intent
(Ferrez and Millán 2005). Another interesting paradigm is
when human is watching (and silently assessing) the ma-
chine performing a specific task (Chavarriaga and Millán
2010). The manifestation of these potentials across these
paradigms were found quite similar in terms of their gen-
eral shape, timings of negative and positive peaks, frequency
characteristics etc., (Ferrez and Millán 2005; Chavarriaga
and Millán 2010). This prompts us to explore the consis-
tency of the error-potentials across different environments
(i.e., games, in our case). We restrict the score of our work to
the paradigm of human acting as a silent observer of the ma-
chine actions. In Fig.2, we plot the grand average waveforms
across three environments (Maze, Catch and Wobble), to vi-
sually validate the consistency of potentials. We can see that
the shape of negativity, and the timings of the peaks is quite
consistent across the three game environments studied in this
work. Further, in experimental evaluation section, we show
that error-potentials are indeed generalizable across environ-
ments, and can further be used to inform deep reinforcement
learning algorithm in a new and unseen environments.

Proposed Framework: Learning from Imperfect
Demonstrations with Human ErrP
RL algorithms deployed in the environment with sparse re-
wards demand heavy explorations (require a large number
of trial-and-errors) during the initial stages of training. Imi-
tation learning from a small number of demonstrations fol-
lowed by RL fine-tuning is a promising paradigm to improve
the sample efficiency in such cases (Večerı́k et al. 2017;
Hester et al. 2018; Gao et al. 2018). Inspired by the paradigm
of imitation learning, we develop a novel framework that
can robustly learn a reward function to augment the DRL al-
gorithms and accelerate the training of the RL agent. This
reward function is derived from reward learning with imper-
fect demonstrations and human critique, inquiring the hu-
man feedback in the form of ErrP over a set of trajectories.

The flowchart of the proposed learning framework is
shown in Fig. 3. In this framework, trajectories in the
demonstration are first criticized by human ErrP in ErrP ex-
periments, and then with ErrP labels decoded from the de-
coder, in the reward learning step, a quality (Q) function is
learned from the trajectories where the correctness of state-
action pairs is given by ErrP labeling. An alternative reward
can be derived from the learned quality function, to augment
the following RL agent. Here we only make queries for ErrP
labeling on trajectories given initially, instead of inquiring
in every training step in the full access method. So the num-
ber of ErrP queries needed can be reduced significantly here.
These queries are made before the RL agent starts training,
improving the efficiency of labeling (implicit, ErrP based)
queries made to the external oracle (human). Constraint by
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the coherence requirement in EEG experiments, the demon-
strations for ErrP labeling can only consist of complete tra-
jectories. We assume that the trajectories in the demonstra-
tion are initially specified by human or other external algo-
rithms, without any reward information. This is a reason-
able assumption since the reward function may be unknown
to humans in general cases. In ErrP experiment, the human
subject provides implicit feedback (via ErrP) on state-action
pairs along the trajectories, labeling every pair as a positive
or negative sample corresponding to the correctness from
human judgement. Based on the decoded ErrP labels and
trajectories, the proposed framework learns the reward func-
tion based on maximum entropy RL methods (Ziebart 2010),
which is explained with details in the following.

Different from regular imitation learning, here these tra-
jectories are not exactly same as expert demonstrations. This
is beneficial, because the Q function learned from imper-
fect trajectories can have better estimations on states unseen
in the demonstration, providing better generalization in the
state space (Laskey et al. 2017; Luo, Xu, and Ma 2019).

Reward Learning Since implicit human feedback via
ErrP is noisy (hence imperfect demonstrations), we model
the reward learning as a probabilistic maximum entropy
RL problem. Following the principle of maximum entropy,
given Q function Q(·, ·), the policy distribution and value
function in terms of Q function can be expressed as follows,

VQ(s) = α log
∑
a

exp(Q(s, a)/α),

πQ(a|s) = exp((Q(s, a)− VQ(s))/α) (3)

where α is a free parameter, tuned empirically. The likeli-
hood of positive and negative state-action pair are denoted
as πQ(a|s) and 1− πQ(a|s). When demonstrations and cor-
responding implicit human feedback are ready, we train the

Q function by maximizing the likelihood of both positive
and negative state-action pairs in the demonstrations, which
is to maximize the following objective,

J1(Q) :=
∑

(s,a)∈D

πQ(a|s)(1− ErrP (s, a))

+(1− πQ(a|s))ErrP (s, a) (4)

where the binary variable ErrP (s, a) denotes the correct-
ness of state-action pair from human feedback.

In order to refine the reward shape and attenuate the
variance of learning updates, we introduce another baseline
function t(s). Hence, the Q function becomes QB(s, a) :=
Q(s, a) − t(s). It can be proved that QB(·, ·) and Q(·, ·)
induce the same optimal policy (Ng, Harada, and Russell
1999). The baseline function t∗(·) can be learned by opti-
mizing t∗ = arg mint J2(t), and the objective is defined as

J2(t) :=
∑

(s,a,s′)∈D∪DR

l(Q(s, a)− t(s)

−γ max
a′∈A

(Q(s′, a′)− t(s′))) (5)

where the loss function l(·) is chosen to be l1-norm via
empirical evaluations. In addition to the demonstration D,
we incorporate another set of demonstrations DR, contain-
ing transitions randomly sampled from environment with-
out reward information. The set DR is to help the function
t(·) to efficiently learn the state dynamics, and does not re-
quire any human labeling, essentially not increasing the la-
beling workload. After reward learning, consisting of learn-
ing Q function and baseline function, for any transition tuple
(s, a, s′), the learned reward function can be represented as
QB(s, a)− γmaxa′∈AQB(s′, a′). We then use this reward
function to augment the following RL agent.

Experimental Results
Baseline results: Naive Approach
We first validate the feasibility of decoding ErrP signals us-
ing a 10-fold cross-validation scheme for each game. In this
scheme, we train and test on the ErrP samples of the same
game environment. In Fig. 4(a), we show the performance of
three games in terms of Area Under Curve (AUC) score, sen-
sitivity and specificity, averaged over 5 subjects. The Maze
game has the highest AUC score (0.89 ± 0.05) followed by
Catch (0.83 ± 0.08) and Wobble (0.77 ± 0.09).

The full access method as discussed above is the most pre-
liminary approach to make ErrP labels augment the RL algo-
rithm. It has the fastest training convergence rate (provides
upper bound) but makes the maximum possible queries to
the external oracle (human) for the implicit feedback. We
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use this method as a benchmark for comparing the data-
efficiency of other RL augmentation methods. The results
with real ErrP data of 5 subjects are shown in Figure 4. We
can see there is a significant improvement in the training
convergence. In this paper, ”No ErrP” method refers to reg-
ular RL algorithms without the help of any human feedback.
The success rate is defined as the ratio of success plays in
the previous 32 episodes. The training completes when the
success rate reaches to 1. In all plots of this paper, solid lines
are average values over 10 random seeds, and shaded regions
correspond to one standard deviation. In the evaluations of
this paper, the Q network is modeled by the Bayesian deep
Q network introduced above.

Evaluation of practical solution
In this subsection, we evaluate the performance of three ap-
proaches to practially integrate the DRL with implicit hu-
man feedback (via ErrPs).

Generalizability To evaluate the generalization capabil-
ity of error-potential signals and the decoding algorithm, we
train on the samples collected from the Catch game and test
on the Maze game. We assume that the information about
state-action optimality is given for the Catch game, and thus
labeled examples are obtained for the Catch game to train the
ErrP decoder. However, the Maze game need to be solved,
hence, we do not make any assumptions about the optimality
of the actions. In Fig. 5(a), we provide the AUC score per-
formance compared with the 10-fold Cross-Validation (CV)
AUC score of Maze. We can see that the Catch game is able
to capture more than 80% of the variability in the ErrPs for
Maze game. To provide deeper insights into the generaliz-
ability extent, we present the AUC score of generalizabil-
ity performance over all combinations in fig. 5(b). In fig.
5(b), for Maze, Game 1 and 2 refers to Catch and Wobble
respectively. Similarly, for Catch, they refer to Maze and
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Figure 6: Evaluation of the proposed RL Framework.

Wobble respectively, and for Wobble, they refer to Maze and
Catch. In the later subsections, we experimentally show that
these performance numbers are sufficient to achieve 2.25x
improvement in training time (in terms of the number of
episodes required).

We performed preliminary experiments to gain funda-
mental insights into the extent of generalizability. All the
three games considered in this work, differ in terms of their
action space. Wobble can move either left or right (two ac-
tions), Catch has an additional “NOOP” (3 actions), and the
agent in the Maze can move in either direction (4 actions).
To understand the generalizability of ErrP in terms of the ac-
tions taken by the agent, we train on the Wobble, and test on
the Catch game for two groups - (i) when the agent moves
in either direction, and (ii) when the agent stays in the place.
We obtain an average AUC score of 0.7359 (± 0.1294) and
0.6423 (± 0.1451) for both groups, respectively. Through
a paired t-test, we found the difference in mean statistically
significant. Similarly, for the Catch game, we test two groups
- (i) when egg is close to the paddle, and (ii) when egg is far
from the paddle. We found the mean AUC scores of 0.71 (±
0.1) and 0.84 (± 0.12) for each group, respectively. The dif-
ference of the mean of both groups was found statistically
significant.

Evaluation of the Proposed Framework For the evalu-
ation of the proposed framework, imperfect trajectories for
the Maze game were generated based on the optimal paths
corrupted by randomly chosen wrong actions, i.e., at every
state, agent took a wrong action with the probability of 0.2
along the trajectory. Prior to training the RL agent, each
human subject provided implicit feedback (via ErrP) as ex-
plained in the experimental protocol on the state-action pairs
along these trajectories. The performance of the proposed
approach was evaluated with 10 and 20 initial trajectories,
each for 5 subjects. We use the Bayesian DQN as the DRL
model.



Table 1: Average Number of Queries on Maze Game
Subject 01 02 03 04 05

Full access 1879.4 2072.1 2293.7 1975.4 2130.1
Proposed method 505.7 394.7 587.1 681.4 361.3

The acceleration performance of Bayesian DQN with hu-
man feedback is shown in Figure 6(a) for 10 trajectories. We
can see the significant acceleration in training convergence
in Figure 6(a) in terms of the success rate for 5 subjects and
compared against the case of No ErrP, i.e. no human feed-
back. Subject 01 has the highest fidelity for error-potentials,
and hence, RL algorithm converges at much faster rate when
relies upon the feedback obtained by Subject 01. It is evi-
dent from the results that the error-potential decoding per-
formance is sufficient to achieve around 2x improvement in
training time (in terms of the number of episodes required).
Similarly, Figure 6(b) shows the success rate and conver-
gence curve for training to complete, for 20 trajectories.
Comparing Figure 6(a) and (b), we can see that the training
converges at much faster rate when the number of initial tra-
jectories are increased. Further, the learning variance is also
decreased with more trajectories. The comparison between
Figure 6 and Figure 4(c) shows that the proposed framework
learns faster than No-ErrP case, while outperforming the full
access case, even though full access requires significantly
larger amount of queries. We also compare the number of
ErrP queries for full access and proposed method in Table
1, according to the statistics on experiments with 20 trajec-
tories. On an average for 5 subjects, the proposed approach
makes 75.56% less queries as compared to the full access.
As full access queries for feedback label at every learning
step, while the proposed framework queries only on the tra-
jectories given initially, the total number of queries made are
significantly reduced.

Conclusions and Future Work
We first demonstrate the feasibility of capturing error-
potentials of a human observer watching an agent learning
to play several different Atari-games, and then decoding the
signals appropriately and using them as an auxiliary reward
function to accelerate the learning process of an RL agent.
Then we argue that the definition of ErrPs is generalizable
across different game environments. In the ideal approach,
we validate the acceleration effect of ErrP labels on the RL
agent by the full access method. Then, in the practical ap-
proach, we propose an RL framework, based on imitation
learning. It is to learn a reward function from imperfect
demonstrations criticized by ErrP labeling.

The demonstration of the generalizability of error-
potentials is limited across the environments presented in
the paper. We have considered discrete grid-based reason-
ably complex navigation games. The validation of the gen-
eralization to a variety of Atari and Robotic environments is
the subject of future work. We plan to test our framework of
integrating implicit human feedback (via ErrPs) over robotic
environments, and text the generalization capability of error-
potentials between virtual and physical worlds. As part of

our future work, we also plan to investigate as to how ma-
chines can be assisted in DRL by using intrinsic EEG-based
co-operations among humans and machines.
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