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Abstract

Human gaze is known to be an intention-revealing sig-
nal in human demonstrations of tasks. In this work, we
use gaze cues from human demonstrators to enhance the
performance of state-of-the-art inverse reinforcement
learning (IRL) and behavior cloning (BC) algorithms,
without adding any additional learnable parameters to
those models. We show how to augment any existing
convolutional architecture with our auxiliary gaze loss
(coverage-based gaze loss or CGL) that can guide learn-
ing toward a better reward function or policy. We com-
pare our approach against two baseline methods which
utilize gaze, highlighting trade-offs for each of them.
Our auxiliary gaze loss function improves performance
of both BC and IRL methods on a variety of Atari
games. It outperforms a baseline approach for incor-
porating gaze with IL methods, called gaze-modulated
dropout, and is comparable to another approach (AGIL)
which uses gaze as input to the network.

Introduction
Learning agents can outperform humans at tasks such as
Atari game playing when provided with well-defined goals
or rewards using reinforcement learning (RL) (Sutton and
Barto 2018). However, designing reward functions by hand
can be difficult for complex tasks, even for experts. Imitation
learning (IL) (Schaal 1997),(Argall et al. 2009) is an alterna-
tive methodology to infer an optimal policy from demonstra-
tions. A challenge in training and utilizing IL agents in the
real world is learning from few demonstrations to minimize
the burden on end-users, while also sufficiently resolving
ambiguity in user intentions and avoiding overfitting. Gaze,
an additional informative modality from the demonstrator
apart from state-action pairs, can help extract more informa-
tion out of the same number of demonstrations (Zhang et al.
2018).

Human attention in the form of eye gaze has been known
to encode top-down attention versus bottom-up salience
when performing goal directed tasks (Land 2009; Hayhoe
and Ballard 2005; Rothkopf, Ballard, and Hayhoe 2007;
Tatler et al. 2011). Gaze has been shown to improve perfor-
mance of imitation learning algorithms (Zhang et al. 2019),
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particularly for autonomous driving (Chen et al. 2019;
Xia et al. 2019) and Atari game playing (Zhang et al. 2018).
However, most prior approaches utilizing gaze for IL al-
gorithms either use gaze heat maps as input to the agent’s
networks in addition to the game state (Zhang et al. 2018;
Liu et al. 2019), or predict gaze heatmaps along a network
pathway in conjunction with learning the policy (Xia et al.
2019). By contrast, we propose using an auxiliary gaze loss
during training of imitation learning algorithms to improve
performance of existing methods without increasing model
complexity, data requirements or requiring test-time gaze.

Our methodology utilizes a demonstrator’s gaze fixations
on the image as part of a surrogate loss function (coverage-
based gaze loss or CGL) during the training phase. Encoding
priors in loss functions for label-free supervision of neural
networks has been suggested by Stewart el al. (Stewart and
Ermon 2017). Similar to their approach, we show that a loss
term guiding a network to attend to the demonstrator’s gaze
locations can help improve performance on different Atari
Games when using IL. Such an auxiliary gaze loss can guide
the learning of any agent using image based state representa-
tions and convolutional layers as part of it’s model architec-
ture. A critical advantage of our approach is that gaze is not
required at test time and instead used as a weak supervisory
signal, in contrast to several prior approaches utilizing gaze.

We evaluate our auxiliary gaze loss function on 11 unique
Atari games and 3 different IL approaches. Our experiments
show that CGL can improve performance for both IRL and
BC frameworks: T-REX (Brown et al. 2019), BCO (Torabi,
Warnell, and Stone 2018) and BC (Zhang et al. 2018) net-
works, compared to not using any gaze information at all.
Moreover, we show that to improve performance, human
gaze is more informative than information already encoded
in the visual state space in the form of motion of the visual
scene. Our auxiliary loss does not show performance gains
when using motion instead of gaze. We also show improved
results compared to another recent method for incorporat-
ing gaze called gaze-modulated dropout (GMD) (Chen et al.
2019). We compare against this baseline as it is the closest
work in the literature in terms of not increasing the complex-
ity of existing models. CGL outperforms GMD for 5 out of
6 games when tested with BCO. We also compare against a
recent work utilizing gaze as an input to a behavior cloning
algorithm (AGIL) (Zhang et al. 2018). We show that our



(a) Input image stack

(b) Gaze heatmap (c) Network
activation without
gaze loss

(d) Network acti-
vation with gaze
loss

Figure 1: Our auxiliary gaze loss (CGL) guides a convolu-
tional network to focus on parts of the state space which
the human attends to. An example of network activations for
the BCO network are shown in (c) without utilizing gaze
and (d) when CGL is incorporated as part of training. These
activation heatmaps represent the collapsed and normalized
outputs from the second convolutional layer as described in
Equation (2). We find that when CGL is utilized, network ac-
tivations are more heavily focused (in red) on the bottom of
the input image stack (a), where the human also paid atten-
tion during demonstrations (b). Without CGL, the network
chooses to focus more on the middle rows of the input image
stack.

auxiliary gaze loss improves performance over most games
compared to AGIL. We provide an analysis that a significant
performance improvement in AGIL comes from increased
number of model parameters and test-time gaze data, while
our approach does not suffer from these issues.

Related Work
Imitation Learning
When learning from demonstrations, Atari game playing has
been attempted with various imitation learning approaches.
Behavior Cloning (Bain and Sommut 1999; Ross, Gordon,
and Bagnell 2011; Daftry, Bagnell, and Hebert 2016) is
a standard approach used for imitation learning, where an
agent trains a classifier or regressor to replicate an expert’s
policy by using the demonstrated states and actions as input
data for supervised learning. Behavioral Cloning from Ob-
servation (BCO) (Torabi, Warnell, and Stone 2018) is a two-
phase, iterative imitation learning technique – first allowing
the agent to acquire experience in a self-supervised fash-
ion in a task-independent pre-demonstration phase, which
is then used to learn a model for a specific task policy only
from state observations of expert demonstrations (without
access to actions). The self supervision produces an inverse
dynamics model to infer actions, given state observations.
This model is then used to infer expert actions from state-
only demonstrations. The inferred actions along with state
information is then used to perform imitation learning for

the agent’s policy. GAIL (Ho and Ermon 2016) is an ad-
versarial imitation learning approach trained by alternating
the learning updates between a generator policy network and
a discriminator network distinguishing between the demon-
strated and generated trajectories. It achieved state-of-the-
art performance for low-dimensional domains. BCO shows
comparable performance to GAIL on low-dimensional Mu-
JoCo benchamrks (Todorov, Erez, and Tassa 2012) with in-
creased learning speed.

Behavior Cloning does not explicitly model the goals or
intentions of the demonstrations which a succinct reward
function attempts to capture in IRL. Typically, such a suc-
cinct inferred reward function makes IRL have better gen-
eralization properties compared to behavior cloning (Ross,
Gordon, and Bagnell 2011). Most deep learning-based IRL
methods either require access to demonstrated actions (Ibarz
et al. 2018) or do not scale to high-dimensional tasks such
as video games (Finn, Levine, and Abbeel 2016; Fu, Luo,
and Levine 2017; Qureshi, Boots, and Yip 2018). Tucker et
al. (2018) showed that their adversarial IRL method is dif-
ficult to train and fails at high-dimensional tasks of Atari
game playing, even with extensive parameter tuning. Ay-
tar et al. (2018) learn a reward function from observations
for three Atari games. They guide the agent to exactly imi-
tate the checkpoints from provided demonstrations, assum-
ing access to high-quality demonstrations. T-REX (Brown
et al. 2019) is a reward learning from observation algorithm,
that extrapolates beyond a set of ranked and potentially sub-
optimal demonstrations. T-REX outperforms other imitation
learning methods such as BCO and GAIL, on Atari and Mu-
JuCo benchmarks (Todorov, Erez, and Tassa 2012) and also
demonstrates the ability to extrapolate intentions of a subop-
timal demonstrator.

Utilizing Gaze for Learning
Prior studies have shown that human fovea move to the cor-
rect place at the right time to extract task-relevant infor-
mation, making visual attention a feature selection mech-
anism for humans (Rothkopf, Ballard, and Hayhoe 2007).
Novice human learners can benefit from observing experts’
gaze (Vine et al. 2012) for learning complex surgical skills.
Yamani et al. (2017) showed that viewing the expert gaze
videos can improve the hazard anticipation ability of novice
drivers. Saran et al. (2019) showed the advantage of incor-
porating a human demonstrator’s gaze for learning robotics
manipulation tasks. Penkov et al. (2017) learn the mapping
between abstract plan symbols and their physical instances
in the environment using eye gaze. Gaze has been exploited
in prior imitation learning approaches for autonomous driv-
ing (Chen et al. 2019; Xia et al. 2019) and Atari Games
(Zhang et al. 2018), but to the best of our knowledge, our
work is the first attempt to incorporate gaze in a deep IRL
algorithm.

A common method of incorporating human attention is
to simply use the gaze map as an additional image-like in-
put (Liu et al. 2019) or predict the gaze heatmap and further
use high-resolution parts of the image to improve learning
(Zhang et al. 2018; Xia et al. 2019). Zhang et al. (2018)
show improved learning on Atari games for imitation learn-



ing (AGIL) but use predicted heatmaps corresponding to
demonstration states as part of the input. Gaze-modulated
dropout (GMD) was proposed by Chen et al. (2019) to
implicitly incorporate gaze into an IL framework for au-
tonomous driving, instead of using gaze as an additional in-
put. An estimated gaze distribution is used to modulate the
dropout probability of units at different spatial locations in
the first two convolutional layers. GMD is tested with an au-
tonomous driving dataset on an imitation learning network
called PilotNet (Liu et al. 2019). Both GMD (Chen et al.
2019) and our auxiliary gaze loss CGL do not increase the
complexity of an agent’s network, and hence we use it as
a baseline for comparison. However, an auxiliary gaze loss
only requires gaze data at train time, whereas GMD requires
gaze both at train and test time.

Approach
To enable existing IL algorithms to take advantage of hu-
man gaze signals accompanying demonstrations, we pro-
pose an auxiliary coverage-based gaze loss term. This loss
term guides the network to attend to features that human
demonstrators attend to. Our approach does not increase
the model complexity of existing algorithms in terms of the
number of learnable parameters, and can be easily applied to
the training of any neural network with convolutional layers.

Data Collection for Atari Game Playing
We use demonstrations collected in the Arcade Learning
Environment (ALE) (Bellemare et al. 2013) for a total
of 11 unique games. Two types of users provide these
demonstrations—experts and novices. Expert users are ex-
perienced at playing the games and provide very high-
scoring demonstrations. Novice users only get one practice
session before playing a game and have no prior experience
with any of them. The demonstrations provided by novice
users score much lower than those of experts. Expert demon-
strations are from the publicly available Atari-HEAD dataset
(Zhang et al. 2020). Demonstrations from 2 novice users are
collected using the same procedure as followed by Zhang
et al. (2020). The subjects were only allowed to play for 15
minutes and were required to rest for at least 5 minutes be-
fore the next trial. Users had the option to start the next trial
from the point they left off or begin a new trial.

Gaze data was recorded using an EyeLink 1000 eye
tracker at 1000 Hz. The game screen was 64.6×40.0 cm (or
1280× 840 in pixels), and the distance to the subjects’ eyes
was 78.7 cm. The visual angle of the screen was 44.6×28.5
visual degrees, where the visual angle of an object is a mea-
sure of the size of the object’s image on the retina. In the
default ALE setting, the game runs continuously at 60 Hz, a
speed that is very challenging even for expert human play-
ers. An innovative feature of the Atari-HEAD (Zhang et al.
2020) setup is that the game pauses at every frame, until a
keyboard action is taken by the human player. This allows
users to fixate at all critical locations of the state space be-
fore taking an action, producing a richer gaze signal at ev-
ery time step. If desired, the subjects can hold down a key
and the game will run continuously at 20Hz, a speed that

is reported to be comfortable for most players. While pro-
viding demonstrations, we observe that users only pause the
game at rare instances involving a critical action, but pro-
ceed with game play at 20 Hz in most other instances. To
generate gaze heatmaps, the discrete gaze positions are con-
verted into a continuous distribution (Bylinskii et al. 2018)
by blurring each fixation location using a Gaussian with a
standard deviation equal to one visual degree (Le Meur and
Baccino 2013).

Coverage-based Gaze Loss
We propose adding an auxiliary loss term based on KL di-
vergence, to the existing loss function for a network, mod-
ifying the training procedure of any IL algorithm. Our loss
term will penalize the network if it does not focus on parts
of the image that the demonstrator focused on, but will have
no penalty for activations where the demonstrator did not
pay attention. We refer to the proposed loss function as a
coverage-based gaze loss (CGL).

CGL operates on the gaze heatmap from the demonstrator
and the output of a convolutional layer. Given a 3D feature
map f of size h×w×c from a convolutional layer, Equation
2 shows the collapse of such a feature map to 2D by sum-
ming over the dimension of feature channels, and a further
normalization of this 2D feature map to values between 0
and 1. Given a normalized 2D gaze heatmap g of size h×w,
CGL is computed as:

CGL(g, f
′′
) =

∑
i∈(1,h),j∈(1,w)

gi,j

[
g

′

i,j log
g

′

i,j

f
′′
i,j

]
(1)

f
′

i,j =

∑
k∈(1,c) fi,j,k −min(

∑
k∈(1,c) fi,j,k)

max(
∑
k∈(1,c) fi,j,k)−min(

∑
k∈(1,c) fi,j,k)

(2)

g
′

i,j =

{
ε, if gi,j = 0

gi,j , otherwise
(3)

f
′′

i,j =

{
ε, if f

′

i,j = 0

f
′

i,j , otherwise
(4)

The loss function adds a penalty if activations from none
of the convolutional filters are non-zero on areas where the
demonstrator’s gaze fixates during game play. If activations
are non-zero in other areas where the demonstrator does not
focus, there is no penalty. This is because only regions of
the gaze map which have a non-zero value contribute to the
auxiliary loss, and other regions of the convolutional out-
put which are not fixated on by the demonstrator do not ef-
fect the loss term. Hence, our loss term encourages cover-
age of the demonstrator’s attention space. The magnitude of
penalty is computed using a smoothed (Equations 3, 4 with
ε = 1e−10) KL divergence term between the normalized
gaze map and the collapsed and normalized convolutional
map, and is then weighted by the amount of gaze fixation
an image region gets (Equation 1). Instead of forcing the fil-
ter weights to exactly match the demonstrator’s gaze, CGL
guides the network to focus on aspects of the state space
which might be missed by the network, for example, areas



of the image which are not feature-rich but are critical for
decision-making, eventually leading to better performance.
A loss function which encourages a network to attend pro-
portional to the human’s gaze frequency instead, will be
more restrictive.

Auxiliary Gaze Loss for BC For behavior cloning (BC),
the gaze coverage loss is added as an auxiliary loss term in
addition to the log likelihood action classification loss:

L(θ) = −
N∑
i=1

[
log πθ(ai|si) + α CGL(g(si), c3(si))

]
(5)

The network architecture is similar to the one used in Zhang
et al.(2018) – comprised of three convolutional layers and
one fully-connected layer. It takes in a single game image as
input, and outputs a vector that gives the probability of each
action. The gaze coverage loss is applied to the feature maps
at the third convolutional layer. g(si) is the gaze map of size
16× 16, c3(si) is the collapsed and normalized feature map
(Equation (2)) from the third convolutional layer, and N =
50 is the batch size. We found α = 0.01 or α = 0.1 worked
well in our setting.

Auxiliary Gaze Loss for BCO For BCO (Torabi, War-
nell, and Stone 2018), we incorporate CGL as part of learn-
ing the imitation policy after the agent learns an inverse-
dynamics model of the environment. Similar to Torabi et al.
(2018), we use a neural network with three convolutional
layers and one fully-connected layer using a stack of four
consecutive frames as input. The output is the probability
distribution over the discrete action space of the Atari do-
main. The network is learned using maximum likelihood es-
timation (MLE), finding the network parameters that best
match the provided state-action pairs – states si obtained
from a demonstrated trajectory τi and actions ãi recovered
from the inverse dynamics model. The new loss function is
a weighted combination of the standard cross-entropy loss
for MLE and CGL applied to the intermediate output of the
second convolutional layer (a spatial map of size 32×9×9)
as shown below.

L(θ) = −
N∑
i=1

[
log πθ(ãi|si) + α CGL(g(si), c2(si))

]
(6)

Here, πθ is the imitation policy network, g(si) is the gaze
map of size 9×9, c2(si) is the collapsed and normalized fea-
ture map (Equation (2)) from the second convolutional layer
(we tested CGL on all convolutional layers), and N = 32
is the batch size. The Adam (Kingma and Ba 2014) opti-
mizer is used to solve for the network parameters. We found
α = 0.01 or α = 0.1 worked well for our experiments.

Auxiliary Gaze Loss for T-REX T-REX (Brown et al.
2019) is concerned with the problem of reward learning
from observation, using rankings of demonstrations to effi-
ciently infer a reward function. To the best of our knowledge,
gaze has not been incorporated as part of inverse reinforce-
ment learning for Atari game playing. Given a sequence of
m demonstrations ranked from worst to best, τ1, . . . , τm,

a parameterized reward network r̂θ is trained with a cross-
entropy loss over a pair of trajectories (τi ≺ τj), where τj is
ranked higher than τi. We add CGL to the reward network’s
loss, so the new loss function becomes:

L(θ) = −
∑
τi≺τj

log
exp

∑
s∈τj r̂θ(s)

exp
∑
s∈τi r̂θ(s) + exp

∑
s∈τj r̂θ(s)

+

α

[∑
s∈τi

CGL(τgi (s), c1(s)) +
∑
s∈τj

CGL(τgj (s), c1(s))

]
(7)

τgi (s) represents the gaze map corresponding to the state s
from the trajectory snippet τi and c1(s) represents the convo-
lutional output of the first layer for the same state s. The loss
function accumulates gaze over the entire trajectory snippet
for both trajectories used as input to the network.

We found α = 0.01 worked well for our experiments. We
use the same hyper-parameters and network architectures
from Brown et al. (2019). The reward network has four con-
volutional layers with sizes 7×7, 5×5, 3×3 and 3×3 with
strides 3, 2 and 1. Each convolutional layer used 16 filters
and LeakyReLU non-linearities. The gaze loss is computed
over the first convolutional layer output – a spatial map of
size 16 × 26 × 26. At the end, a fully connected layer with
64 hidden units with a single scalar output is used to deter-
mine the ranking between a pair of demonstrations.

Similar to the implementation of Brown et al. (2019),
the trajectories are first subsampled by maximizing over ev-
ery 3rd and 4th frame, from which a stack of 4 consecu-
tive frames with pixel values normalized between 0 and 1
is passed as input to the reward network. We subsampled
6,000 trajectory pairs with an observation length of 50 time
steps. The Adam optimizer (Kingma and Ba 2014) is used
with a learning rate of 5e−5 for 30, 000 steps. The snippets
are ranked based on the ground truth rewards or cumulative
game scores of the trajectories they are sampled from.

Other Techniques to Incorporate Gaze
Gaze-modulated Dropout (GMD) As a baseline for
learning from human gaze, we implement GMD (Chen et
al. 2019) after the first convolutional layer of the BCO pol-
icy network (Torabi, Warnell, and Stone 2018). The BCO
policy network does not originally use dropout layers. Gaze
maps are generated using a convolution-deconvolution net-
work (Zhang et al. 2018), trained separately for each game
on the Atari-HEAD dataset (Zhang et al. 2020). The gaze
prediction network uses as input a stack of 4 consecutive
game frames, each of size 84 × 84, along with their optical
flow (Farnebäck 2003) and saliency maps (Itti, Koch, and
Niebur 1998). Details of the network architecture are simi-
lar to Zhang et al. (2018). We employ this network for gaze
prediction, as it has been shown to work well for the Atari
domain, instead of the Pix2Pix network (Isola et al. 2017)
used by (Chen et al. 2019) for the autonomous driving do-
main. The generated gaze map is then used as a mask for the
additional dropout layer added after first the convolutional
layer. Units of the convolutional layer near the estimated



Table 1: BCO performance with and without the usage of
expert human demonstrators’ gaze

Game Human BCO +GMD +Motion +CGL

Asterix 88000-537500 203.3 305.0 276.6 355.0
Breakout 344-554 0.9 0.2 0.0 2.17
Centipede 39737-251961 2765.0 3172.4 2287.1 2195.1
MsPacman 27731-36061 70.0 60.0 70.0 470.0
Phoenix 22410-27570 317.3 52.6 619.0 755.6
Seaquest 35870 - 445860 0.0 80.0 80.0 184.0

Table 2: T-REX performance with and without the usage of
expert human demonstrators’ gaze

Game Human T-REX T-REX+CGL

Asterix 88000-537500 3746.7 76383.3
Breakout 344-554 50.9 68.9
Centipede 39737-251961 5742.1 7586.3
MsPacman 27731-36061 484.7 522.7
Phoenix 22410-27570 166.0 534.7
Seaquest 35870 - 445860 0.0 10.0

gaze location are assigned a lower dropout probability than
units far from the estimated gaze location. This is similar to
conventional dropout (Srivastava et al. 2014), but with non-
uniform dropout probability for spatial units corresponding
to different parts of the image space, as described by Chen
et al. (2019).

Attention Guided Imitation Learning (AGIL) AGIL
adds more parameters to a BC network to utilize gaze. Zhang
et al. (2018) train a gaze-prediction network using a stack of
4 image frames denoting the game state, optical flow and
saliency (Itti, Koch, and Niebur 1998) as input. The output
of the gaze network (gaze saliency map) is then used as an
additional input to a modified version of standard behavior
cloning. AGIL consists of two channels of 3 convolutional
layers. One channel takes as input a single image frame
(game state) and another uses a masked image which is an
element-wise product of the original image and predicted
gaze saliency map. Finally the outputs of the two channels
are averaged to predict one of the 18 actions within ALE.

Experiments and Results
We work with demonstrations from 11 unique games in
ALE (Bellemare et al. 2013). We evaluate CGL with ex-
pert demonstrations for BC, BC, TREX and evaluate CGL
with novice demonstrations for BC and its variants. These
algorithms are implemented in the OpenAI Gym platform
(Brockman et al. 2016), which contains Atari 2600 video
games with high-dimensional observation space (raw pix-
els). All reported results are game scores averaged over 30
different rollouts of the learnt policy. We use the default set-
tings from OpenAI baselines (Dhariwal et al. 2017) for pa-
rameters of ALE. Experiments are conducted on server clus-

Table 3: Behavior cloning’s (BC) and AGIL’s performance
with and without the usage of expert human demonstrators’
gaze

Game Human BC BC-2ch AGIL BC+CGL

Asterix 88000-537500 256.7 268.3 368.3 415.0
Breakout 425-554 1.2 1.5 7.0 3.3
Centipede 18853 - 204294 6360.1 7185.2 9270.4 9794.1
MsPacman 27731-36061 1258.7 1121.0 1047.0 1804.7
Phoenix 22410 - 57580 1641.0 2925.3 3355.3 3909.0
Seaquest 35870 - 445860 198.0 164.7 326.0 242.3

Table 4: Behavior cloning’s (BC) and AGIL’s performance
with and without the usage of novice human demonstrators’
gaze

Game Human BC BC-2ch AGIL BC+CGL

Beamrider 1692 - 8024 368.1 422.4 524.0 616.8
Breakout 66 - 427 2.9 2.2 16.5 6.6
Enduro 278 - 742 27.2 36.2 107.6 123.6
Pong 0-9 -18.1 -17.9 -11.5 -15.9
Q*bert 7700 - 11950 623.3 745.8 1111.7 1213.3
Seaquest 1600 - 67710 118.0 135.3 161.3 165.3
Space Invaders 845 - 2035 207.5 189.3 175.5 278.3

ters with NVIDIA Titan V or DGX GPUs.

CGL for Imitation Learning Algorithms
We augment BC, BCO and T-REX with CGL and find that
CGL improves performance over all algorithms for most
games. For BCO (Table 1), CGL outperforms basic BCO for
5 out of 6 games with expert demonstrators. For T-REX (Ta-
ble 2), CGL outperforms on all games with expert demon-
strations. For BC (Tables 3, 4), CGL outperforms basic BC
on all games for both experts and novice demonstrations.
These results confirm that the gaze information is beneficial
for imitation learning algorithms.

CGL versus GMD
We test GMD and CGL with BCO and find that for 5 out
of 6 games, CGL outperforms GMD (columns 4, 6 in Table
1). One may expect that convolutional dropout helps gen-
eralization by reducing over-fitting. However, it is far less
advantageous, since the shared-filter and local-connectivity
architecture in convolutional layers is a drastic reduction in
the number of parameters and this already reduces the possi-
bility to overfit (Hinton et al. 2012). Empirical results by Wu
et al. (2015) confirm that the improvement in generalization
to test data from convolutional dropout is often inferior to
max-pooling or fully-connected dropout.

CGL versus AGIL
For this experiment, we investigate how well the coverage-
based gaze loss compares against another common method
of incorporating gaze in imitation learning networks, i.e.
using gaze as an input. To tease apart whether improve-
ment in prior IL approaches (such as AGIL (Zhang et al.
2018)) comes from increased parameters to standard behav-
ior cloning or from the gaze information itself, we perform



(a) A masked frame stack for Ms. Pacman (b) Motion heatmap (c) Gaze heatmap

(d) A masked frame stack for Asterix (e) Motion heatmap (f) Gaze heatmap

Figure 2: Motion in the visual game state, i.e. the difference between the last and first frame in an input image stack, cannot
alone explain human attention. This is further highlighted with minimal performance gains when CGL utilizes the motion
heatmap instead of human gaze.

the following experiment. We re-train the AGIL network, but
instead of using gaze heatmaps, we pass the original image
as input to the gaze pathway, referred as the BC-2ch model.
This helps us disambiguate if more parameters in the model
help more versus the gaze information itself. As shown in
Tables 3 and 4, we find that the BC-2ch model improves per-
formance over BC for 4 out of 6 games with expert demon-
strators (Table 3) and 5 out of 7 games with novice demon-
strators (Table 4). This hints at the fact that increasing model
complexity alone without using any additional information
as input proves beneficial.

Our work is focused on utilizing the gaze information it-
self without increasing number of model parameters. Our
method (BC+CGL) utilizes gaze without changing model
complexity and does not require gaze prediction for the input
state at test time. BC+CGL consistently outperforms basic
BC and BC-2ch models in all games by a significant margin,
as shown in Tables 3 and Table 4. Compared to the previous
state-of-the-art model AGIL, CGL performs better in 4 out
of 6 expert game evaluations and 5 out of 7 novice game
evaluations, even though AGIL adds learnable parameters to
BC and requires gaze prediction at test time.

CGL for different convolutional layers
To choose a specific layer for computing and reporting re-
sults on the CGL loss for each IL algorithm, we test dif-
ferent combinations of α values (0.01, 0.1, 1.0, 10.0) along
with applying CGL on the output of different convolutional
layers. Table 5 shows the results of applying CGL to each
convolutional layer of the BCO network. As we know from
Table 1, except Centipede CGL outperforms BCO and GMD
for all games. However in Table 5, we also see that for two
values of α = 0.01, 0.1, CGL applied to the second con-
volutional layer outperoms CGL applied to other layers for
most games. Based on such an analysis, we choose the layer
which performs the best for each IL algorithm individually.

Table 5: Analysis of CGL applied to different layers of the
BCO network for expert users. BCO+CGL1 refers to CGL
being computed with the outputs of the first convolutional
layer and so on.

Game BCO+CGL1 BCO+CGL2 BCO+CGL3 BCO+CGL1 BCO+CGL2 BCO+CGL3

α = 0.01 α = 0.1

Asterix 131.7 293.3 240.0 220 355.0 318.3
Breakout 0.4 1.8 0.2 1.9 2.2 0.5
Centipede 1762.8 2195.1 2207.9 2630.6 1916.6 703.9
MsPacman 60.0 470.0 70.0 60.0 60.0 70.0
Phoenix 532.7 755.7 370.3 546.7 443.3 459.3
Seaquest 210.0 184.0 124.0 160.0 170.0 104.0

For each game, we report results for the best α value for the
chosen layer.

CGL performs the best on different convolutional layers
for different algorithms, however, the architecture for each
algorithm is different as well. Spatial resolution of the gaze
heatmaps and convolutional feature maps can vary the mag-
nitude of the loss penalty. Initial layers will apply the loss
to specific regions of human attention using a higher resolu-
tion heat map, hence penalizing a lack of attention coverage
on the low-level visual features. Whereas deeper in the net-
work, the loss will be computed over a broader region of the
input image via a low resolution heat map, penalizing a lack
of attention coverage on high-level visual features. T-REX
gains the most with gaze using its first convolutional layer.
There might be subtle differences in terms of low-level fea-
tures that helps distinguish better between a pair of trajec-
tory snippets. BC on the other hand directly predicts actions
given the state of the game. It benefits the most with gaze
from the last convolutional layer which depicts high-level
features representing the state and loses low-level visual de-
tails.



Motion versus human gaze attention
Prior work has established that human gaze encodes atten-
tion which is different from salient regions in a scene (Land
2009; Hayhoe and Ballard 2005; Rothkopf, Ballard, and
Hayhoe 2007; Tatler et al. 2011). We test whether our pro-
posed approach extracts the additional information from hu-
man gaze data, in comparison to what might already be en-
coded in the visual game state, such as motion. We replace
the gaze heat maps used by CGL with heatmaps represent-
ing the normalized motion in an input image frame stack
(difference between the last and first frame in a stack). We
test this motion-based CGL loss for BCO (Table 1) which
didn’t show as much of an improvement in comparison to
human attention heat maps.

Conclusions and Future Work
In this work, we introduce an auxiliary coverage-based gaze
loss (CGL) term which can guide the training of any imi-
tation learning network with convolutional layers. Our re-
sults show improved performance on several Atari games
over state-of-the-art imitation learning algorithms. Our ap-
proach provides these gains without requiring gaze predic-
tion at test time or increasing the model complexity of exist-
ing algorithms. We outperform a baseline method (GMD),
which also does not increase model complexity. On most
games, CGL outperforms another method (AGIL) which uti-
lizes gaze in the form of an additional input to a BC al-
gorithm. AGIL requires gaze prediction at test time and is
shown to gain performance by increasing model complex-
ity alone. Our approach improves performance by utilizing
gaze without these shortcomings.

We highlight that utilizing human gaze provides addi-
tional information to what is encoded implicitly in the game
state (such as motion). Our work confirms prior research
showing gaze can help extract more information from a
demonstrator than traditional state-action pairs. Moreover,
we present a new methodology to incorporate gaze effec-
tively by augmenting existing algorithms, and only requir-
ing access to human gaze data at training time. We hope
our work encourages the research community to innovate on
other novel ideas for efficiently incorporating human atten-
tion. Human gaze and actions from demonstrations may be
correlated in time. Our approach only utilizes gaze per game
state, and so do all other approaches we compare against.
Utilizing temporal connections in the gaze signal is a direc-
tion for future work.
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