
TradingStone: Benchmark for Multi-Action and Adversarial Games

Manuel Del Verme, Simone Totaro,1 Wang Ling2

1Universitat Pompeu Fabra, 2DeepMind
manuel.delverme@gmail.com

simone.totaro@gmail.com
lingwang@google.com

Department of Information and Communication Technologies
Carrer de Tànger, 122-140

08018 Barcelona, Spain

Abstract

This paper introduces TradingStone, a simplification of the
zero-sum game trading card game HearthStone that preserves
the core elements of the game that challenge existing agents,
namely: multi-action turns that require the management of
a pool of resources; partially observable boards; Highly di-
mensional card spaces. However, it removes elements that
are specific only to certain cards that render many existing
approaches unusable, such as, effects that generate new arbi-
trary cards that lead to very sparse search spaces. We show
that the core elements that can be studied with TradingStone
are still unsolved by existing search and RL approaches and
as such, it is a milestone that must precede solving Hearth-
stone.

Introduction
Hearthstone: Heroes of Warcraft is a zero-sum game that
represents a multifaceted challenge to RL. Imperfect in-
formation, sthochasticity and longer-term planning repre-
sent only a fraction of the elements that Hearthstone agents
need to master in order to excel at the game. While exist-
ing approaches attempt to tackle the full complexity of the
game (Zhang and Buro 2017; Santos, Santos, and Melo
2017; Swiechowski, Tajmajer, and Janusz 2018), the ap-
proaches that have been applied have been limited to small
variations of Monte Carlo Tree Search (MCTS), as the
complexity of full Hearthstone game makes the applica-
tion of many other solutions prohibitive. Examples include
Counterfactual Regret Minimization (Zinkevich et al. 2007)
and Information Set MCTS (Cowling, Powley, and White-
house 2012), which establish higher speed and memory re-
quirements than pure MCTS. Thus, we argue that more re-
stricted versions of the game that focus on the study of
certain elements of the game such as imperfect informa-
tion or stochastic would be beneficial to the existing re-
searchers as it would allow such approaches to be validated
as an intermediate milestone, prior to scaling them to the
full game. This is analogous to the research in Poker(Zinke-
vich et al. 2007), which was initially conducted in sim-
pler versions of the same game before work on more com-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

plex variants were developed (Brown and Sandholm 2017b;
Moravcı́k et al. 2017).

In this work, we propose TradingStone, a restricted coun-
terpart of Hearthstone that eliminates the non-core elements
of the game, while preserving the key research challenges in
the game. The game remains a two-player adversarial game,
where at each turn players manage a pool of resources that
must be managed and strategically viable actions must be
chosen in order to win the game. More importantly, we iso-
late the stochastic and imperfect information elements of the
game. We believe that both issues constitute important gen-
eral problems in the field of RL and our framework allows
the testing of each of these problems in isolation or jointly
by providing different versions of the game.

Under our restricted version of the game, we also test the
application of IS-MCTS (Cowling, Powley, and Whitehouse
2012) validate its usefulness in modelling the imperfect in-
formation elements present in Hearthstone. We show that
our implementation of IS-MCTS in this environment com-
pares favourably to previously implemented approaches for
HearthStone based on PI-MCTS.

Related Work
Hearthstone belongs to the category of sequential stochas-
tic games with imperfect information. Most methodologies
that have been employed to play full HearthStone games
have relied on Monte Carlo Tree Search (Santos, Santos, and
Melo 2017). Here, PIMC (Perfect Information Monte Carlo)
Tree Search, where hidden information the each game state
is filled randomly converting the problem into a perfect in-
formation search problem. While variants of MCTS exist for
imperfect information games exist, such as Information Set
MCTS (Cowling, Powley, and Whitehouse 2012), only par-
tial implementations have been proposed due to the com-
plexity of the game (Swiechowski, Tajmajer, and Janusz
2018). Another relevant body of research has been con-
ducted in solving imperfect information games by finding
their Nash Equilibrium through counterfactual regret min-
imization (Zinkevich et al. 2007). Such approaches have
shown their utility by achieving competitive levels of game-
play in imperfect information games, mainly Poker (Brown
and Sandholm 2017a). Yet, this algorithm struggles to scale



as the number of possible game states increases. This is
because these methods require a complete traversal of the
game tree, which is intractable in Hearthstone.

Orthogonal to the approaches that devise agents that fully
play HearthStone are the tasks that model particular as-
pects of the game, such as, deck building (Garcı́a-Sánchez
et al. 2016) and predicting the winner from a given board
state (Grad 2017). These can then be integrated to improve
existing game agents (Swiechowski, Tajmajer, and Janusz
2018).

Environment
We introduce a simpler benchmark task that maintains the
key features of HearthStone, which we name TradingStone.
The aim of this benchmark environment is to understand the
difference between search and reinforcement learning ap-
proaches and the effect of each different factor on the per-
formance of each family of algorithm.

Hearthstone
The complexity of the original Hearthstone game(Zhang and
Buro 2017) hinder the application of many algorithms. As
the game elements have non-linear interactions, each card
is a stateful element and several effects depend on latent
variables which are not directly available to the player. The
effect of each card is described in natural language and
their descriptions are not necessarily coherent across differ-
ent cards or across game versions. While playing the game,
humans rarely play zero-sum games1, and opponent distri-
butions are conditioned on out of game trends and informa-
tion. In this work, we identified key qualities of the original
game and extracted them into a simple version, called Trad-
ingStone.

We remove the deck selection process with an automati-
cally sampled deck generator. Players are given a established
number of hand cards, which are sampled randomly. Decks
are removed, thereby players only work with the initial set
of hand cards in order to win the game. To remove the ne-
cessity to understand natural language, we removed card ef-
fects. Thereby, different cards are unique due to differences
in their basic properties (e.g. Cost, Attack, Health, etc...).
Hearthstone is an adversarial game, where the opponent is
sampled from a distribution of possible opponents, hence
players have to first understand what strategy the opponents
are following by gathering information and then behaving
accordingly to the estimated opponent strategy, considering
non stationary adversaries introduces a non trivial level of
complexity which is left for future work.

TradingStone
TradingStone is a two-players, adversarial, stochastic, im-
perfect information card game.

The game starts with an empty board, 7 cards in each
player hand and both players start at 30 health. Each card
is described by its attack and defense values and whether

1the goal of the competitive “Ranked” game is to ascend in the
player ladder, players may also optimize for ascension speed and
subjective fun instead of optimizing winning rate.

(a)

(b)

(c)

(d)

Figure 1: (a): A state of TradingStone, in the partially ob-
servable version the values in “opponent hand” are hidden
from the Agent, (b) The resulting state after the left-most
card (2 5) attacks the left-most opponent card (2 4), (c) the
second left-most card (5 8) attacks the left-most opponent
card, now (2 2) (d) The players passes the turn and the op-
ponent directly attacks the player with one of the two cards
in the board before passing the turn



they are exhausted, which determines whether they can at-
tack this turn. The goal of the game is to reduce the health
of the opponent player to 0.

The world state is composed of (player health, player
board, opponent health, opponent hand, opponent board), at
each decision point each agent is able to observe the whole
state except for the opponent’s hand.

A turn is a set of action between two pass actions, at
each decision point the player can choose between pass, play
card, attack.

The pass action terminates the acting players’ turn allow-
ing the opponent to interact with the game. The play card
actions allow one card to move from the agent’s hand to the
board. Attack actions are described by the tuple (attacker,
defender), the attacker can be any card on the player’s board
without the exhausted status, while the defender can be any
card in the opponent’s board or the opponent himself. When
card A attacks card B, B’s health is reduced by A’s attack
and A’s health is reduced by B’s attack, when the process is
completed, A’s exhausted indicator is set to 1. When the pass
action is taken the exhausted indicator for each card is set to
0.

In total, there are 56 attack actions (seven possible attack-
ing cards times 7 possible defending cards and the opposing
player) and a pass turn action.

For each game, we generate the seven hand cards for both
players. Each card is generated by sampling a value between
1 to 9 uniformly for the attack and health attributes of the
card.

When one of the players reaches a health value below 1,
the game is terminal and that player receives the negative
reward -1, while the other player who is declared the winner
receives the reward +1.

Paritally Observable TradingStone
One of the complexities of HearthStone is the uncertainty in-
troduced by the opponent’s cards and the necessity to make
decisions given their information, to test the influence of par-
tial observability in the algorithm performance, the cards in
the opponent’s hand are hidden from the agent’s observa-
tions in the partially observable variant (PO-TradingStone).

Stochastic TradingStone
Another important factor of Hearthstone is the effect of ran-
dom effects in actions, we add noisy actions by making any
attack from the player fail to attack the intended target with
10% probability, this is inspired by hearthstone cards such
as “Ogre Brute” in the original game.

Formalism
This work sits at the intersection of game-tree search and
reinforcement learning. Historically speaking the two fields
developed separately but some elements are similar. Here we
attempt to quickly clarify the terminology that will be using
throughout the article.

The Game State is the set of all variables necessary to
fully describe the game at some point in time. A game is

Fully Observable (perfect information) if, at each interac-
tion, the player can observe all variables in that state. A game
is Partially Observable (imperfect information) if some in-
formation of the State is hidden to the agent at decision time
(e.g. the card in opponent’s hand).

While information sets and observations both deal with
the information available to the agent’s point of view, an in-
formation set is the set of game states sharing the same ob-
servation while an observation is a feedback received from
the environment.

Methods
We are interested in understanding how multi-action se-
quences per turn and imperfect information affects rein-
forcement learning methods and how it does affect heuris-
tic search such as MCTS. The methods of our choice are
plain MCTS, PI-MCTS and IS-MCTS for imperfect infor-
mation search and PPO for Reinforcement Learning. By
construction all initial world state are solvable, the player
must perform the best response action at every decision step,
taking a wrong action at any decision point would always
guarantee the game to be unsolvable. In the Reinforcement
Learning framework, we say that the resulting Markov De-
cision Process is multi-chain (Puterman 2014). Exploration
in multi-chain MDPs is much harder and the near-optimal
regret known is linear in the diameter of the MDP (i.e., the
length of the longest path among all shortest paths between
any pair of states) (Fruit, Pirotta, and Lazaric 2018).

Proximal Policy Optimization (PPO)
Reinforcement Learning(Sutton and Barto 2018) is a frame-
work for online learning in the sequential decision-making
process, where the dynamics of the environments are un-
known. Equipping Reinforcement Learning methods with
powerful function approximators (e.g. Deep Reinforcement
Learning) has been proven to achieve the state of the start re-
sults in many domains, including single-player games(Mnih
et al. 2015), real-time multi-player strategy games(Jader-
berg et al. 2018), (Bansal et al. 2017). For comparison pur-
poses the method of our choice is Proximal Policy Opti-
mization(Schulman et al. 2017) which is a state of the art
on-policy, Policy Gradient method that computes a regular-
ized policy update and its known to converge to the optimal
policy(Neu, Jonsson, and Gómez 2017).

Monte Carlo Tree Search (MCTS)
Monte Carlo Tree Search(Coulom 2006) is a method for de-
cision making by taking random decisions and building a
search tree, the tree is built incrementally using a tree policy
to choose which new node to add, when a node is added a
simulation is run to evaluate statistics about expected payoff
from the selected node and the ancestors in a process called
back-propagation.

In all the MCTS based experiments we use an Upper
Confidence Bound (UCB) from UCT(Kocsis and Szepesvári
2006) with Cp = 1√

2
based policy as tree policy, simulation

is done by a random policy and back-propagation is unmod-
ified.



MCTS with Perfect-Information Monte Carlo
(PI-MCTS)
To adapt MCTS to imperfect information PI-MCTS(Long
et al. 2010) uses the process of determinization to trans-
form an imperfect information state into a perfect informa-
tion one, this process is repeated and the statistics for the
root nodes are averaged to take a final decision. This process
samples the information hidden from the player according to
the valid distributions of possible game states.

Information Set MCTS (IS-MCTS)
In IS-MCTS the nodes of the search tree represent infor-
mation sets, an information set is the set of all the states
that are indistinguishable from the agent’s point of view dif-
fering only by hidden information, in this case the search
tree is kept and updated, adding new edges when neces-
sary, across determinizations allowing for reuse of previous
statistics and decisions are taken only on available edges,
in addition, since IS-MCTS continues using the same tree
across determinizations, the hyperparameter of number of
determinizations vs simulations per decision is removed.

Experiments
Setup
We compare experimentally the performance of the dis-
cussed algorithms. We run experiments for both perfect in-
formation and imperfect information. For PI-MCTS and IS-
MCTS are implemented from baseline MCTS (Lanctot et al.
2019). PPO is made of two separated networks. For both the
Actor and Critic Network we used non-linear function ap-
proximators and for the estimate of the advantage function,
we use TD(0) (Sutton and Barto 2018).

A fair comparison between search and RL is not trivial
for two reasons. Firstly RL doesn’t use a simulator and it
has to learn the dynamics of the environment from online
samples, while search methods have to query the simula-
tor to evaluate possible actions. Secondly RL can general-
ize at evaluation time without samples. Our approach is to
compare the two approaches by fixing the number of sam-
ples available to 10000 and by using the same random seed.
Therefore all methods are trained on the same sequence of
possible games.

Results
In table 1 we report the winning ratio for fully observable
TradingStone and in table 2 for partially observable Trad-
ingStone. The reported statistics are averaged over 100 ran-
domly generated environments. Under perfect information
MCTS achieves a higher winning ratio than PPO.

On Imperfect Information, IS-MCTS performs better than
all other baselines.

We argue that if the optimal policy is deterministic and
unique (as in TradingStone), the aggregation of all legal ac-
tions for each child from the root node combined with subset
arm bandit algorithm at leaf node, delivers a more effective
exploration strategy than UCT.

Experimental Results (µ± σ)
Algorithm TradingStone
PPO 0.27± 0.10
MCTS 0.37± 0.13

Table 1: Algorithmic performance on the fully observable
variant

Experimental Results (µ± σ)
Algorithm PO-TradingStone
PPO 0.46± 0.12
PI-MCTS 0.47± 0.12
IS-MCTS 0.52± 0.10

Table 2: Algorithmic performance on the partially observ-
able variant

The combination of multi-action turns with imperfect in-
formation poses a significant challenge for state-of-the-art-
method in search and RL. In figure 2 we show that, inter-
estingly enough, PPO under imperfect information performs
better than PPO under perfect information. We argue that the
function approximator overfit the specific game instance in-
stead of learning to generalize over possible plans.

Conclusion
In this work, we introduced TradingStone, a simplification
of the game HearthStone that reduces the complexity of
the game while keeping the core aspects of the game that
makes an interesting research problem. Namely, Trading-
Stone remains a stochastic zero-sum with imperfect infor-
mation, with characteristics that are reminiscent to trading
card games, such as, the wide variety of game cards that
need to be played optimally.

The goal of this simplification is to allow more RL meth-
ods to be easily integrated into this game. We show that IS-
MCTS can be applied in this version of the game, which
leads to improved results compared to previous approaches
to solving HearthStone.

The environment and agents proposed in this work will be
made available to the public.

Acknowledgments
Especially grateful to Marc Lanctot for the insightful discus-
sions. Anders Jonsson and Gergely Neu for having hosted
us for the duration of this work. This research is funded by
Nexus Research.

References
Bansal, T.; Pachocki, J.; Sidor, S.; Sutskever, I.; and Mor-
datch, I. 2017. Emergent complexity via multi-agent com-
petition. arXiv preprint arXiv:1710.03748.
Brown, N., and Sandholm, T. 2017a. Libratus: The super-
human ai for no-limit poker. In Sierra, C., ed., IJCAI, 5226–
5228. ijcai.org.



Figure 2: Evaluation of PPO at intervals of 10 training
episodes for perfect and imperfect information environ-
ments.

Brown, N., and Sandholm, T. 2017b. Safe and nested
subgame solving for imperfect-information games. CoRR
abs/1705.02955.
Coulom, R. 2006. Efficient Selectivity and Backup Op-
erators in Monte-Carlo Tree Search. In Ciancarini, P., and
van den Herik, H. J., eds., 5th International Conference on
Computer and Games.
Cowling, P.; Powley, E.; and Whitehouse, D. 2012. Infor-
mation set monte carlo tree search. IEEE Transactions on
Computational Intelligence and Ai in Games 4:120–143.
Fruit, R.; Pirotta, M.; and Lazaric, A. 2018. Near optimal
exploration-exploitation in non-communicating markov de-
cision processes. In Advances in Neural Information Pro-
cessing Systems, 2994–3004.
Garcı́a-Sánchez, P.; Tonda, A.; Squillero, G.; Mora, A.; and
Merelo Guervós, J. 2016. Evolutionary deckbuilding in
hearthstone.
Grad, 2017. Helping ai to play hearthstone using neural
networks. 131–134.
Jaderberg, M.; Czarnecki, W. M.; Dunning, I.; Marris,
L.; Lever, G.; Castaneda, A. G.; Beattie, C.; Rabinowitz,
N. C.; Morcos, A. S.; Ruderman, A.; et al. 2018.
Human-level performance in first-person multiplayer games
with population-based deep reinforcement learning. arXiv
preprint arXiv:1807.01281.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In In: ECML-06. Number 4212 in LNCS,
282–293. Springer.
Lanctot, M.; Lockhart, E.; Lespiau, J.-B.; Zambaldi, V.;
Upadhyay, S.; Pérolat, J.; Srinivasan, S.; Timbers, F.; Tuyls,
K.; Omidshafiei, S.; et al. 2019. Openspiel: A frame-

work for reinforcement learning in games. arXiv preprint
arXiv:1908.09453.
Long, J. R.; Sturtevant, N. R.; Buro, M.; and Furtak, T.
2010. Understanding the success of perfect information
monte carlo sampling in game tree search. In AAAI.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529.
Moravcı́k, M.; Schmid, M.; Burch, N.; Lisý, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. H. 2017. Deepstack: Expert-level artificial intelligence
in no-limit poker. CoRR abs/1701.01724.
Neu, G.; Jonsson, A.; and Gómez, V. 2017. A unified view
of entropy-regularized markov decision processes. arXiv
preprint arXiv:1705.07798.
Puterman, M. L. 2014. Markov Decision Processes.: Dis-
crete Stochastic Dynamic Programming. John Wiley &
Sons.
Santos, A.; Santos, P. A.; and Melo, F. S. 2017. Monte carlo
tree search experiments in hearthstone. In 2017 IEEE Con-
ference on Computational Intelligence and Games (CIG),
272–279.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition.
Swiechowski, M.; Tajmajer, T.; and Janusz, A. 2018. Im-
proving hearthstone AI by combining MCTS and supervised
learning algorithms. CoRR abs/1808.04794.
Zhang, S., and Buro, M. 2017. Improving hearthstone ai
by learning high-level rollout policies and bucketing chance
node events. In 2017 IEEE Conference on Computational
Intelligence and Games (CIG), 309–316.
Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione, C.
2007. Regret minimization in games with incomplete infor-
mation. In Proceedings of the 20th International Conference
on Neural Information Processing Systems, NIPS’07, 1729–
1736. USA: Curran Associates Inc.


