Integrating Search and Scripts for Real-Time Strategy Games:
An Empirical Survey

Abstract

Real-time strategy games are a challenging problem from an
Al point of view. Specially, they are particularly hard for tree
search algorithms due to their combinatorial branching fac-
tors the limited amount of time available to choose actions.
As the community grows and many RTS game competitions
are held, much work has been done in the direction of in-
tegrating hand-authored scripted bots into tree search algo-
rithms, with the goal of making search tractable. In this pa-
per, we survey a collection of representative algorithms that
integrate scripts into search or planning algorithms. Then we
compare them empirically in the uRTS environment and ex-
amine the trade-offs for designing such algorithms. We also
discuss the potential future work in this direction of research
and connections to other types of algorithms.

Introduction

Real-time strategy (RTS) games provide rich and challeng-
ing testbed for Al techniques (Buro 2003; Ontanén et al.
2013). With the aid of growing computing power, the com-
bination of deep learning and reinforcement learning has
shown great ability in modeling and building game play-
ing agents for complex games, such as AlphaGo (Silver et
al. 2016; 2017), OpenAl Five (OpenAl 2018), and AlphaS-
tar (Vinyals et al. 2019). However, human expert knowledge
can also play a key role in developing game playing agents
for RTS games, partially due to the hardness of exploration
in the very large state spaces of these domains, in which deep
reinforcement learning or tree search algorithms struggle to
perform well when used independently. For example, in the
development of AlphaStar, imitation learning from human
gameplay was needed to initialize reinforcement learning.
On the other hand, tree search algorithms have a long
successful history of building game playing agents since
the invention of the minimax algorithm. As complete tree
search algorithms fail to scale to complex games like Go,
sampling-based algorithms like Monte Carlo Tree Search
(MCTS) (Kocsis and Szepesvari 2006; Browne et al. 2012)
were proposed. Integrating MCTS with deep learning mod-
els, AlphaGo was able to achieve superhuman level of
strength in Go. However, RTS games pose an even greater
challenge in terms of the size of the state and action space,

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as well on the limitations on computation time available to
make decisions.

In the context of RTS games, in this paper we focus on
tree search algorithms, and specifically on techniques to in-
tegrate search with human expert knowledge, in the form
of hand authored scripts, in order to scale search up to the
size of RTS game search spaces. Thanks to the many Al
competitions on RTS games, such as AIIDE StartCraft com-
petition (Buro and Churchill 2012) and IEEE-CoG uRTS
competition (Ontafién et al. 2018), many methods for in-
tegrating scripts into different AI methods have been de-
veloped. As a result, combining tree search methods and
scripts has become a common approach to building strong
entries in competitions. However, despite the growing body
of work, we lack a good understanding of what are the dif-
ferent trade-offs of these approaches. For example, some ap-
proaches employ scripts to prune the search space (only al-
lowing tree search to choose between the moves proposed
by a collection of scripts), other approaches develop scripts
with decision points, where search is used, and yet other
approaches use scripts just to bias the search process. We
could even generalize the concept of script to consider prob-
abilistic policies, and even include AlphaGo’s approach in
this framework. In this paper, we compare all of these ap-
proaches in equal grounds, to try to start building an under-
standing of this space of game playing algorithms.

The rest of the paper is structured as follows: we first in-
troduce the background of RTS games, the experimental en-
vironment used in this paper, and the application of MCTS
in RTS games. Then we survey a collection of different algo-
rithms that integrate scripts into tree search, followed by an
empirical evaluation of the algorithms in the uRTS environ-
ment. After that, we discuss the similarities and differences
of these algorithms. And we conclude the paper with con-
clusions and directions for future work.

Background

RTS is a sub-genre of strategy games where players aiming
to defeat their opponents (destroying their army and base) by
strategically building an economy (gathering resources and
building a base), military power (training units and research-
ing technologies), and controlling those units. From an Al
point of view, the main challenges of RTS games with re-
spect to traditional board games like Chess or Go are: (1) the

combinatorial growth of the branching factor as a function
of the number of units being controlled (Ontanén 2017), (2)
limited computation budget between actions due to the real-
time nature, (3) they are simultaneous move games (more
than one player can issue actions at the same time) with du-
rative actions (actions are not instantaneous), and (4) lack of
forward model in most of research environments like Star-
craft (necessary to perform lookahead search). Additionally,
some RTS games are not fully observable or not determinis-
tic.

Because of these reasons, RTS games have been receiv-
ing an increased amount of attention as they are an excel-
lent platform to study the aforementioned problems. Many
research environments and tools, such as TorchCraft (Syn-
naeve et al. 2016), SCIILE (Vinyals et al. 2017), uRTS (On-
tanén 2017), ELF (Tian et al. 2017), and Deep RTS (An-
dersen, Goodwin, and Granmo 2018) have been developed
to promote research in the area. Specifically, in this paper,
to stay focused on the problem of interest of this paper, we
chose a single evaluation platform, uRTS, as our experimen-
tal domain, as it offers a forward model for game tree search
approaches such as minimax or Monte Carlo Tree Search,
and many of the algorithms to be compared were already
readily available in this platform.

uRTS

uRTS! is a simplified RTS game designed for Al research.
uRTS provides the essential features that make RTS games
challenging from an Al point of view: simultaneous and du-
rative actions, combinatorial branching factors and real-time
decision making. The game can be configured to be par-
tially observable and non-deterministic, but those settings
are turned off for all the experiments presented in this pa-
per. In the default configuration, 4RTS defines only four unit
types and two building types, all of them occupying one tile
in the map, and there is only one resource type. Additionally,
as required by our experiments, uRTS allows maps of arbi-
trary sizes and initial configurations. The default unit types
are:

e Base: can train Workers and accumulate resources.
e Barracks: can train attack units.

e Worker: collects resources and construct buildings.

Light: low power but fast melee unit.

Heavy: high power but slow melee unit.
e Ranged: long range attack unit.

Additionally, the environment can have walls to block the
movement of units. A example screenshot of game is shown
in Figure 1. The squared units in green are Minerals with
numbers on them indicating the remaining resources. The
units with blue outline belong to player 1 (which we will call
max) and those with red outline belong to player 2 (which
we will call min). The light grey squared units are Bases
with numbers indicating the amount of resources owned by

"https://github.com/santiontanon/microrts

18 17) I
t
N O |
r 5 I Ilmaxll
I| @ . [player "min"
| 1 units —+—— player —
| O units
N N E— 1
|

|
|
|
|
[
]
I
:4__
|

,
|
[

N
I
!
!

O
0

O
2

O

@ I

=—=====

Figure 1: A Screenshot of ;RTS.

the player, while the darker grey squared units are the Bar-
racks. Movable units have round shapes with grey units be-
ing Workers, orange units being Lights, yellow being Heavy
units (now shown in the figure) and blue units being Ranged.

Monte Carlo Tree Search for RTS Games

Monte Carlo Tree Search (MCTYS) is a search algorithm de-
signed for domains with large action spaces. The main char-
acteristic of MCTS is that sampling the search tree (rather
than systematically exploring it as minimax does). If this
sampling is done properly (e.g., following a suitable explo-
ration/exploitation balancing policy), in the limit, the MCTS
decision converges to the optimal minimax decision. There
are four stages in a standard MCTS procedure, explained as
follows:

o Selection: In this stage, the algorithm employs an tree pol-
icy to select the most urgent node in the tree that still has
children that are not part of the tree. One of the most im-
portant design decisions to make when choosing the tree
policy is to balance exploration and exploitation.

e Expansion: When a leaf node is selected at the Selection
stage, we expand the tree by adding a child node to the
selected node.

e Simulation: Then we estimate the value of the newly
added node by a simulation policy (also called rollout pol-
icy or playout policy).

e Backpropagation: Finally we backpropagate the outcome
of the simulation and update the statistics of the nodes
visited in this iteration of MCTS.

One of the most popular algorithm in the MCTS family is
the Upper Confidence Bound Applied to Trees (UCT) (Koc-
sis and Szepesvéri 2006). UCT models the node selection

as a multi-armed bandit problem and uses the UCB1 (Auer,
Cesa-Bianchi, and Fischer 2002) formula to balance explo-
ration and exploitation. The UCB1 formula choose the arm
the maximizes the following score:

- 21
UCBI =X + Cpy | =0

n;j

where Yj is the average reward of arm j, n is the total
number of trials, and n; is the number of trials on arm j.
The first term dictates exploitation, the second term dictates
exploration, and C), is a parameter that can be used to tune
the degree of exploration in practice.

UCT achieved many successes in complex domains like
computer Go. However, in the domain of RTS games, it is
unfeasible to apply UCT, as the UCB1 policy requires ex-
ploring each child of a node at least once before it starts
balancing exploration/exploitation, and in RTS games, there
might be more children of the root node than we have com-
putation budget to explore (Gelly and Wang 2006).

In order to apply MCTS to RTS games, approaches typ-
ically either simplify the search space by defining an ab-
stracted action space (Balla and Fern 2009), by using scripts
to inform the search (as we survey in this paper), or devise
specialized multiarmed bandit strategies that can deal with
the combinatorial branching factors. For example, the Naive
Sampling multiarmed bandit strategy models the problem as
a combinatorial multi-armed bandit (CMAB), where each
unit being controlled in the game is considered as a variable,
and the problem is to select the best assignment of values to
a set of variables. The MCTS variation that employ Naive
Sampling as the tree policy is called NaiveMCTS (Ontanén
2017), and is used as the base search algorithm in several of
the techniques we survey in this paper. In the remaining of
this paper, we will focus on surveying those techniques that
employ scripts to help MCTS scale up to the complexity of
RTS games.

Combining Script and Search Algorithms

This section briefly describe the main approaches that have
been proposed in the literature to integrate scripts with tree
search.

Portfolio Search

The most basic strategy to integrate scripts and search is usu-
ally known as portfolio search. The key idea is to have a
collection of n scripts .S, where each script is a complete
hand-authored agent capable of playing the game.

Portfolio search considers a search space where the only
choice is which script to execute. Thus, the most straight
forward way of implementing this idea, is to consider all n x
n possibilities of player 1 and player 2 executing each of the
scripts, run simulations for each possibility (this results in a
payoff matrix, akin to those in standard matrix games like
the prisoner’s dilemma), and select the script that in average
results in the highest reward against all possible scripts by
the opponent.

An early instantiation of this strategy for RTS games was
MCPIlan (Chung, Buro, and Schaeffer 2005).

Portfolio Greedy Search

Churchill and Buro (Churchill and Buro 2013) introduced an
anytime algorithm designed for RTS combat micro manage-
ment called Portfolio Greedy Search (PGS). PGS combines
scripts with local search algorithm to improve upon scripts.
PGS has the following characteristics:

e Compared to Portfolio Search, PGS considers unit level
scripts (i.e. each script controls a single unit), and thus the
search space is significantly larger (assignment of scripts
to individual units, rather than to whole players).

e PGS starts by assigning a “default” script to each unit
(both friendly and opponent).

e It then tries to improve the scripts assignment of the
friednly units one at a time, using hill-climbing, and once
it has optimized the friendly scripts, it switches to op-
timizing the opponent scripts (to find a best response
against the scripts assigned to friendly units). It then keeps
alternating optimizing friendly and opponent units until it
runs out of time.

e Thus, it does not apply tree search but relies on hill-
climbing to make search tractable.

e In order to evaluate each script assignment to units, it uses
simulations.

Puppet Search

Barriga et al. (Barriga, Stanescu, and Buro 2015) proposed
Puppet Search, which combined scripts with look-ahead
search. The basis of the algorithm is a hand-authored non-
deterministic script, which completely defines the behavior
the player should follow, except for some “choice points”.
Thus, the search space is defined by the set of choice points
exposed by the script. Thus, as the authors described, Puppet
Search works like a puppeteer that controls the limbs (choice
points) of a puppet (the script).

We can control the branching factor by controlling the
number of choice points exposed by the script, since the
branching factor now grows with respect to the number of
choice points instead of number of units. Puppet search,
is thus related to the early idea of adaptive Lisp (AL-
isp) (Marthi, Russell, and Latham 2005), where a script with
choice points was defined and reinforcement learning was
used to learn a policy for those choice points.

Script-Based UCT

Justesen et al. (Justesen et al. 2014) proposed a script-based
extension to UCT that searches for sequences of scripts in-
stead of actions. Instead of search in the full action space,
script-based UCT only considers the actions proposed by the
scripts. The advantage of searching in the space of actions
proposed by the scripts is that the branching factor is vastly
decreased. Specifically, the branching factor now grows as
a function of the number of scripts, rather than the number
of possible raw actions units can perform. For example, if
we are controlling, say 10 units, and each unit can perform
8 different moves, but we only have 4 scripts. The branch-
ing factor goes from 819 for vanilla UCT to at most n'? for
script-based UCTCD (but it can be lower, since if more than

one script propose the same action, then the search space is
even smaller).

Due to the durative action in RTS games, a varia-
tion of UCT algorithm called UCT Considering Durations
(UCTCD) is used.

In the implementation used in this paper, we used player-
level scripts (i.e. scripts that can play the whole game,
like those used in Portfolio Search) to propose actions, and
UCTCD is used to select one among those actions at each
choice point.

Action Abstractions for Monte Carlo Tree Search

Search only in the space proposed by scripts can help largely
reduce the search space. However, it also inevitably re-
duces the flexibility and adaptability of the resulting algo-
rithms. Moraes and Lelis proposed Asymmetric Action Ab-
straction (Moraes and Lelis 2018) and combined it with
NaiveMCTS in their later work (Moraes et al. 2018).

The main idea behind action abstractions is to reduce the
number of legal moves, by using the scripts, of only a sub-
set of the units; legal moves of the other units remain un-
changed. The authors proposed three variations of the algo-
rithm: A1N, A2N, and A3N.

e AIN is the baseline algorithm and it searches only in
the unit actions proposed by the set of script. Thus, it
is basically the same as script-based UCT, but using
NaiveMCTS instead of UCTCD.

e A2N allows NaiveMCTS to search in an asymmetrically-
abstracted action space defined by two sets of scripts, one
for economy units and one for combat units.

e Finally, A3N, further relaxes the prunning of the search
space, and some units are marked as “unrestricted”, and
the full action space of those is considered during search.
A heuristic function is used to determine which units are
unrestricted, such as considering the unit closest to the
enemy units to be unrestricted, and all the rest to be re-
stricted by scripts.

Guided Naive Monte Carlo Tree Search

Guide Naive Monte Carlo Tree Search (GNS) (Yang and
Ontanén 2019) is another work on combining MCTS and
scripts. The key characteristic of this approach is that it uses
scripts only to guide the exploration of the tree in MCTS,
instead of for pruning the search space, as had been done in
other approaches discussed in this paper. In this way, GNS
preserves the original search space of MCTS unchanged,
and under certain conditions, the resulting MCTS algorithm
will still converge to the optimal action (the one that regu-
lat MCTS would have found in the limit if scripts were not
used).

The authors proposed two variations of the algorithm:
First Choice GNS (FC-GNS) and multi-script GNS (k-
GNS). FC-GNS works by incorporating only one script and
force select the script-provided action only when a new node
is added to the tree to bias the search. The intuition is that for
nodes that are visited only once or few times, we want to use
the script to select the action, in order for this selection to be

representative (rather than being a random action). k-GNS
allows the node expansion process to select from a pool of
scripts to increase variety. Additionally, with a factor of e,
the tree policy is forced to choose from the pool of actions
proposed by the scripts when at a non-leaf node. The param-
eter € enables tuning of the level of script bias introduced to
the search.

Adversarial Hierarchical-Task Network

Hierarchical-Task Network (HTN) (Erol, Hendler, and Nau
1994) planning is a planning algorithm that creates plans by
decomposing tasks into smaller and smaller tasks. Adversar-
ial hierarchical-task network (AHTN) (Ontanén and Buro
2015) combines the minimax game tree search algorithm
with the HTN planning. There are two types of tasks in HTN
planning: primitive tasks (low level), and non-primitive tasks
(high level). And the algorithm iteratively decompose the
non-primitive tasks until all leaves of the HTN tree are prim-
itive tasks. AHTN works by creating a search tree that alter-
nates between max and min player, like the minimax tree
fashion, and each node keeps track of the game state and the
execution state of the HTN plan for max and min players.

We consider AHTN to be a form of integration of scripts
and tree search, as the tasks in the HTN definition of the do-
main can be created in such a way that they resemble scripts
with a few choice points (similar to Puppet search).

Empirical Evaluation

To evaluate the performance of the algorithms described be-
fore, we designed a round-robin experiment to test the algo-
rithm against each other in terms of the game play strength.
To fairly evaluate those algorithms, we separate the exper-
iments into two tracks (standard and competition), both of
which are run with fixed time budget and in three maps of
increasing size. The standard track includes the standard im-
plementation of all the algorithms, without any special fine-
tuning of parameters. However, some of these algorithms,
such as GNS and A3N have versions that were optimized
for the IEEE-CoG pRTS competition. In order to compare
the full potential of these algorithms when optimized, we
compare these separately in the competition track. As the
available implementation of Puppet Search has only a com-
petition version available, the same version will be evaluated
in both tracks.

Specifically, the three map sizes are 8 x 8, 32 x 32, and
128 x 112 2, and the time budget each player has at each de-
cision cycle is 100 milliseconds. Games are cut-off at 3000,
6000, and 12000 cycle respectively for the three map sizes
and recorded as a draw if they reach this length. We chose
these three sizes because they represent games of different
complexities, and we anticipate that algorithms that perform
well in the small map do not necessarily perform well in
larger maps, or vice versa. The agents play against each
other in a round-robin manner, and 10 and 20 full round-
robin iterations are run for standard and competition track
respectively. Thus, each agent plays 120 games in each map

Specifically, the maps used are basesWorkersSxS8A,
basesWorkers32x32A, and BroodWar/(2)Benzene.scxA.

1.0
0.9
0.8
0.7

PortfolioAl PuppetSearch AHTN

0.6

0.5

0.4

0.3

0.2

0.1 I I
0.0 — =

ScriptUCT

W8X8 m32X32 m128X112 Overall

Figure 2: Win rate comparison of the standard track in maps of size 8 x8, 32x32, 128112, and overall.

0.8

0.6

0.4

0.2
0 —
GNS A3N

B 8X8 m32X32 m128X112 Overall

PuppetSearch

Figure 3: Win rate comparison of the competition track in
maps of size 8x8, 32x32, 128 x 112, and overall.

in the standard track and 80 games in each map in the com-
petition track.

The results are shown in Figure 2 and Figure 2 for stan-
dard and competition track respectively. In the 8x8 map,
the best performing algorithms are Portfolio search (78.3%
win rate), GNS (71.7% win rate), and AHTN (67.1% win
rate). In the 3232 map, the best performing algorithms are
A3N (97.1% win rate), Portfolio search (69.2% win rate),
and Puppet search (65.0% win rate). And in the 128 x112
map, the best performing algorithms are A3N (93.3% win
rate), Puppet search (88.3% win rate), and PGS (58.3% win
rate). Overall, the best performing algorithm combining all
three mas is A3N, with a 73.6% win rate.

Also, we would like to point out that there is one result
(PGS for 32x32 maps) that seems to be an outlier. It hap-
pens to be that given the start configuration of this map,
when PGS plays as player 1 in this map, it builds units in

such a way that it blocks its own resource gathering path,
thus getting stuck. This is a pure coincidence, and as part
of our future work, we will evaluate the algorithms using a
larger variety of maps, in order to avoid these experimental
artifacts.

We observe that almost all algorithms perform well at one
end of the map complexity and not so well at the other end
of the map complexity. The main trade-off to make here is
the pruning of the action space. For agents that perform well
in smaller maps like AHTN and GNS, they preserve more
flexibility for the search algorithm to explore. And in 8§x8
maps, such exploration is feasible. However, as the rapid
growth of the game complexity, such exploration becomes
unfeasible and thus we observe the performance drop. On
the other hand, for algorithms that prune the search space
aggressively, such as A3N and Puppet Search, they do not
perform well in the small map due to lack of flexibility, but
are able to handle and scale to larger maps with much greater
complexity.

For the competition track, we want to point out that the
128112 is a map size much larger than the largest map
used in the IEEE-CoG pRTS competition (64 x 64). GNS
and A3N both use the configuration optimized for the IEEE-
CoG pRTS competition. We observe that for 8 x 8 and
32 x 32 maps, A3N has the best performance, with win rates
of 85.6% and 93.1%. For the 128 map, GNS is the best per-
forming algorithm, with 85.0% win rate. Puppet Search can-
not win a single game in 8 x 8 and 32 x 32 maps, but it has
a 62.5% win rate in the 128 x 112 map. This is because in
smaller maps, the constrainted search space of PuppetSearch
is a disadvantage that can be exploited by the other algo-
rithms. Finally, the consistent performance of GNS indicates
that it is beneficial for the search algorithm to preserve the
full search space in scenario that needs to recover from the
mismatch between the configuration and the environment.

Table 1: Comparison Summary on the Algorithms

Search Role of Scripts Search Space Optimality | Multi-scripts
Script. UCT MCTS Define unit action space Assign scripts to units over time Script space Yes
Puppet S. | MCTS/minimax Script choice points Abs. actions space Script space No
PGS Local Search Define unit action space Assign scripts to units No guarantee Yes
Portfolio S. Grid Seearch Define player action space Choose a script Script space Yes
GNS MCTS Bias search Full action space Yes Yes
A3N MCTS Define unit action space for restricted units | Some units restricted to choosing a script | Script space Yes
AHTN HTN+minimax Define search space Defined by the HTN definition Script space Yes

Discussion

In this section, we discuss the differences and similarities
between the algorithms. Then we discuss and relate them
with other methods of incorporating human knowledge with
search such as machine learning models.

Comparison of Algorithms

We compare the algorithms in from several aspects, includ-
ing the type of search algorithm used, the role played by the
scripts, the search space, whether the search is optimal in
the limit, and whether there is support of multiple scripts. A
summary is shown in Table 1.

Search Algorithm In script-based UCT, Puppet Search,
GNS, and A3N, Monte Carlo Tree Search is applied. Specif-
ically, script-based UCT uses standard UCT, while other
UCT enhancements such as FPU and PUCB can potentially
be applied. For puppet Search, complete tree search algo-
rithm like minimax can also be applied, but presumably not
as good performing as MCTS when number of choice point
is large or action space is large. As for A3N and GNS, they
also use MCTS. But instead of UCT, NaiveMCTS is em-
ployed, which has shown to have better performance than
UCT in domains with combinatorial branching factors.

Portfolio greedy search uses hill-climbing style local
search to alternatively update the max player and min player.
The local search algorithm has no optimality guarantees
and could get stuck in loops and local minima, though it
achieved good empirical performance in the domain of Star-
Craft. On the other hand, portfolio search performs a grid
search among all the script proposed player actions, which
in the long run should find the best one.

AHTN integrates HTN planning into game tree search and
it allows creating domain configurable planners that do not
have to explore the whole combinatorics of the task, but in-
stead choose from a reduced set of methods, scripts in our
case, to achieve each task.

Role of Scripts and Search Space Puppet search uses the
pre-defined choice points in the script to define the search
space. The reduced search space is referred to as action ab-
stractions, and the action abstraction is symmetric because
the same script is used to construct the set of possible ac-
tions for all units.

In both script-based UCT and A3N, the scripts are used
to prune the search space for MCTS. The key difference
is that in the original script-based UCT, the same set of
scripts are used for all units. Hence the action abstraction

in script-based UCT in symmetric. Nonetheless, one can ex-
tend script-based UCT to asymmetric action abstraction by
use different sets of script for different units. The A3N algo-
rithm extends this idea by allowing unrestricted units, whose
action space is not limited by the scripts but span the full
space of legal actions.

Similarly, PGS also uses scripts to prune the search space
(i.e., to define an action abstraction). The difference is that
PGS has unit-level scripts for each type of units. Also, from
the point of view of action abstractions, standard PGS has
symmetric action abstraction since it uses the same set of
scripts for all units. Portfolio search has the simplest search
space, which is just choosing which script to use. It performs
a pair-wise grid search to find the best script to commit to.
AHTN also uses scripts to prune the search space, searching
only in the space of actions allowed by the HTN definition.

Unlike the algorithms mentioned above, GNS only uses
the script to bias the tree search. Specifically, GNS priori-
tizes the actions proposed by the scripts and then grows the
tree around those actions without pruning the search tree.
Thus the search space of GNS is the full action space.

In summary, we can see two general uses of scripts: to
prune the search space, or to bias the search process. We
also see that scripts can be defined as the unit level (a script
controls a single unit) or at the player level (the script con-
trols all the units simultaneously). We call these two “unit
actions” and “player actions”.

Optimality If an algorithm searches only in the reduced
search space defined by the scripts, there is no guarantee that
the optimal action(s) are actually present in the search space.
Thus, all of the algorithms but GNS necesssarily sacrificy
any optimality guarantees. By using MCTS in the pruned ac-
tion space, script-based UCT, Puppet Search, and A3N only
achieve optimality only with respect to this pruned action
space. PGS, with the local search scheme, has no optimal-
ity guarantees. Finally, GNS preserves the global optimality
guarantee of MCTS since the search space is not pruned, and
it is easy to show that in the limit, it would converge to the
same solution as standard MCTS.

Multi-script Support Allowing for integrating more than
one script into the search can add variety to the search space
and potentially yield more robust behavior. The multi-script
support of the surveyed algorithms is described as follows:

e Scrip-based UCT: Multiple scripts are supported. If the
script is deterministic, then multiple scripts are mandatory
for scrip-based UCT to function.

e Puppet Search: Multiple scripts are not supported. Pup-
pet Search works a single script with one or more choice
points to apply search.

e PGS: Multiple unit level scripts for each type of units are
mandatory for PGS to function.

e Portfolio Search: Multiple scripts are mandatory.
e GNS: Multiple scripts are supported.
e A3N: Multiple scripts are supported.

o AHTN: Multiple scripts are suported, defined in the form
of HTN task decompositions.

Relation to Machine Learning Approaches Some ap-
proaches, such as AlphaGo (Silver et al. 2016) integrate
stochastic policies (trained via supervised and/or reinforce-
ment learning) into tree search. In order to do so, AlphaGo
employs a tree policy related to PUCB (Rosin 2011), which
can take into account the probability distribution of actions
provided by the policy to guide the search, effectively focus-
ing the search. The scripts considered in this paper can be
seen as deterministic policies (where one action has proba-
bility 1, and the rest have 0). GNS, for example, uses a mix-
ing factor e that determines how often to follow the script in
any iteration other than the first (where the script is always
followed). So, in a sense, this e parameter can be seen as
turning a deterministic script into a non-deterministic one,
in order to use it in a similar way as AlphaGo does. There
are some significant differences, however, such as the fact
that GNS is designed for RTS games, where more than one
unit is controlled at the same time, and thus PUCB would
not be applicable (notice that the search space in RTS games
is many orders of magnitude larger than that of Go). An ap-
plication of the Alphago ideas fo RTS games is the Informed
NaiveMCTS algorithm that uses a variation of Naive Sam-
pling rather than PUCB in order to integrate the machine
learned policy into MCTS (Ontanén 2016).

Generalizing our comparison to include methods such as
AlphaGo, by considering non-deterministic scripts/policies
is part of our future work, since this could shed light on the
design space of possible new algorithms.

Conclusion

In this paper, we survey and compare the recent advances
of combining scripts and search algorithms. The community
has approached this problem from a variety of the angles,
as shown by the large number of existing approaches. The
empirical results show that the algorithms differed in per-
formance under maps of different scales. Specifically, algo-
rithms that can search thoroughly and perform well in small
maps cannot scale to large maps because of the scale of the
search space. Algorithms that aggressively prune the search
space and thus perform well in large maps are not so well
performing in smaller maps due to the lack of optimality (in
small maps, search-based algorithms can find plans that are
closer to the optimal policy, and thus optimality matters in
them).

We have also seen the relation between these methods and
recent systems such as AlphaGo, which incorporate stochas-
tic policies trained via machine learning into tree search. We

believe studying the relation between these approaches is an
important direction of future work, which can result in sig-
nificant advances in game play strength. Finally, another key
direction for future work is the design of algorithms that can
strike a balance and scale up well to large maps, without sac-
rificing optimality, in order to handle well in smaller maps.

References

Andersen, P.-A.; Goodwin, M.; and Granmo, O.-C. 2018.
Deep rts: a game environment for deep reinforcement learn-
ing in real-time strategy games. In 2018 IEEE Conference on
Computational Intelligence and Games (CIG), 1-8. 1EEE.

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
learning 47(2-3):235-256.

Balla, R.-K., and Fern, A. 2009. Uct for tactical assault
planning in real-time strategy games. In Twenty-First Inter-
national Joint Conference on Artificial Intelligence.

Barriga, N. A.; Stanescu, M.; and Buro, M. 2015. Puppet
search: Enhancing scripted behavior by look-ahead search
with applications to real-time strategy games. In Eleventh
Artificial Intelligence and Interactive Digital Entertainment
Conference.

Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and Al in games 4(1):1-43.

Buro, M., and Churchill, D. 2012. Real-time strategy game
competitions. Al Magazine 33(3):106—-106.

Buro, M. 2003. Real-time strategy games: A new ai research
challenge. In IJCAI, volume 2003, 1534-1535.

Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte carlo
planning in rts games. In CIG. Citeseer.

Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in starcraft. In 2013
IEEE Conference on Computational Inteligence in Games

(CIG), 1-8. IEEE.

Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. Umcp: A
sound and complete procedure for hierarchical task-network
planning. In AIPS, volume 94, 249-254.

Gelly, S., and Wang, Y. 2006. Exploration exploitation in go:
Uct for monte-carlo go. In NIPS: Neural Information Pro-
cessing Systems Conference On-line trading of Exploration
and Exploitation Workshop.

Justesen, N.; Tillman, B.; Togelius, J.; and Risi, S. 2014.
Script-and cluster-based uct for starcraft. In 2014 IEEE
Conference on Computational Intelligence and Games, 1—
8. IEEE.

Kocsis, L., and Szepesvéri, C. 2006. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, 282-293. Springer.

Marthi, B.; Russell, S.; and Latham, D. 2005. Writing
stratagus-playing agents in concurrent alisp. Reasoning,
Representation, and Learning in Computer Games 67.

Moraes, R. O., and Lelis, L. H. 2018. Asymmetric action
abstractions for multi-unit control in adversarial real-time
games. In Thirty-Second AAAI Conference on Artificial In-
telligence.

Moraes, R. O.; Marino, J. R.; Lelis, L. H.; and Nascimento,
M. A. 2018. Action abstractions for combinatorial multi-
armed bandit tree search. In Fourteenth Artificial Intelli-
gence and Interactive Digital Entertainment Conference.

Ontanon, S., and Buro, M. 2015. Adversarial hierarchical-
task network planning for complex real-time games. In
Twenty-Fourth International Joint Conference on Artificial
Intelligence.

Ontanén, S.; Synnaeve, G.; Uriarte, A.; Richoux, F;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game ai research and competition in starcraft.
IEEE Transactions on Computational Intelligence and Al in
games 5(4):293-311.

Ontaiién, S.; Barriga, N. A; Silva, C. R.; Moraes, R. O.; and
Lelis, L. H. 2018. The first microrts artificial intelligence
competition. AI Magazine 39(1).

Ontanon, S. 2016. Informed monte carlo tree search for real-
time strategy games. In 2016 IEEE Conference on Compu-
tational Intelligence and Games (CIG), 1-8. IEEE.

Ontanodn, S. 2017. Combinatorial multi-armed bandits for
real-time strategy games. Journal of Artificial Intelligence
Research 58:665-702.

OpenAl. 2018. Openai five. https://blog.openai.
com/openai-five/.

Rosin, C. D. 2011. Multi-armed bandits with episode
context. Annals of Mathematics and Artificial Intelligence
61(3):203-230.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
nature 529(7587):484.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354.

Synnaeve, G.; Nardelli, N.; Auvolat, A.; Chintala, S.;
Lacroix, T.; Lin, Z.; Richoux, F.; and Usunier, N. 2016.
Torchcraft: a library for machine learning research on real-
time strategy games. arXiv preprint arXiv:1611.00625.
Tian, Y.; Gong, Q.; Shang, W.; Wu, Y.; and Zitnick, C. L.
2017. Elf: An extensive, lightweight and flexible research
platform for real-time strategy games. Advances in Neural
Information Processing Systems (NIPS).

Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhn-
evets, A. S.; Yeo, M.; Makhzani, A.; Kiittler, H.; Agapiou, J.;
Schrittwieser, J.; et al. 2017. Starcraft ii: a new challenge for
reinforcement learning. arXiv preprint arXiv:1708.04782.

Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P.; et al. 2019. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature 1-5.

Yang, Z., and Ontanén, S. 2019. Guiding monte carlo tree
search by scripts in real-time strategy games. In Proceed-
ings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 15, 100-106.

