Decentralized Multi-Agent Actor-Critic with Generative Inference

Kevin Corder', Manuel M. Vindiola?, Keith Decker'
'Dept. of Computer and Information Sciences, University of Delaware, Newark, DE 19716
2U.s. Army Research Laboratory, Aberdeen, MD 21005
kcorder @udel.edu, manuel.m.vindiola.civ@mail.mil, decker @udel.edu

Abstract

Developing coordinated behaviors within a multi-agent sys-
tem is challenging for learning systems due to the non-
stationarity introduced as agents co-adapt their policies over
time. Recent multi-agent actor-critic methods address this
challenge by combining centralized training with decentral-
ized execution. These works constrain an agent’s learning to
the centralized phase such that agents may only execute pre-
learned policies during the decentralized phase. This results
in poor performance when disrupted agent communications
introduce delayed, noisy, or missing information required for
performing an action. In this work, we propose a new system
that can gracefully handle partially-observable information
due to communication disruptions during decentralized ex-
ecution. Our approach augments the multi-agent actor-critic
method’s centralized training phase with generative model-
ing. This allows agents to infer other agents’ observations
when provided with the locally available context. Our method
is evaluated on three tasks that require each agent to combine
local observations with remote observations communicated
by other agents. We evaluate our approach by introducing
both partial observability and changing environment dynam-
ics in a decentralized execution and training regime. We show
that continued training in the decentralized phase performs as
well or better than existing actor-critic methods.

Introduction

Reinforcement learning (RL) with function approximation
has been used to solve difficult sequential decision mak-
ing problems in high dimensional state and action spaces,
such as game playing (Mnih, Silver, and Riedmiller 2013)
and robotics (Haarnoja et al. 2018). Many decision mak-
ing problems are best modeled as a multi-agent system
in which agents learn concurrently with other agents. Two
naive approaches that use single-agent RL methods in multi-
agent problems are independent learning (IL) and joint ac-
tion learning (JAL), but these approaches perform poorly. IL
agents treat all others as part of the stochastic environment,
ignoring relevant information about them. JAL agents con-
dition on the full joint action and observation spaces for all

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

agents, but these joint spaces grow exponentially with the
number of agents and are therefore not scalable.

Most multi-agent reinforcement learning (MARL) meth-
ods rely on decentralized policies where each agent’s own
policy is dependent on local observations and actions. De-
centralized scenarios usually have partial observations and
limited communication. In some problems, the learning
must also be decentralized and rely on agent communication
(Zhang et al. 2018). In other cases, a simulator may be avail-
able so that agents may learn with extra state information
while assuming free, instantaneous communication. After
centralized learning, the agents execute decentralized poli-
cies using only local information. This training procedure
is often feasible for software systems or physical domains
with dedicated simulators, such as robotics or autonomous
vehicles. Many recent works have adopted this Centralized
Training, Decentralized Execution (CTDE) framework; we
review several such methods in the following section.

Agent communication is the main approach to learning
in decentralized systems when agents have partial observa-
tions. In CTDE methods, the communication during central-
ized training is implicit: all observations are shared freely
and instantly. However, communication networks may be
lossy, delayed, or lacking coverage.

We propose to address the limited communication learn-
ing gap of CTDE methods in decentralized execution with
generative modeling. Specifically, we use a modified con-
text conditional generative adversarial network (CC-GAN)
(Denton, Gross, and Fergus 2016) to infer missing joint ob-
servations given partial observations. The task of filling in
partial observations by generative inference is similar to the
image inpainting problem for a missing patch of pixels: with
an arbitrary number of missing observations, we would like
to infer the most likely observation of the other agents.

We will extend the popular MADDPG method (Lowe et
al. 2017) as it appears most amenable to full decentraliza-
tion. MADDPG agents require both (1) the policies of other
agents and (2) other agents’ observations as input to the poli-
cies and critics. As other agents’ approximate policies can be
learned, the agents only need to learn a model for the other
agents’ observations. The generative model will learn this
joint distribution of agent observations by training on ran-

dom combinations of missing agent communications dur-
ing centralized training. During the decentralized portion,
the agents may sample from this model to continue learning
under partial observability.

When the decentralized environment is dissimilar to the
centralized environment, both agent policies and the gener-
ative model require fine-tuning to the new dynamics. In our
system, this is worsened by the co-adaptation of the gen-
erative inference and inferred observations seen by agents.
We provide experimental results to show how reward differs
when the decentralized environment is partially observable
vs. both partially observable with altered dynamics, as well
as our method’s performance with several options for decen-
tralized updates.

Our contributions are as follows. We review the recent
trend of CTDE MARL literature and identify that they are
ill-suited to learn in the decentralized execution phase with-
out explicit communication. We show how a context condi-
tional generative model can address this problem for a pop-
ular CTDE method and provide a modified GAN that can
learn the joint observation distribution. We experimentally
evaluate our approach on three continuous multi-agent tasks.
To the best of our knowledge, this is the first work to use gen-
erative models to overcome multi-agent partial observability
or address decentralized learning in CTDE methods.

Related work
Centralized Training with Decentralized Execution

Many recent multi-agent actor-critic methods utilize central-
ized training with decentralized execution. This training pro-
cedure lessens the non-stationarity of co-adapting agents by
providing additional information in centralized training. The
majority of these methods: (1) solve only cooperative tasks
by using a shared reward for all agents, (2) use a centralized
critic function that conditions on all agents’ observations and
actions, and (3) use policy or critic networks that include re-
current components, such as an LSTM (Schmidhuber and
Hochreiter 1997). Recurrent networks have been shown to
be effective at learning policies in partially observable envi-
ronments (Hausknecht and Stone 2015).

Gupta et al(Gupta, Egorov, and Kochenderfer 2017) solve
cooperative, partially observable tasks with recurrent poli-
cies and curriculum learning. They compare several versions
of the CTDE methods, including using Q-learning vs. actor-
critic, centralized vs. decentralized policies with parameter
sharing, and feed-forward vs. recurrent policies. (Foerster et
al. 2018) use a centralized critic for all agents with decen-
tralized recurrent policies for cooperative tasks. In addition,
they use counterfactual baselines: difference rewards com-
paring agents’ actions to a default action.

Instead of learning a single centralized critic for all
agents, (Lowe et al. 2017) introduced multi-agent DDPG
(MADDPG) which has a centralized critic for each agent
and may be used in cooperative or competitive tasks. While
recurrent networks may be used with MADDPG, only feed-
forward networks were tested. (Rashid et al. 2018) also uses
centralized critics for each agent, but includes a central-
ized mixing network to combine each agent’s critic func-

tion. They also use recurrent polices and may be used in co-
operative tasks. (Foerster et al. 2016) learns communication
protocols over a limited-bandwidth communication channel.
They propose two approaches that use recurrent policies in
cooperative settings via parameter sharing or sending gradi-
ents over the communication channel.

We chose to extend MADDPG because it appears the
most amenable to decentralization: each agent ¢ has its own
critic function); (with no mixing network), policy 7;, ap-
proximate policies of other agents y, and reward function
to allow for both cooperative and competitive tasks. In addi-
tion, the policies are deterministic which allows for contin-
uous state and action spaces.

Decentralized Learning

Traditional decentralized MARL approaches rely on persis-
tent reliable communication so that agents may share local
observations and jointly choose actions in an uncertain en-
vironment. When states are represented in a factored form,
agents may solve a distributed constraint optimization prob-
lem over the network to choose a good joint action for all
agents (Zhang and Lesser 2013). In pure MARL approaches,
agents choose actions while sharing information over the
communication channel. In some systems agents share local
rewards but the state is fully observable (Zhang et al. 2018),
and others use a communication-based consensus protocol
to agree on a global state from local observations before
choosing joint actions (Zhang, Ma, and Li 2018).

In contrast, our approach aims to allow learning despite
disruptions in communication. When communication is un-
available, we infer the missing data given the available local
observations of neighboring agents.

(Marinescu et al. 2014) propose an alternative
communication-free method for decentralized learning
that minimizes non-stationarity with a prediction and
pattern change detection module. This module is updated
when an approximate distributed constraint optimization
solution determines that the environment transitions have
sufficiently diverged from the predictions. However, this
approach relies on solving hard optimization problems and
a prediction model conditioned on past trajectories.

Our approach is also related to model-based learning (Sut-
ton and Barto 2018) because the context conditional gener-
ative model essentially models the current state, but instead
conditions only on the current joint partial observation.

Background
Reinforcement Learning

Formally, each task in decentralized MARL is repre-
sented by a discrete-time partially observable Markov Game
(Littman 1994), a multi-agent extension of the Markov de-
cision process (Sutton and Barto 2018). A Markov Game is
atuple (S, 4,0, R, T,n,~) where a set of n agents choose
actions based on local observations to maximize their own
expected cumulative reward. At each time step ¢, the envi-
ronment has a true state s € S and each agent ¢ simultane-
ously chooses an action a; from their individual set of avail-
able actions A; € A. The environment stochastically transi-

tions to a new state s’ given by the state transition function
T :8 x A +— &, and each agent then receives a reward
r; according to its own reward function R; : S x A — R.
The discount factor + is used for calculating expected return
R; = S ~'r! for time horizon 7.

In the partially observable setting typical in decentralized
MARL, each agent receives a private observation o; € O;
correlated with the state s. Agents choose actions using a
stochastic policy 7; : O; x A; — [0, 1], where 7; is a learned
function with parameters ;.

The three main approaches to RL are action-value meth-
ods, policy gradient methods, and the actor-critic hybrid ap-
proach (Sutton and Barto 2018). Q-learning estimates the
action-value function Q7 (s, a): the future discounted reward
when taking action a from state s while following policy
7. Deep Q-Networks (DQN) used Q-learning with neural
network function approximation to play Atari games from
pixels to superhuman performance (Mnih, Silver, and Ried-
miller 2013). DQN also introduced two stability improve-
ments: target () functions that are updated less frequently,
and an experience replay buffer that stores environment tran-
sitions (s, a,r, s’) for decorrelated batch updates.

Instead of learning a value function, policy gradient meth-
ods learn a parameterized policy directly (Sutton and Barto
2018). This approach is often more efficient but tends to
have high variance. To reduce variance, actor-critic algo-
rithms combine an action-value function @) along with the
parameterized policy 7 to guide policy updates.

Policy gradient methods normally learn a stochastic pol-
icy m : S X A+ [0, 1]. Deterministic policy gradient (DPG)
methods learn a policy 7 : S — A that returns a single
action (Silver et al. 2014). Deep DPG (DDPG) is an off-
policy model-free actor-critic algorithm that combines the
DQN value function with a deterministic policy (Lillicrap et
al. 2016). DDPG is a popular single-agent RL method that
works with continuous state and action spaces. Like DQN,
DDPG uses experience replay and target networks for both
value and policy networks. Random noise is added to the
policy’s output for better exploration. From here on, all poli-
cies 7 are assumed deterministic.

Generative Adversarial Networks

Generative models learn a data distribution and can generate
new samples similar to the learned distribution. The most
popular class of models is the generative adversarial network
(GAN) (Goodfellow, Pouget-Abadie, and Mirza 2014). A
GAN is composed of two neural networks with opposing
goals: a generator network G that receives noise as input and
produces samples similar to the data distribution, and a dis-
criminator network D that tries to determine real data points
from those sampled from G. While GANs have largely been
applied to image generation, they should be able to learn any
joint data distribution.

Wasserstein GANs (WGANS) are a variant of GANSs that
have been shown to have more reliable convergence and
less mode collapse (Arjovsky, Chintala, and Bottou 2017).
WGAN uses a critic rather than a discriminator (outputs are
not probabilities), trains using a simple loss metric that ap-
proximates the Wasserstein distance when the network en-

forces a 1-Lipshitz constraint, and allows pre-training the
critic to optimality. To avoid confusing the WGAN critic
with the critic), we will continue to refer to it as the dis-
criminator D as this distinction makes no difference in our
work. For sample batch x and noise batch z ~ N (0, 1) with
batch size b, the WGAN discriminator and generator have
the following losses:

i [P () -2(o())] o
CED)

Our work uses the context-conditional generative model,
where the model takes a partial input and must generate a
complete data sample. The closest computer vision task to
our problem is image inpainting, where a patch of pixels
from an image is removed and the model must fill the miss-
ing patch based on its learned model of the pixels’ joint dis-
tribution. The CC-GAN objective function is given by

min max XDNEX [log D(x)] —|—x£EX, [log (1 — D (x1))]
m~M

3)

where m denotes a binary mask used to drop a patch from
image x, and x; = (1-m)®xg+mOx is the combined in-
painted image, where © is element-wise multiplication and
X is generated image by G.

Other generative models for image inpainting include
autoregressive models and context encoders, but they are
not suitable for our approach. Autoregressive models, such
as PixelRNN (van Oord, Kalchbrenner, and Kavukcuoglu
2016), require a pre-specified ordering over the pixels and
thus will not work for arbitrary missing data. Context en-
coders use a variational autoencoder coupled with adversar-
ial loss (Pathak et al. 2016), but results tend to be less accu-
rate compared to CC-GANS.

Decentralized Fine-Tuning

randomly mask

1<x<n-1 [om
agents' observations l

combine: A
0 — D — loss P, g -0, PMO0+ » 0
C) (1-m)Oog

0

Figure 1: CC-WGAN update diagram. Describes an agent-
based communication training procedure similar to random
masking found in image inpainting tasks.

Inferring Observations with CC-WGAN

We approach the problem of inferring missing information
from partial observations as a generative sampling problem,
similar to the task of image inpainting. We use a modified

 — E— E— Ea— E——— — n observation
x| ylele Agi Ag}) L |Agn Ag’}, vectors

- JC _J -
local information (x, y) for (x,y) for
for agent / agent 1 agent n
(@)
L = = = = =) - - - n partial
1 1 observation
| x | Y [8x |8y |Agx Agyl - | vectors

A S S S I I — E— corresponding
binary mask
1 1 1 1 1 11...1] 0 0 vectors
(b)

Figure 2: Random masking input and output used in training
the CC-WGAN for a 2-D agent-distance partial observabil-
ity criterion, where each agent’s observation contains (z, y)
positions for itself, other agents (Ag_, Ag;), and the goal
(9=, gy)- Fig. 2(a) depicts n agents’ observation vectors fed
to the masking function. Fig. 2(b) shows the masking func-
tion output: a set of n partial observations and n binary
masks for agent i. Masked values in observations are filled
with random normal values z ~ A(0, 1).

CC-GAN as our generative model (Denton, Gross, and Fer-
gus 2016). Specifically, we train a WGAN with gradient
penalty constraints (Arjovsky, Chintala, and Bottou 2017;
Gulrajani et al. 2017) with the CC-GAN random data mask-
ing training procedure. We refer to our modified model as
the context-conditional WGAN (CC-WGAN). In our exper-
iments, the CC-WGAN was more reliable than regular CC-
GAN for low-dimensional data.

Unlike the standard image generation task for GANS,
we have no training data. We store joint observations o =
(01,...,0,) in a replay buffer Bg just as MADDPG to sta-
bilize learning when batch training.

Fig. 1 shows the update procedure for training the CC-
WGAN. When the model updates, it randomly samples joint
observations o ~ Bg from the joint observation replay
buffer Bg to randomly mask 1 < x < n — 1 agent obser-
vations. During centralized training, all joint observations
are available. If the CC-WGAN is updated in the decen-
tralized phase, inferred observations are mixed into the up-
dates. This is a form of semi-supervised learning because the
model updates on its own predictions (Goodfellow, Bengio,
and Courville 2016).

For each joint observations o, we randomly mask com-
binations of missing agents from o with a binary mask m.
Masked elements in o are replaced with random normal
noise z ~ AN(0,1) to get the partial observation 6. The
masking procedure requires some knowledge of the con-
ditions when observations will become partial, e.g., inter-
agent distance greater than communications allow. Fig. 2
shows the masking procedure for distance-based partial ob-
servability based on (z,y) coordinates. In the diagram, G
takes joint partial observation ¢ and binary mask vector m,

CC-WGAN

1

d tralized >
decentralizedy,

Figure 3: MADDPG with CC-WGAN learning diagram.
During centralized training, the actor-critc learning updates
are identical to MADDPG and CC-WGAN collects joint ob-
servations. During decentralized execution, agents sample
from CC-WGAN to fill partial observations. Note that this
diagram excludes the approximate policies w; only the ob-
servations are shared during centralized training.

and produces the generated output og = G (6, m). We then
replace the masked portion in o with that portion of the
generated output og to get a combined observation 6 =
moo+(1-m)oog.

Where CC-GAN passes only the inpainted patch to the
discriminator, this assumes fixed size image patches. Since
any number of agents may be missing from the joint obser-
vation 0, we instead pass the combined observation to the
discriminator. D is trained to distinguish batches of size m
of real joint observations o and inferred observations 0 by
minimizing the empirical Wasserstein distance:

P2 e

where 6 = m ® o + (1 — m) ® G(6, m). Similarly, G is
updated by maximizing:

1< .
S o)
=1

MADDPG with Inferred Observations

As stated before, we augment MADDPG (Lowe et al. 2017)
with the CC-WGAN because it appears the most flexible
CTDE method for decentralization. Each MADDPG agent
i learns a deterministic policy ;, a centralized critic);, and
a set of approximate policies 4 for each other agent j.

Fig. 3 shows the MADDPG method updates along with
the CC-WGAN for both centralized and decentralized
phases. During centralized training, the critics (); and poli-
cies m; are updated exactly as MADDPG. In addition, the
CC-WGAN is collecting joint observations in its replay
buffer and updating as described above.

A N £

f \ | Agent 1
/,/ B .Agento// y
f oo Sy o -
| 1:Agent0
\ 4 £

A / | Agent2

Figure 4: Physical deception scenario with agent inference
at the beginning of an episode. Cooperating Agents 1 and 2
are near each other and can therefore observe each others’
real positions. They are both too far away from adversary
Agent 0 (with partially observable distance dp) so they each
sample from the generative model to infer Agent 0’s posi-
tion.

In the decentralized phase, local observations may be
missing information about other agents. At each time step
each agent ¢ receives a partial observation 0; which consists
of the agent’s local information and possibly information
about other agents. When updating the centralized critics,
if an agent ¢ has information about agent j in its local partial
observation 0;, then it can also see agent j’s partial observa-
tion 0;. This is because we assume agents within range are
“communicating” all local information. Just as in training,
the joint partial observation o is passed to the generator to
get og and combined via binary mask m with o to get the
inferred observation 0.

Following the derivation in (Lowe et al. 2017), the deter-
ministic policy loss with inferred observations is:

Vo, J (mi) = E. [Vo,mi (ai|6;) Va,QF (6,0)], (6)

)

where a = ay, ..., ay are taken from approximate policies
such that i (0;) = a;. The approximate policies are up-
dated with:

L(07) = —Eu,a, [log! (ajl6;) + AH(])] ()

where H (wf) is the entropy of the policy distribution and
A is a small weight (0.001 in experiments). The centralized
critics (); are updated with:

L(0;) =Exarx [(Qf (x,a1,...,an) — y)Z} , (8
y=7ri Q)0 1t (1), N (0n))
where 1 is a target policy and 6, is an inferred next obser-
vation following observation o.
Experiments

Environments and Setup

We evaluate our method under three continuous scenarios,
two competitive and one cooperative, of the Multi-agent

Particles Environment (MPE)!. MPE was introduced in the
original MADDPG paper (Lowe et al. 2017). In order to
directly compare to their results, we use the physical de-
ception and predatory-prey competitive scenarios also used
by (Lowe et al. 2017). We additionally test on a coopera-
tive navigation scenario where agents share a reward func-
tion to show both competitive and cooperative settings. The
communication-based scenarios tested by Lowe et al. have
no clear way to make partially observable and still be solv-
able so we did not include them. In contrast, the physical
scenarios we evaluate on are easy to make partially ob-
servable by using a partially observable distance dp: when
agents’ are farther from each other than dp, they cannot ob-
serve each others’ positions, velocity, etc. (see Fig. 4). We
use dp = 1 in all experiments, where the width of the 2D
square environment is 2.

When using agent-distance partial observability, learn-
ing the coordination of predator-prey appears hardest, fol-
lowed by physical deception, and lastly cooperative naviga-
tion. In predator-prey, three agents must coordinate to catch
one faster agent, so there is no stable strategy with limited
view. In physical deception, two agents should learn to de-
ceive an adversary agent by covering two landmarks to hide
which is the correct goal. If the adversary is out of range, this
strategy should not change. In cooperative navigation, each
agent must move to and remain near different landmarks.
With limited range observations, an agent can still tell if an-
other agent is covering the same landmark within distance
dp and move to a different one.

In addition to making the decentralized phase partially ob-
servable, we approximate real-world deployment by chang-
ing the transition function by modifying simulation dynam-
ics. Dynamics are changed by adding scaled random nor-
mal noise and translation to both actions and observations.
Combined with partial observability, the added noise makes
learning more difficult for both the policies and the CC-
WGAN and requires fine-tuning to the new distribution.

Each episode has 200 steps with no early termination.
All models are updated every 100 steps, and are represented
with a three-layer, feed-forward neural network with 64 hid-
den units. The models use the Adam optimizer and each
non-output layer uses a ReLU activation function. Each plot
shows the mean and standard deviation shading of agent re-
wards over 30 independent trials for each algorithm. Each
algorithm within a single plot receives the same set of 30
random seeds for accurate comparisons with random explo-
ration. In all plots, a vertical dashed line marks the episode
in which the environment becomes decentralized.

Results

The following plots compare our approach of augment-
ing MADDPG with CC-WGAN inference against regular
MADDPG and DDPG. We chose DDPG because it per-
formed the best among all IL methods in (Lowe et al. 2017)
and we use the same environment. Agents learn approximate
policies for all other agents in MADDPG with and without
generative inference. MADDPG and our version are identi-

'"MPE code: http://github.com/openai/multiagent-particle-envs

L/? .
25

Reward

—— MADDPG 140
MADDPG (infer)

—— DDPG
-160
Y

~180 W

Reward

-220

-240

-5.0 —— MADDPG —— MADDPG
MADDPG (infer) 5 MADDPG (infer)
-7.5 — DDPG ~260 —— DDPG
0 20000 40000 60000 80000 100000 0 10000 20000 30000 40000 50000 60000 70000 80000 0 10000 20000 30000 40000 50000 60000 70000 80000

Episodes

(a) Physical Deception

(b) Predator-Prey

Episodes Episodes

(c) Cooperative Navigation

Figure 5: Reward for cooperating agents with distance-based partial observations in decentralized phase.

12 —— Infer vs. None

Infer vs. Infer
—— None vs. Infer
—— None vs. None

10

Nl

Reward

—— Infer vs. None 1401
Infer vs. Infer
—— None vs. Infer ~160
—— None vs. None
-180 /

2001 s ‘/h_,\ﬂ/«
~220 v‘ \/

1l

-2401 |

re |
| —— Infer vs. Infer

=260 None vs. None

Reward

0 20000 40000 60000 80000 100000 0 10000 20000 30000 40000 50000 60000 70000 80000 0 20000 40000 60000 80000 100000

Episodes

(a) Physical Deception

Episodes Episodes

(b) Predator-Prey

(c) Cooperative Navigation

Figure 6: Both sides of cooperating agent rewards with both distance-based partial observations and altering environment
dynamics in decentralized phase. “Infer” is our approach and “None” is MADDPG.

cal during the centralized training because agents only use
the CC-WGAN inference in the decentralized phase. Af-
ter centralized training, we let MADDPG continue learn-
ing while treating the partial observability as random noise,
whereas our approach infers the missing data. Except for
Fig. 7, the policies and CC-WGAN continue updating in the
decentralized phase.

We did not test against the other CTDE methods discussed
in Related Work because these methods use recurrent critics
or policies. As such, they condition on past trajectories and
would likely overcome the partial observability implicitly.
Since MADDPG may also be used with recurrent units, we
would like to compare recurrent MADDPG with and with-
out generative inference against some of the recurrent CTDE
methods in future work.

In Fig. 5, we show the cooperating agents’ reward for all
agents using MADDPG, MADDPG with CC-WGAN infer-
ence, and DDPG. In this plot we only introduce partial ob-
servability when agents are farther than the partially observ-
able distance dp = 1.

Fig. 6 shows the reward for cooperating agents with both
partial observability and altered environment dynamics in
the decentralized phase to evaluate the capability of fine-
tuning to another environment. The overall reward is much
lower here than Fig. 5 which suggests the CC-WGAN is

not well-suited to switching its modeled observation distri-
bution. Deploying into a real world scenario is an important
application, which is addressed by sim-to-real transfer (Peng
et al. 2018).

In Fig. 7, we compare the total reward for our method with
four options of decentralized updates, where the decentral-
ized phase has both partial observability and altered envi-
ronment dynamics. All agents use the CC-WGAN inferred
observations when choosing actions. The curves show the
difference in whether the policy and CC-WGAN update on
inferred observations in the decentralized phase.

Lastly, in Fig. 8, we show the CC-WGAN’s reconstruc-
tion MSE during training over several partial observability
distances dp € [0.0,2.0]. When dp = 0, the model is ef-
fectively using IL in the decentralized phase; when dp = 2,
the model is usually using complete observations. We show
this reconstruction plot because the agents’ observations are
low-dimensional (i.e., not images as GANSs are usually used
for). MSE may not be a good metric for this error, however
it was more informative than cosine similarity. We initially
expected the error to be lower for larger dp, but it is clear
that the CC-WGAN reconstruction error has little to do with
the partial observability distance. We would like to investi-
gate the conditions under which the CC-WGAN gives better
predictions.

Reward

—— Both update
Policy update
| —— GAN update
—— Neither update

4501
5001
5501
A -6001 4

-650

=700

Reward

—— Both update
Policy update

—— GAN update

—— Neither update

—— Both update
] Policy update
750 —— GAN update

—— Neither update

40000 60000 80000 100000 0

Episodes

0 20000 20000

(a) Physical Deception

40000

Episodes

(b) Predator-Prey

—800 -

60000 80000 100000 0 20000 40000 60000

Episodes

80000 100000

(c) Cooperative Navigation

Figure 7: Total reward for our approach with all four combinations of whether agent policies and CC-WGAN continue to update

on inferred observations during decentralized phase.

301

251

154

104

10000 20000 30000 40000 50000 60000 70000 80000
Episodes

Figure 8: Mean squared error CC-WGAN reconstruction be-
tween latest joint observations o and inferred observations 6
for the predator-prey scenario with altered dynamics. Curves
show varying partial observability distances d p had little ef-
fect on error.

Discussion

The results shown here reveal properties about context-
based modeling of observations in MARL and the scenarios
under which our current version is appropriate.

As CC-WGAN learns a joint observation distribution by
sampling joint observations from its replay buffer Bg, it has
no temporal coherence: its inference is independent from
the previous step given the current context. Without a model
of observation trajectories, it is ill-suited for dynamic tasks
with no clear stable behaviors under the partial observability.

This problem can be seen in Fig. 5 depending on the
scenario’s need for non-local information and the stabil-
ity of optimal behavior. Inferring other agents’ observa-
tions is useful when the task requires non-local coordina-
tion like the physical deception and predator-prey scenar-
ios. Cooperative navigation agents can move to a different
landmark if another agent is covering the same landmark,
but may take slightly longer. Without temporal coherence,
the CC-WGAN has trouble modeling non-stationary obser-
vation distributions like predator-prey. In contrast, physical

deception and cooperative navigation have a stable optimal
policy. In summation, our approach works best with a sta-
ble observation distribution (physical deception and cooper-
ative navigation) and is useful in tasks requiring non-local
coordination (physical deception and predator-prey). This is
why our reward is significantly higher in physical deception,
slightly higher in cooperative navigation, and slightly lower
in predator-prey.

As seen in Fig. 7, when the CC-WGAN and policy update
on inferred observations the decentralized reward dropoff is
more drastic than without updating on the inference. This
is due to the co-adaptation between the agents’ policies
and CC-WGAN inference: the CC-WGAN must learn based
on new observations being generated by agents choosing
actions based on the inferred observations from the CC-
WGAN. Also it appears that having either policy updates
or GAN updates on inferred observations gives roughly the
same benefit.

Conclusions and Future Work

In this paper we reviewed the recent trend of MARL meth-
ods utilizing centralized training with decentralized execu-
tion (CTDE) and identified that none of the methods may
continue learning in the decentralize phase without adding
explicit communication. We proposed to learn a context
conditional generative model during the centralized training
phase that allows for a popular CTDE actor-critic method
to continue learning in the decentralized phase, and showed
that this addition allows for increased reward and coordina-
tion in three continuous multi-agent tasks.

Our approach is useful for completing partial observa-
tions in Markovian environments where decentralized en-
vironment dynamics closely match the centralized training
dynamics. In non-Markovian environments where agents
should condition on trajectories, recurrent policies or critics
would help solve the problem. Our experiments show that
context is useful in settings when there is a stable optimal
behavior for agents, but training on trajectories may be able
to learn more difficult observation distributions. Lastly, we
would like to show the efficacy of our approach in larger,
more difficult environments.

References

Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
GAN. arXiv.

Denton, E.; Gross, S.; and Fergus, R. 2016. Semi-
Supervised Learning with Context-Conditional Generative
Adversarial Networks. arXiv.

Foerster, J. N.; Assael, Y. M.; De Freitas, N.; and Whiteson,
S. 2016. Learning to Communicate with Deep Multi-Agent
Reinforcement Learning. In Neural Information Processing
Systems (NIPS).

Foerster, J. N.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2018. Counterfactual Multi-Agent Policy Gra-
dients. In Association for the Advancement of Artificial In-
telligence.

Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT press.

Goodfellow, I.; Pouget-Abadie, J.; and Mirza, M. 2014.
Generative Adversarial Networks. arXiv preprint arXiv: ...
1-9.

Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. 2017. Improved Training of Wasserstein

GANSs. In Advances in Neural Information Processing Sys-
tems, 5S767-57717.

Gupta, J. K.; Egorov, M.; and Kochenderfer, M. 2017. Co-
operative Multi-agent Control Using Deep Reinforcement
Learning. In AAMAS Workshop, volume 10642 LNAI, 66—
83.

Haarnoja, T.; Ha, S.; Zhou, A.; Tan, J.; Tucker, G.; and
Levine, S. 2018. Learning to Walk via Deep Reinforcement
Learning. In International Conference on Machine Learn-
ing.

Hausknecht, M., and Stone, P. 2015. Deep Recurrent Q-
Learning for Partially Observable MDPs.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2016. Continuous
control with deep reinforcement learning. In International
Conference on Learning Representations.

Littman, M. L. 1994. Markov games as a framework for
multi-agent reinforcement learning. In Machine Learning.
Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; and
Mordatch, I. 2017. Multi-Agent Actor-Critic for Mixed
Cooperative-Competitive Environments. In Neural Informa-
tion Processing Systems (NIPS).

Marinescu, A.; Dusparic, I.; Taylor, A.; Cahill, V.; and
Clarke, S. 2014. Decentralised Multi-Agent Reinforcement
Learning for Dynamic and Uncertain Environments. In As-
sociation for the Advancement of Artificial Intelligence.
Mnih, V,; Silver, D.; and Riedmiller, M. 2013. Playing Atari
with Deep Reinforcement Learning. arXiv 1-9.

Pathak, D.; Krihenbiihl, P.; Donahue, J.; Darrell, T.; and
Efros, A. A. 2016. Context Encoders: Feature Learning
by Inpainting. arXiv.

Peng, X. B.; Andrychowicz, M.; Zaremba, W.; and Abbeel,
P. 2018. Sim-to-Real Transfer of Robotic Control with

Dynamics Randomization. In International Conference on
Robotics and Automation.

Rashid, T.; Samvelyan, M.; Schroeder De Witt, C.; Farquhar,
G.; Foerster, J.; and Whiteson, S. 2018. QMIX: Monotonic
Value Function Factorisation for Deep Multi-Agent Rein-
forcement Learning. In International Conference on Ma-
chine Learning.

Schmidhuber, J., and Hochreiter, S. 1997. Long short-term
memory. Neural Computation 9(8):1735-1780.

Silver, D.; Heess, N.; Degris, T.; Wierstra, D.; and Ried-
miller, M. 2014. Deterministic Policy Gradient Algorithms.
In International Conference on Machine Learning.

Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. MIT press, 2nd edition.

van Oord, A.; Kalchbrenner, N.; and Kavukcuoglu, K. 2016.
Pixel Recurrent Neural Networks. In International Confer-
ence on Machine Learning, 1747-1756.

Zhang, C., and Lesser, V. 2013. Coordinating Multi-Agent
Reinforcement Learning with Limited Communication. In
Autonomous Agents and Multi-Agent Systems.

Zhang, K.; Yang, Z.; Liu, H.; Zhang, T.; and Basar, T. 2018.
Fully Decentralized Multi-Agent Reinforcement Learning
with Networked Agents. In International Conference on
Machine Learning.

Zhang, W.; Ma, L.; and Li, X. 2018. Multi-agent reinforce-
ment learning based on local communication. Cluster Com-
puting.

