
Regret Minimization via Novel Vectorized Sampling Policies and Exploration

Hui Li§∗ , Kailiang Hu§, Shaohua Zhang§, Lin Wang§, Jun Zhou§, Yuan Qi§, Le Song§\

§Ant Financial Services Group
\Georgia Institute of Technology

Abstract

Imperfect information game is an important research topic
in artificial intelligence. Solving large imperfect information
game from sampling experiences is a challenging task. Monte
Carlo counterfactual regret minimization (MCCFR) and its
variants are the fundamental and effective techniques for
solving imperfect information games. However, such sam-
pling methods typically need a large number of iterations
to approach an approximate Nash equilibrium. In this paper,
we introduced several efficient vector-form sampling policies
based on the public tree and proposed an efficient frame-
work with novel exploration technique. The experiment re-
sults showed that the proposed methods empirically brought
about 100× ∼ 1000× speedup in many settings. Our meth-
ods potentially open up new avenues for research in these di-
rections.

Introduction
Many remarkable advances have been made in artifi-
cial intelligence (AI) in recent years. AI researchers of-
ten use games as challenging problems and benchmarks
for progress. Poker has served for decades as challenging
benchmarks and milestones of solving imperfect informa-
tion games. In such games, a player has only partial knowl-
edge about her opponents before making a decision. The
typical target of solving imperfect information games is to
find a Nash equilibrium so that no player can unilaterally
improve the reward.

When solving extremely large imperfect information
games, it’s difficult to fit a linear programming model with
a manageable size. Many iterative techniques (Gilpin et al.,
2007; Gordon, 2007; Kroer et al., 2015; Heinrich, Lanctot,
and Silver, 2015) have been proposed as an alternative so-
lution to these linear programming methods. Counterfactual
regret minimization (CFR) has been one of the most efficient
iterative algorithms in the progress of Poker AI, leading
to solving heads-up limit Texas hold’em (Tammelin, 2014;
Tammelin et al., 2015) and no-limit Texas hold’em (Morav-
cik et al., 2017; Brown and Sandholm, 2017, 2019b). Lanc-
tot et al. (2009) propose a Monte Carlo CFR minimiza-
tion (MCCFR) framework to solve imperfect information
games from sampling experiences. Different from CFR, in
∗Correspondence to Hui Li: lihuiknight@google.com

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

each iteration, MCCFR samples a subset of nodes from the
game tree according to some Monte Carlo methods. The su-
perhuman AIs: Libratus (Brown and Sandholm, 2017) and
Pluribus (Brown and Sandholm, 2019b) used MCCFR vari-
ants and finally beat top professionals in two-player and six-
player no-limit Texas hold’em respectively. These works are
considered as new milestones in artificial intelligence.

However, MCCFR variants typically have poor long-term
performance due to the sampling policy and high variance.
Some methods (Gibson et al., 2012; Johanson et al., 2012;
Jackson, 2017; Li et al., 2020; Brown and Sandholm, 2019b)
have been proposed to accelerate its convergence. Recently,
Schmid et al. (2019); Davis, Schmid, and Bowling (2019)
borrowed ideas of variance reduction from the commu-
nity of reinforcement learning and estimated the baseline-
correct expected value for MCCFR. Their experiment re-
sults showed that combining techniques of reinforcement
learning and MCCFR is an important research direction of
solving imperfect information games (Kovařı́k et al., 2019).
Also, they show that performing MCCFR with vector-form
implementation based on the simple uniform random Monte
Carlo sampling can improve its convergence 1.

Following this direction, we have two questions:
• Is there any other technique from reinforcement learning

community can be used to for the CFR community?
• Can one design novel Monte Carlo sampling policies to

make vector-form MCCFR more efficient?
In this paper, we try to answer these two questions. In

sum, we introduced a general framework of Monte Carlo
counterfactual regret minimization by borrowing the explo-
ration techniques from reinforcement learning communities.
Based on this framework, we proposed several reasonable
vectorized Monte Carlo sampling policies to make MCCFR
more efficient. Empirically, our MCCFR variants perform
significantly better than the state-of-the-art method. Some
combinations of our ideas bring 2 ∼ 3 orders of magnitude
speedup.

1Note that, vector-form MCCFR with uniform random sam-
pling policy can leverage the advantages of matrix computing so
that it’s more efficient empirically, although it has the same the-
oretically floating-point operations with the value-form MCCFR.
We will introduce value-form MCCFR and vector-form MCCFR
in the next sections

Background and Notation
Notations for Imperfect Information Game
There are n players (except for chance) in extensive-form
imperfect information games. N = {1, ..., n} is a finite set
and each member refers to a player. In two-player game,
N = {1, 2}. These two players are denoted by p1 and p2.
The hidden information(variable) of player i is unobserved
by the opponents, which is denoted by hvi . Each member
h ∈ H refers to a possible history (or state). For player i,
hv−i refers to all the players’ hidden information except for
i. The empty sequence ∅ is a member of H . hj v h denotes
hj is a prefix of h. Z denotes the set of terminal histories and
any member z ∈ Z is not a prefix of any other sequences. A
player function P assigns a member ofN ∪{c} to each non-
terminal history, where c refers to the chance player. P (h)
is the player who takes actions at h. A(h) = {a : ha ∈ H}
is the set of available actions after h ∈ H \ Z. Ii of a his-
tory {h ∈ H : P (h) = i} is an information partition of
player i. A set Ii ∈ Ii is an information set (infoset) of
player i and Ii(h) refers to infoset Ii at state h, i.e., each
history h corresponds to an infoset Ii(h). For Ii ∈ Ii, we
have A(Ii) = A(h) and P (Ii) = P (h). If all players in
one game can recall their previous actions and infosets, we
call it a perfect-recall game. The utility function ui(z) is the
payoff of player i at terminal state z.

Game Tree and Public Tree
Given all players’ histories, we can build a prefix tree (trie)
recursively. Such prefix tree is called game tree in game the-
ory (Johanson et al., 2011). Each node in the game tree refers
to a history h. The infoset tree for each player is built on in-
fosets rather than histories. Public tree is a prefix tree built
on public sequences as illustrated in Figure 1. Each node
~Ii (public node) in public tree refers a vector of infosets
~Ii = [Ii1, Ii2, Ii3, ...]. For ∀Iij , Iik ∈ ~Ii, they can indicate
exactly the same public sequence. |~Ii| refers to length of the
vector. Further details about game tree, infoset tree and pub-
lic tree can be found in Johanson et al. (2011). Kovařı́k et
al. (2019) gives a comprehensive definition of game tree and
public tree. They call the public sequence in their paper as
the public state.

Notations for Strategy and Nash Equilibrium
For play i ∈ N , the strategy σi(Ii) in an extensive-form
game assigns an action distribution over A(Ii) to infoset Ii.
A strategy profile σ = {σi|σi ∈ Σi, i ∈ N}, where Σi
is the set of all possible strategy for player i. σ−i refers
to all strategies in σ except for σi. σi(Ii) is the strategy
of infoset Ii. σi(a|h) refers to the probability of action a
taken by player i at state h. ∀h1, h2 ∈ Ii, we have Ii =
Ii(h1) = Ii(h2), σi(Ii) = σi(h1) = σi(h2), σi(a|Ii) =
σi(a|h1) = σi(a|h2). For iterative learning method such as
CFR, σt refers to the strategy profile at t-th iteration.
πσ(h) refers to the state reach probability (also called

state range),which is the product of all players’(include
chance) strategies along the history h. For an empty se-
quence, πσ(∅) = 1. The reach probability can be decom-
posed into πσ(h) =

∏
i∈N∪{c} π

σ
i (h) = πσi (h)πσ−i(h),

where πσi (h) is the product of player i′s strategy σi and

πσ−i(h) is the product of all players’ strategy σ−i except i.
∀h ∈ Ii, πσi (h) = πσi (Ii). For two histories h1 and h2,
h1 v h2, πσ(h1, h2) refers to the product of all player’s
strategy from history h1 to h2. We define πσi (h1, h2) and
πσ−i(h1, h2) in the similar way. The infoset reach probability
(infoset range) of Ii is defined by πσ(Ii) =

∑
h∈Ii π

σ(h).
Similarly, πσ−i(Ii) =

∑
h∈Ii π

σ
−i(h). For player i, the ex-

pected game utility is defined by uσi =
∑
z∈Z π

σ(z)ui(z).
Given a fixed strategy profile σ−i, br(σ−i) =

argmaxσ′i∈Σi u
(σ′i,σ−i)
i is a best response. An ε-Nash equi-

librium is an approximated Nash equilibrium, whose strat-
egy profile σ∗ = (br(σ−i), br(σi)) satisfies: ∀i ∈ N ,

u
(br(σ−i),σ−i)
i + ε ≥ maxσ′i∈Σi

u
(σ
′
i ,σ−i)

i . Exploitability of

a strategy σi is defined by εi(σi) = uσ
∗

i − u
(σi,br(σi))
i . If

the players alternate their positions in two-player zero-sum
imperfect information game, the value of a pair of games is
zero, i.e., uσ

∗

1 +uσ
∗

2 = 0. Therefore, exploitability of a strat-

egy profile σ is defined by ε(σ) =
u
(σ1,br(σ1))
2 +u

(br(σ2),σ2)
1

2 .

Counterfactual Regret Minimization
CFR is an iterative method for finding a Nash equi-
librium on zero-sum perfect-recall imperfect information
games (Zinkevich et al., 2007) 2. Given σt, the counterfac-
tual value vσ

t

i (Ii) is defined by

vσ
t

i (Ii) =
∑
h∈Ii

πσ
t

−i(h)
∑

hvz,z∈Z

πσ
t

(h, z)ui(z). (1)

vσ
t

i (a|Ii) refers to the counterfactual value of action a and
its regret is defined by rσ

t

i (a|Ii) = vσ
t

i (a|Ii) − vσ
t

i (Ii).
The cumulative regret of action a after t iterations is
Rti(a|Ii) = Rt−1

i (a|Ii) + rσ
t

i (a|Ii), where R0
i (a|Ii) = 0.

Define Rt,+i (a|Ii) = max(Rti(a|Ii), 0), the current strat-

egy at t + 1 iteration is updated by Rt,+i (a|Ii)∑
a∈A(Ii)

Rt,+i (a|Ii)
(if∑

a∈A(Ii)

Rt,+i (a|Ii) = 0, it is updated by 1
|A(Ii)|). The av-

erage strategy σ̄iT after T iterations is defined by

σ̄i
T (a|Ii) =

∑T
t=1 π

σt

i (Ii)σ
t
i(a|Ii)∑T

t=1

∑
a∈A(Ii)

πσ
t

i (Ii)σti(a|Ii)
. (2)

CFR+ (Tammelin, 2014) is very similar to CFR. It re-
places regret matching by regret matching+ and uses a
weighted average strategy. CFR and CFR+ are proven to
approach Nash equilibria after enough iterations. The best
known theoretical bound for CFR and CFR+ to converge to
ε-equilibrium isO(1

ε2) (Zinkevich et al., 2007; Burch, 2017;
Burch, Moravcik, and Schmid, 2018). This bound is slower
than first-order methods that converge at rateO(1

ε) (Hoda et
al., 2010; Kroer et al., 2015). However, CFR+ empirically
converges much faster than O(1

ε) in many games.

2Empirically, CFR can also use to solve perfect information
game because it can be considered as a subset of imperfect infor-
mation game.

[J, Q] [J, K]
[Q, J] [Q, K]
[K, J] [K, Q]

J KJ Q

chance

player 1

player 2

terminal

 𝐼1 = [𝐼11, 𝐼12, 𝐼13]

How to sample an action according to a
vector of [𝜎1

𝑠 (𝐼11), 𝜎1
𝑠(𝐼12), 𝜎1

𝑠(𝐼13)]?

Game Tree Public Tree

J Q K

Figure 1: Game tree, public tree and the motivation on Kuhn.

Monte Carlo CFR
Lanctot et al. (2009) proposed a Monte Carlo CFR (MC-
CFR) to compute the unbiased estimate of counterfactual
value by sampling subsets of infosets in each iteration. De-
fine Q = {Q1, Q2, ..., Qm}, where Qj ∈ Z is a set (block)
of sampled terminal histories generated by MCCFR, such
that Qj spans the set Z. Define qQj as the probability of
considering block Qj , where

∑m
j=1 qQj = 1. Define q(z) =∑

j:z∈Qj qQj as the probability of considering a particular
terminal history z. The estimate of sampled counterfactual
value of Ii is defined by

ṽσi (Ii|Qj) =
∑

h∈Ii,z∈Qj ,hvz

1

q(z)
πσ−i(z)π

σ
i (h, z)ui(z).

(3)

Define σs as sampled strategy profile, where σsi is the
sampled strategy of player i and σs−i are those for other play-
ers except for i. The regret of the sampled action a ∈ A(Ii)
is defined by r̃σi (Ii, a|Qj) = ṽσi (Ii, a|Qj) − ṽσi (Ii|Qj),
where ṽσi (Ii, a|Qj) =

∑
z∈Qj ,havz,h∈Ii π

σ
i (ha, z)usi (z),

usi (z) = ui(z)

πσ
s
i (z)

is the utility weighted by 1
πσ
s
i (z)

. The
estimate cumulative regret of action a after t iterations
is R̃ti(Ii, a|Qj) = R̃t−1

i (Ii, a|Qj) + r̃σ
t

i (Ii, a|Qj), where
R̃0
i (Ii, a|Qj) = 0.
MCCFR provably maintains an unbiased estimate of

counterfactual value and converges to Nash equilib-
rium (Lanctot et al., 2009). Outcome sampling and exter-
nal sampling are two popular sampling methods, which have
served as benchmarks in many articles. The original out-
come sampling (Lanctot et al., 2009) chooses one history ac-
cording to two players’ current strategy policy (or ε-greedy).
The external sampling is very similar to outcome sampling
except for one player taking all actions at her decision node.
In each iteration, the classical MCCFR designates one player
as the traverser, whose cumulative regret and strategy will be
updated on this iteration. After that, another player will be
designated as the traverser. Li et al. (2020) introduced robust
sampling, which is a general version of outcome sample and
external sampling. In robust sampling, the traverser samples
k actions and the opponent samples one action. Recently,
some related methods (Gibson et al., 2012; Johanson et al.,
2012; Jackson, 2017; Brown and Sandholm, 2017; Schmid

et al., 2019; Brown and Sandholm, 2019a; Davis, Schmid,
and Bowling, 2019; Brown and Sandholm, 2019b) have been
proposed to accelerate MCCFR’s convergence.

Vectorized MCCFR and Motivation
We classify the common MCCFR variants into three cate-
gories: value-form, semi-vector-form, and vector-form MC-
CFR. To make a clear explanation, we introduce different
MCCFR variants on Kuhn poker 3. Assume there are two
suits: ♣ and ♠ and three cards: J,Q,K. To simplify the ex-
planation, we use the general robust sampling as the default
sampling method and specify player p1 as the traverser. At
each decision node, p1 samples one action according to uni-
form random policy and p2 samples one action according to
her current strategy.
•Value-form MCCFR: At the start of each iteration, p1

and p2 are dealt with one private card respectively, such as
♣J for p1 and♣Q for p2. Then they play against each other
until the end. In perfect-recall two-player imperfect infor-
mation game, given public sequence and p2’s private card,
it’s easy to locate a particular infoset I2 ∈ I2. p2 samples
one action according to σ2(I2). In this scenario, the value-
form MCCFR generates one history h on each iteration. The
value of the terminal node is the game payoff.
• Semi-vector-form MCCFR: Suppose p2 is dealt with

private card ♣Q and p1 is dealt with a vector of private
cards [♣J,♣K]. Similar to value-form MCCFR, these two
players play against each other until the end. p1’s decision
node maintains a vector of infosets ~I1 = [I11, I12] and p2’s
node maintains one infoset I2. Also, ~I1 indicates a vector of
policies ~σ1 = [σ11, σ12]. In this scenario, p2 samples her
action according to σ2(I2). When using robust sampling,
p1 samples her actions according to uniform random policy
rather than the vector of policies ~σ1, so that it’s unneces-
sary to specify a particular current strategy as the sampling
policy. Semi-vector-form MCCFR updates a vector of the
traverser’s regrets and strategies on her public state while
only updates a particular regret and strategy for her oppo-
nent’s infoset. It’s expected that semi-vector-form MCCFR
can benefit from efficient matrix manipulation and empiri-
cally converge faster than value-form MCCFR.

3https://en.wikipedia.org/wiki/Kuhn poker

• Vector-form MCCFR: For this method, we don’t need
to specify private cards for p1 and p2. Both two players tra-
verse along the public tree according to the specified sam-
pling policy. We explain this method as follows. As shown
in Figure 1, the decision node of player i ∈ [1, 2] should
maintain a vector of infosets ~Ii = [Ii1, Ii2, Ii3]. In each it-
eration, the vector-form MCCFR generates a vector of se-
quences along the public tree. Because each decision node
~Ii indicates a vector of current strategies ~σi = [σi1, σi2, σi3],
it’s unclear how to design the sampling policy. Schmid et al.
(2019); Davis, Schmid, and Bowling (2019) use a uniform
sampling policy in their experiments so that each infoset in
~Ii shares the same uniform policy. Intuitively, we should pay
more attention to the relatively important action. Therefore,
there remains an interesting question:

Can we design better sampling policies, which
not only pay more attention to the relatively im-
portant action but also achieve better long-term
performance?

Remark: Vector-form implementation is well-known for
a long time, it’s widely used in both CFR variants (without
Monte Carlo sampling) and vector-form MCCFR (with the
simple uniform random sampling policy). Obviously, there
is no aforementioned problem in the CFR variants because
the full-width methods don’t need to sample action. Also,
there is no such issue in the vector-form MCCFR with sim-
ply uniform random sampling policy because it doesn’t use
current strategy or average strategy as a part of its sampling
policy. In the next section, we will address this question and
provide several efficient sampling policies for vector-form
MCCFR.

Vectorized Monte Carlo Sampling
In this section, we define a novel vectorized Monte Carlo
CFR framework with an exploration technique and explain
why these techniques works well.

Sampling Policies for Vector-form MCCFR
Suppose player i is the traverser and the decision-making
node is ~Ii in the public tree. Recall ~Ii contains a vector of
infosets, i.e., ~Ii = [Ii1, Ii2, Ii3]. Also, each infoset Iij ∈ ~Ii
indicates a current strategy σti(·|Iij) and an average strategy
σ̄ti(·|Iij). Now, we design several effective sampling policies
for vector-form MCCFR.
• Random Current Strategy (RCS): When using RCS,

player i randomly selects one infoset Ii from ~Ii and samples
one action according to σti(Ii). This method is very simple
and naive.
•Mean Current Strategy (MCS): This sampling policy

is the mean of the current strategy over all the infosets in ~Ii,
which is defined by

σmcsi (a|~Ii) =

∑
Ii∈~I σ

t
i(a|Ii)∑

Ii∈~Ii
∑
a∈A(Ii)

σti(a|Ii)
=

∑
Ii∈~I σ

t
i(a|Ii)

|~Ii|
.

(4)

The MCS gives different infoset Ii ∈ ~Ii the same weight.

• Range-Weighted Current Strategy (WCS): In the
field of game theory, a player typically has a very low proba-
bility of taking disadvantageous action. Typically, the player
makes different decisions in different situations. For exam-
ple, the player may need to take a more aggressive strategy
after beneficial public cards are revealed in a poker game.
Following the idea of defining average strategy in Eq. (2),
we weight different infoset Ii ∈ ~Ii by player i’s range. The
WCS sampling policy is defined by

σwcsi (a|~Ii) =

∑
I∈~I π

σt

i (I)σti(a|Ii)∑
I∈~Ii

∑
a∈A(Ii)

πσ
t

i (I)σti(a|I)
. (5)

In addition, one can also replace the player i’s own range
πσ

t

i (Ii) in Eq. (5) by the opponent’s range πσ
t

−i(Ii) and all
players’ range πσ

t

(Ii). In many settings, all of those three
methods approach Nash equilibrium efficiently.
• Mean Average Strategy (MAS): In CFR variants, the

average strategy after enough iterations approaches a Nash
equilibrium. Note that, the current strategy has not been
proven to approach Nash equilibrium although it empiri-
cally has a strong performance in CFR+ variants on many
settings (Burch, 2017). It’s natural to ask the question: can
we use the iterative average strategy to design our vector-
ized sampling policies and help the vector-form MCCFR
approach Nash equilibrium efficiently ? In practice, we can
use the average strategy within t iterations as a good ap-
proximation of Nash equilibrium. Specifically, we replace
the current strategy σt in Eq. (4) by the average strategy σ̄t,
and the weighted average strategy is defined by

σmasi (a|~Ii) =

∑
I∈~I σ̄

t
i(a|Ii)∑

I∈~Ii
∑
a∈A(Ii)

σ̄ti(a|Ii)
=

∑
I∈~I σ̄

t
i(a|Ii)
|~Ii|

.

(6)

• Range-Weighted Average Strategy (WAS): Similarly,
we can use range to weight the average strategy at iteration t
like Eq. (5). The range-weighted average strategy is defined
by

σwasi (a|~Ii) =

∑
I∈~I π

σt

i (I)σ̄ti(a|Ii)∑
I∈~Ii

∑
a∈A(Ii)

πσ
t

i (I)σ̄ti(a|I)
. (7)

We prefer to using πσ
t

i (I) rather than πσ̄
t−1

i (I) as the
weight of each infoset in Eq. (7), because Eq. (2) and Eq. (7)
share the same weight.

Remark: Gibson et al. (2012); Gibson (2014) used av-
erage strategy as the sampling policy, however, they didn’t
address the weighted strategy like Eq. (7). Also, they didn’t
discuss vectorized Monte Carlo sampling.

Monte Carlo Sampling with Exploration
Decision-making problems in the partially observable en-
vironment are typically modeled as partially observable
stochastic games within reinforcement learning community
or extensive-form imperfect information games within the
game theory community (Kovařı́k et al., 2019). Both these
two communities use Monte Carlo sampling to solve the
large-scale imperfect information games. However, these

two communities are mostly distinct with little sharing of
the advanced ideas.

Exploitation and exploration are the key trade-offs in rein-
forcement learning (Deisenroth and Rasmussen, 2011). Em-
pirically, Monte Carlo sampling with suitable exploration
technique will help reinforcement learning method achieve
better performance with fewer samples (iterations) (Schul-
man et al., 2015). Recently, Jin et al. (2018) introduced that
Q-Learning with upper confidence bound (UCB) is provably
efficient. Although many advanced exploration techniques
on reinforcement learning have been proposed (Qian et al.,
2018; Taı̈ga et al., 2019), few of these techniques have been
used to solve imperfect information games in game theory
community (especially in counterfactual regret minimiza-
tion community). A well-known application is the hybrid
method of ε-greedy and outcome sampling (Lanctot et al.,
2009). However, the effectiveness of hybrid methods with
advanced exploration techniques is unclear.

To fill that gap, in this paper, we introduce a novel Monte
Carlo sampling framework with an exploration technique for
counterfactual regret minimization. In general, the mixture
sampling policy in this framework is defined by

σsei (a|~Ii) = (1− α) ∗ σsi (a|~Ii) + α ∗ σei (a|~Ii), (8)

where σsi (a|~Ii) refers to selected sampling policy, σei (a|~Ii)
refers to the exploration policy. α ∈ [0, 1] is a de-
cayed mixture factor, which is used to control the weight
of exploration and typically holds limt→∞ α = 0.
One can specify any vector-form sampling policy σsi ,
e.g., σrcsi , σmcsi , and σwasi . Both σsi and σei holds∑
a∈A(~Ii)

σsi (a|~Ii) = 1,
∑
a∈A(~Ii)

σei (a|~Ii) = 1. Therefore,

σsei holds
∑
a∈A(~Ii)

σsei (a|~Ii) = 1.
Remark: In this paper, we design vector-form Monte

Carlo sampling policy based on public tree. For the value-
form case, Eq.8 can be defined by σsei (a|Ii) = (1 − α) ∗
σsi (a|Ii) + α ∗ σei (a|Ii). Strictly speaking, the value-form
method is a special case of the vector-form method, whose
vector size is 1.

Vectorized Monte Carlo Sampling with
Count-Based Exploration
We borrow the idea from reinforcement learning and apply a
count-based exploration into vectorized Monte Carlo coun-
terfactual regret minimization.

Define ct(a|~Ii) as the sampling times for action a at pub-
lic node ~Ii in iteration t. If ~Ii or action a is not sampled
in this iteration, the ct(a|~Ii) is 0. The cumulative sampling
times are defined by Ct(a|~Ii) =

∑t
j=1 c

j(a|~Ii). Note that,
when using mini-batch MCCFR (Li et al., 2020), ct(a|~Ii)
could be larger than 1 because a mini-batch of public se-
quences are sampled in one iteration. The exploration policy
in our method is defined by

σe,ti (a|~Ii) =

(
1 + β/

√
Ct(a|~Ii)

)
∑
a∈A(~Ii)

(
1 + β/

√
Ct(a|~Ii)

) , (9)

where σe,ti refers to the exploration policy in iteration t, β is
a nonnegative real number.

Intuitive explanation. If β = 0, then σe,ti (·|Ii) is a uni-
form random exploration. If β > 0 and action a at Ii is sam-
pled over and over again, according to Eq. (9), σe,ti (a|Ii)
tends to become small so that there is a potentially lower
probability to sample this action again than the one with-
out exploration. We find exploration is empirically helpful
in MCCFR. Intuitively, we think the potential reason likes
that: If the cumulative regret of one action is negative, its
current strategy is zero. In this situation, this action will not
be sampled in the next few iterations. However, this action
could have a larger overall regret than other actions after
long-running iterations. Therefore, it will need to perform
a lot of iterations to make its value change from negative
cumulative regret to positive value. However, after using ex-
ploration, MCCFR has a certain probability to sample this
action even when its cumulative regret is negative (the cor-
responding sampling policy σsei (a|~Ii) in Eq. (8) is zero at t
iteration).

Remark. In this section, we introduce a simple count-
based exploration and try to fill the gap between reinforce-
ment learning community and CFR community in the field
of applying exploration technique into vectorized MCCFR.
We believe that our work potentially opens up new avenues
for research in this direction. Some other latest exploration
techniques in reinforcement learning (Jin et al., 2018; Qian
et al., 2018; Taı̈ga et al., 2019) are waiting for us to explore
in the future.

Experiment
Poker has served for decades as a challenging bench-
mark and milestone of solving imperfect information
games (Zinkevich et al., 2007; Lanctot et al., 2009; Morav-
cik et al., 2017; Brown and Sandholm, 2019a,b). In this pa-
per, we evaluated our methods on heads-up no-limit pre-
flop hold’em poker (NLPH). We also report the convergence
of hybrid methods: combining the vectorized Monte Carlo
MCCFR with the advanced skipping mechanism and dis-
counting technique, the experimental results show that our
method can benefit such advanced techniques and obtains
the state-of-the-art convergence. Because of the limitation of
space, we present detailed comparisons on vectorized Monte
Carlo sampling policies with exploration on NLPH. Empir-
ically, our method achieves 2 or 3 orders of magnitude im-
provement and makes MCCFR much more efficient in solv-
ing large-scale imperfect information games.

Metric and Parameters
Different from the standard metric: average episode reward
in the reinforcement learning community, game theory com-
munity evaluates imperfect information solving algorithm
by the standard metric: exploitability (Zinkevich et al., 2007;
Michael Bowling, 2015). The unit of exploitability in our pa-
per is chips per game. It denotes how many chips one player
losses on average per hand of poker when she plays against
a Nash equilibrium strategy. That is, exploitability refers to
the worst loss on average. For the abstracted large games,
the exploitability is computed on the abstracted game. The

100 101 102 103 104 105

Iteration

101

102

Ex
pl

oi
ta

bi
lit

y

MCCFR
MCCFR-MAS
MCCFR-MAS(epsilon-greedy expl.)
MCCFR-MAS(counted-based expl.)

(a) Average Sampling

100 101 102 103 104 105

Iteration

101

102

103

Ex
pl

oi
ta

bi
lit

y

MCCFR
MCCFR-MCS
MCCFR-MCS(epsilon-greedy expl.)
MCCFR-MCS(counted-based expl.)

(b) Robust Sampling

100 101 102 103 104 105

Iteration

101

102

Ex
pl

oi
ta

bi
lit

y

MCCFR
MCCFR-MCS
MCCFR-MCS(epsilon-greedy expl.)
MCCFR-MCS(counted-based expl.)

(c) Outcome Sampling
Figure 2: Log-log plots of the convergence for MCCFR variants with/without exploration on NLPH. We test exploration technique on three
different sampling methods: (a) average sampling, (b) robust sampling and (c) outcome sampling. MCCFR refers to the semi-vector-form
MCCFR. Lower exploitability indicates better results.

method with a lower exploitability is better. Nash equilib-
rium has zero exploitability.

Game Rules
HUNL is a primary benchmark for the imperfect informa-
tion game solving methods. The HUNL we used in this pa-
per is the standard version in the Annual Computer Poker
Competition4. At the start of HUNL, the two players have
20000 chips. HUNL has at most four betting rounds if nei-
ther players fold in advance. The four betting rounds are
named by preflop, flop, turn, and river respectively. At the
start of each hand, both players are dealt with two private
cards from a 52-card deck. One player at the position of the
small blind should firstly put 50 chips into the pot and the
other player at the big blind should put 100 chips into the
pot. Their positions alternate after each hand. Each player
can choose fold, call, or raise. If one player chooses fold,
then she will lose the money in the pot and this hand is
over. If one player chooses call, she should place a num-
ber of chips into the pot so that her total chips are equal to
the opponent’s chips. If one player chooses raise, she should
add more chips into the pot than the opponent does. After
the preflop round, three public cards are revealed and then
the flop betting round occurs. After this round, another pub-
lic card is dealt and the third betting round takes place. After
that, the last public card is revealed, then the river round be-
gins.

Although HUNL contains about 10161 infosets (Johanson,
2013) and is too large to traverse all the nodes, state-of-the-
art agents such as Libratus (Brown and Sandholm, 2017) and
DeepStack (Moravcik et al., 2017) solve the subgame of the
full HUNL in real time based on action abstraction or card
abstraction techniques. To reduce the computation, we also
use similar abstraction technique and consider 1x the pot and
all in the each betting round without any card abstraction.

NLPH has only one betting round and the value for the
terminal node is represented by the expected game utility
under the uniform random community cards, which is pre-
computed and saved on the disk. NLPH contains 7.8 × 104

infosets and 1.0× 109 states.

Settings
We conducted a set of comparison on four sampling meth-
ods: (1) average sampling: the traverser samples 1 action ac-

4http://www.computerpokercompetition.org/

cording to uniform random policy while the opponent sam-
ples 1 action according to the designed vectorized MAS
Monte Carlo sampling policies. (2) outcome sampling: both
the traverse and the opponent sample 1 action according to
MCS policy. (3) external sampling: the traverser takes all
action in her decision-making node while the opponent sam-
ples 1 action according to the designed vectorized MCS pol-
icy. (4) robust sampling: the traverser samples k = 1 action
in her decision-making node according to uniform random
policy while the opponent samples 1 action according to the
designed vectorized MCS policy.

Note that, the concurrent work (Davis, Schmid, and Bowl-
ing, 2019) used both uniform sampling (both players used
uniform random sampling policy) and robust sampling in
their experiment. Their results showed robust sampling
achieved better performance than uniform sampling. With-
out loss of generality, in this paper, we compared different
MCCFR variants on NLPH poker based on the robust sam-
pling. Typically, in MCCFR, the public tree or game tree is
traversed separately for each player (Brown and Sandholm,
2017, 2019b). We follow this criterion in our experiment.
We set default α = 1

ln (t+10) , β = ln (t+ 10) and γ = 0.5.

Comparison
Improvement of exploration. Figure 2 demonstrates the
convergence of different MCCFR variants before/after us-
ing exploration technique on average sampling method, ro-
bust sampling and outcome sampling. All the curves are
log-log plots (log scale of both x-axis and y-axis). The la-
bel MCCFR in this figure refers to semi-vector Monte Carlo
CFR method. Because few articles have addressed the ex-
ploration in MCCFR, We compared our exploration tech-
nique against the MCCFR variants without exploration and
with ε-greedy (Lanctot et al., 2009). In Figure 2 (a) and
(b), the MCCFR-MAS with both epsilon-greedy explo-
ration and the proposed counted-based exploration converge
slower than the one without exploration technique within
the first 5000 iterations, however they achieve much lower
exploitability (better performance) in long-term running. It
seems that the method via average sampling is better than
robust sampling and robust sampling is better than outcome
sampling. The reason is that the average strategy learned by
MCCFR approaches to Nash equilibrium while current strat-
egy doesn’t hold this property. Using the iterative average
strategy is more stable than current strategy in vectorized
Monte Carlo sampling. We believe the advanced exploration

100 101 102 103 104 105

Iteration

101

102

Ex
pl

oi
ta

bi
lit

y

MCCFR
MCCFR-MAS(uniform)
MCCFR-WAS(both range)
MCCFR-WAS(self range)
MCCFR-WAS(opp. range)

(a) Average Sampling

100 101 102 103 104 105

Iteration

100

101

102

103

Ex
pl

oi
ta

bi
lit

y

MCCFR
MCCFR-MCS(uniform)
MCCFR-WCS(both range)
MCCFR-WCS(self range)
MCCFR-WCS(opp. range)

(b) Robust Sampling

100 101 102 103 104 105

Iteration
100

101

102

103

Ex
pl

oi
ta

bi
lit

y

MCCFR
MCCFR-MCS(uniform)
MCCFR-WCS(both range)
MCCFR-WCS(self range)
MCCFR-WCS(opp. range)

(c) Outcome Sampling
Figure 3: Log-log plots of the convergence on NLPH. Comparison for vectorized Monte Carlo sampling polices.

techniques in reinforcement learning may also work well but
they are out of the scope of this paper. Our work opens up
the avenues for research in this direction.

Improvement of sampling policies. Figure 3 presents the
convergence of the designed vectorized Monte Carlo sam-
pling policies. Note that, in Figure 3, we used the mixture
of vectorized sampling policies and exploration as the de-
fault setting to demonstrate the incremental improvement
of the proposed vectorized Monte Carlo sampling methods.
As introduced in the aforementioned section, players’ range
can be used to weight the vectorized sampling policies.
We demonstrate four different settings: (1) uniform weight,
which refers to mean average strategy(MAS) in average
sampling or mean current strategy(MCS) in robust sam-
pling and outcome sampling; (2) weighted by both players’
range (π(Ii); (3) weighted by the traverser’s range πi(Ii);
(3) weighted by the opponent’s range π−i(Ii). The experi-
mental results show that the methods weighted by range are
better than uniform weight. That’s reasonable, because ~Ii
contains a vector of infosets, but these infosets have differ-
ent probabilities to reach the sharing public node. In imper-
fect information games, range denotes the reach probability.
From figure 3, we can see that all the vectorized MCCFR
achieves much better performance than the semi-vector MC-
CFR (about 2 ∼ 3 orders of magnitude improvement). Note
that, typically semi-vector-form MCCFR converged faster
than its value-form version so that we didn’t present the con-
vergence curve for the value-form MCCFR. In average sam-
pling, the method weighted by both players’ range is slightly
better than the one weighted by traverser’s or opponent’s
range. In robust sampling and outcome sampling, these three
weighting methods have similar performance and all of them
are significant than uniform weighting method.

Hybrid Methods with Acceleration Techniques
We use some acceleration techniques to improve the conver-
gence of the vectorized MCCFR.

Hybrid Methods with Skipping Mechanism. In CFR,
the cumulative regret is initialized by zero and the current
strategy starts from a uniform random strategy. Only the av-
erage strategy profile within all iterations is proved to con-
verge to Nash equilibrium. Recently, some works (Morav-
cik et al., 2017; Li et al., 2019) demonstrated that skip-
ping previous iterations of CFR can obtain faster conver-
gence empirically although this practical technique is lack
of theoretical convergence. We wonder whether this tech-
nique can also be used in vectorized Monte Carlo framework

103 104 105
Iteration

10 1

100

101

102

Ex
pl

oi
ta

bi
lit

y

WCS(no skip)
WCS(skip 100)
WCS(skip 1k)
WCS(skip 10k)

(a) Skipping Mechanism

102 103 104
Iteration

100

101

102

Ex
pl

oi
ta

bi
lit

y

WCS
Linear WCS(w=1)
Linear WCS(w=2)

(b) Discounting Updates
Figure 4: Hybrid methods with two acceleration techniques
on NLPH.

and makes our method more efficient. In figure 4(a), we pre-
sented the performance of the hybrid MCCFR variants by
combining vectorized Monte Carlo sampling and skipping
mechanism. We report the convergences of three vectorized
MCCFR settings: skipping the first 100, 1k and 10k iter-
ations. It’s clear that the skipping mechanism dramatically
improved the performance. The method by skipping previ-
ous 10k iterations approached 0.94-Nash equilibrium (the
method without skipping mechanism approached 1.42.).

Hybrid Methods with Discounting Updates. Recently,
Brown and Sandholm (2019a) proposed an efficient linear
CFR, which empirically converges faster than the previous
state-of-the-art CFR+. The linear CFR weights the regrets
and average strategies with the iteration t. In our experiment,
we combined this discounting mechanism with our vector-
form MCCFR and specified the weight by tw (w = 1 and
w = 2). Figure 2(b) showed that the method weighted by
w = 1 is better than w = 2 and both of them converge more
efficient the one without this acceleration technique.

Remark: There are also some other acceleration tech-

niques, such as mini-batch updates (Li et al., 2020), variance
reduction method (Schmid et al., 2019; Davis, Schmid, and
Bowling, 2019), targeted CFR (Jackson, 2017). We believe
one can design more hybrid methods based on our vector-
ized Monte Carlo framework and the advanced acceleration
technique, which could lead to more efficient MCCFR vari-
ants. However, investigating all these hybrid methods is out
of the scope of this paper.

Conclusion and Future Work
We designed a novel vectorized Monte Carlo counterfac-
tual regret minimization framework and applied the spirit
of exploration from reinforcement learning into MCCFR.
Based on this framework, we introduced several powerful
vectorized Monte Carlo sampling policies. Empirically, our
method obtained 2 ∼ 3 orders of magnitude improvement.
We believe our works potentially open up new avenues for
research in these directions.

Acknowledgments We would like to thank Noam Brown,
Marc Lanctot, Trevor Davis, Martin Schmid and Neil Burch
for insightful discussions and feedback. We also would like
to thank the anonymous reviewers for pointing out some is-
sues in the previous version of this work.

References
Brown, N., and Sandholm, T. 2017. Superhuman AI for

heads-up no-limit poker: Libratus beats top professionals.
Science eaao1733.

Brown, N., and Sandholm, T. 2019a. Solving Imperfect-
Information Games via Discounted Regret Minimization.
AAAI.

Brown, N., and Sandholm, T. 2019b. Superhuman ai for
multiplayer poker. Science eaay2400.

Burch, N.; Moravcik, M.; and Schmid, M. 2018. Re-
visiting CFR+ and Alternating Updates. arXiv preprint
arXiv:1810.11542.

Burch, N. 2017. Time and Space: Why Imperfect Informa-
tion Games are Hard. PhD thesis.

Davis, T.; Schmid, M.; and Bowling, M. 2019. Low-
variance and zero-variance baselines for extensive-form
games. arXiv preprint arXiv:1907.09633.

Deisenroth, M., and Rasmussen, C. E. 2011. Pilco: A model-
based and data-efficient approach to policy search. In
ICML, 465–472.

Gibson, R.; Lanctot, M.; Burch, N.; Szafron, D.; and Bowl-
ing, M. 2012. Generalized sampling and variance in coun-
terfactual regret minimization. In AAAI.

Gibson, R. G. 2014. Regret minimization in games and the
development of champion multiplayer computer poker-
playing agents.

Gilpin, A.; Hoda, S.; Pena, J.; and Sandholm, T. 2007.
Gradient-based algorithms for finding Nash equilibria in
extensive form games. In International Workshop on Web
and Internet Economics, 57–69. Springer.

Gordon, G. J. 2007. No-regret algorithms for online convex
programs. In NIPS, 489–496.

Heinrich, J.; Lanctot, M.; and Silver, D. 2015. Fictitious
self-play in extensive-form games. 805–813. ICML.

Hoda, S.; Gilpin, A.; Pena, J.; and Sandholm, T. 2010.
Smoothing techniques for computing nash equilibria of
sequential games. Mathematics of Operations Research
35(2):494–512.

Jackson, E. G. 2017. Targeted cfr. In Workshops on AAAI.

Jin, C.; Allen-Zhu, Z.; Bubeck, S.; and Jordan, M. I. 2018.
Is q-learning provably efficient? In NIPS, 4863–4873.

Johanson, M.; Waugh, K.; Bowling, M.; and Zinkevich, M.
2011. Accelerating best response calculation in large ex-
tensive games. In IJCAI.

Johanson, M.; Bard, N.; Lanctot, M.; Gibson, R.; and Bowl-
ing, M. 2012. Efficient nash equilibrium approximation
through monte carlo counterfactual regret minimization.
In International Conference on Autonomous Agents and
Multiagent Systems.

Johanson, M. 2013. Measuring the size of large no-limit
poker games. arXiv preprint arXiv:1302.7008.

Kovařı́k, V.; Schmid, M.; Burch, N.; Bowling, M.; and
Lisỳ, V. 2019. Rethinking formal models of partially
observable multiagent decision making. arXiv preprint
arXiv:1906.11110.

Kroer, C.; Waugh, K.; Kilinç-Karzan, F.; and Sandholm, T.
2015. Faster first-order methods for extensive-form game
solving. In Proceedings of the Sixteenth ACM Conference
on Economics and Computation, 817–834. ACM.

Lanctot, M.; Kevin, W.; Martin, Z.; and Bowling, M. 2009.
Monte Carlo sampling for regret minimization in exten-
sive games. NIPS.

Li, H.; Hu, K.; Qi, Y.; and Song, L. 2019. Efficient cfr for
imperfect information games with instant updates. ICML
on RWSDM.

Li, H.; Hu, K.; Qi, Y.; and Song, L. 2020. Double Neural
Counterfactual Regret Minimization. ICLR.

Michael Bowling, Neil Burch, M. J. O. T. 2015. Heads-Up
Limit Texas Hold’em is solved. Science 347(6218):145–
149.

Moravcik, M.; Martin, S.; Neil, B.; Viliam, L.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowl-
ing, M. 2017. Deepstack: Expert-level artificial intelli-
gence in heads-up no-limit poker. Science (6337):508–
513.

Qian, J.; Fruit, R.; Pirotta, M.; and Lazaric, A. 2018. Explo-
ration bonus for regret minimization in undiscounted dis-
crete and continuous markov decision processes. NIPS.

Schmid, M.; Burch, N.; Lanctot, M.; Moravcik, M.; Kadlec,
R.; and Bowling, M. 2019. Variance Reduction in Monte
Carlo Counterfactual Regret Minimization (VR-MCCFR)
for Extensive Form Games using Baselines. AAAI.

Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust region policy optimization. In ICML,
1889–1897.

Taı̈ga, A. A.; Fedus, W.; Machado, M. C.; Courville, A.;
and Bellemare, M. G. 2019. Benchmarking bonus-based
exploration methods on the arcade learning environment.
arXiv preprint arXiv:1908.02388.

Tammelin, O.; Burch, N.; Johanson, M.; and Bowling, M.
2015. Solving heads-up limit Texas Hold’em. In IJCAI.

Tammelin, O. 2014. Solving large imperfect information
games using CFR+. arXiv preprint.

Zinkevich, M.; Michael, J.; Michael, B.; and Piccione, C.
2007. Regret minimization in games with incomplete in-
formation. NIPS.

